Bioactive Content and Antioxidant Properties of Spray-Dried Microencapsulates of Peumus boldus M. Leaf Extracts
<p><span class="html-italic">P. boldus</span> M. plant and its dried leaves.</p> "> Figure 2
<p>Response surface plot representing the effects of time and solid-liquid ratio and temperature on Total Phenolic Content (TPC) from boldo leaves, with the temperature constant at 100 °C. Lower values are represented in blue and higher values in red.</p> "> Figure 3
<p>SEM micrographs of microcapsules. (<b>a</b>) Treatment N°1 microencapsulation (130 °C, 2 mL/min); (<b>b</b>) Treatment N°2 microencapsulation (150 °C, 2 mL/min); (<b>c</b>) Treatment N°3 microencapsulation (130 °C, 4 mL/min); (<b>d</b>) Treatment N°4 microencapsulation (150 °C, 4 mL/min).</p> "> Figure 4
<p>FTIR spectra for different samples. BOLDO extract (blue line), maltodextrin (black line), and Treatment 3 as a model (red line).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design for Phenolic Extraction
2.2.1. Extraction Procedure
2.2.2. Total Phenolic Content
2.2.3. Optimal Extraction
2.3. Experimental Design for Microencapsulation
2.3.1. Microencapsulation Process
2.3.2. Encapsulation Efficiency and Encapsulation Yield
2.3.3. Water Activity and Moisture of Microcapsules
2.3.4. Scanning Electron Microscopy and Zeta Potential of Microcapsules
2.3.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Bioactive Characterization of Microcapsules
2.4.1. DPPH Free Radical Scavenging Method
2.4.2. ABTS Free Radical Scavenging Method
2.4.3. FRAP Method
2.4.4. Identification and Quantification of Phenolic Compounds
2.5. Statistical Analysis
3. Results and Discussion
3.1. Optimal Phenolic Extraction
3.2. Characterization of Microcapsules with the Optimal Boldo Extract
3.3. Content of Phenolic Compounds in Microcapsules: Phenolic Profile and Antioxidant Properties
Identified Compounds | Encapsulated Powders | ||||
---|---|---|---|---|---|
Boldo Extract | 130 °C, 2 mL/min | 150 °C, 2 mL/min | 130 °C, 4 mL/min | 150 °C, 4 mL/min | |
mg/100 g Extract | mg/100 g of Microcapsules | ||||
1. Pyrogallol | 303.8 ± 23.97 | 25.49 ± 0.25 d | 29.88 ± 0.50 c | 32.64 ± 0.50 b | 37.40 ± 0.74 a |
2. Catechin | 445.3 ± 37.39 | 56.38 ± 0.24 d | 59.31 ± 0.24 c | 60.79 ± 0.19 b | 62.22 ± 0.49 a |
3. Epicatechin | 143.3 ± 14.95 | 15.55 ± 0.22 c | 18.51 ± 1.00 b | 16.95 ± 0.22 a | 16.39 ± 0.11 ac |
4. Epigallocatechin | 155.9 ± 12.11 | 20.53 ± 0.36 ab | 20.65 ± 0.07 ab | 20.79 ± 0.11 a | 20.39 ± 0.06 b |
5. Rutin | 99.18 ± 11.55 | 13.45 ± 0.15 b | 13.43 ± 0.09 b | 14.19 ± 0.17 a | 13.40 ± 0.08 b |
Treatment | Inlet Air Temperature (°C) | Feed Flow (mL/min) | FRAP(µM TE/g Sample) | ABTS(µM TE/g Sample) | DPPH(µM TE/g Sample) | TPC(mg GAE/g Sample) |
---|---|---|---|---|---|---|
1 | 130 | 2 | 2316.80 ± 2.92 a | 99.86 ± 3.56 a | 186.53 ± 1.97 a | 5.75 ± 0.14 ab |
2 | 150 | 2 | 2016.48 ± 38.74 b | 87.99 ± 2.12 ab | 185.72 ± 0.20 a | 5.43 ± 0.26 b |
3 | 130 | 4 | 2017.00 ± 0.00 b | 83.03 ± 2.28 b | 187.12 ± 0.31 a | 5.95 ± 0.28 a |
4 | 150 | 4 | 2086.26 ± 39.47 b | 84.76 ± 9.29 b | 186.46 ± 0.62 a | 5.38 ± 0.11 b |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russo, A.; Cardile, V.; Caggia, S.; Gunther, G.; Troncoso, N.; Garbarino, J. Boldo prevents uv light and nitric oxide-mediated plasmid DNA damage and reduces the expression of hsp70 protein in melanoma cancer cells. J. Pharm. Pharmacol. 2011, 63, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.Y.K.; Lopes, A.D.S.N.; Maia, P.J.S.; Mar, J.M.; da Silva, L.S.; Sanches, E.A.; Corrêa, G.M.; de Araújo Bezerra, J.; do Carmo, D.F.D.M. Chemical and biological evaluation of the aqueous extract of Peumus boldus molina (monimiaceae) leaves. Pharmacogn. Res. 2022, 14, 45–52. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Rodriguez, J.A.; Theoduloz, C.; Astudillo, S.L.; Feresin, G.E.; Tapia, A. Free-radical scavengers and antioxidants from Peumus boldus mol. (“boldo”). Free. Radic. Res. 2003, 37, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Massounga Bora, A.F.; Ma, S.; Li, X.; Liu, L. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Food Res. Int. 2018, 105, 241–249. [Google Scholar] [CrossRef]
- Hundre, S.Y.; Karthik, P.; Anandharamakrishnan, C. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. Food Chem. 2015, 174, 16–24. [Google Scholar] [CrossRef]
- Ríos-Aguirre, S.; Gil-Garzón, M.A. Microencapsulación por secado por aspersión de compuestos bioactivos en diversas matrices: Una revisión. TecnoLógicas 2021, 24, e1836. [Google Scholar] [CrossRef]
- Díaz-Montes, E. Wall materials for encapsulating bioactive compounds via spray-drying: A review. Polymers 2023, 15, 2659. [Google Scholar] [CrossRef]
- Akhavan Mahdavi, S.; Jafari, S.M.; Assadpoor, E.; Dehnad, D. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum arabic and gelatin. Int. J. Biol. Macromol. 2016, 85, 379–385. [Google Scholar] [CrossRef]
- Rodríguez, M.; Bertolino, M.; Irazusta, A.; Irazoqui, M.; Medrano, A. In vitro bioaccessibility and antioxidant capacity of extracts obtained from boldo leaves (Peumus boldus) for its application as a functional ingredient. In Proceedings of the 2nd International Electronic Conference on Foods—“Future Foods and Food Technologies for a Sustainable World”, Online, 15–30 October 2021. [Google Scholar]
- Navarro-Flores, M.J.; Ventura-Canseco, L.M.C.; Meza-Gordillo, R.; Ayora-Talavera, T.d.R.; Abud-Archila, M. Spray drying encapsulation of a native plant extract rich in phenolic compounds with combinations of maltodextrin and non-conventional wall materials. J. Food Sci. Technol. 2020, 57, 4111–4122. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Fernandes, I.P.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Ferreira, I.C.F.R.; Barreiro, M.F. Phenolic acids, cinnamic acid, and ergosterol as cosmeceutical ingredients: Stabilization by microencapsulation to ensure sustained bioactivity. Microchem. J. 2019, 147, 469–477. [Google Scholar] [CrossRef]
- Moreira, L.; Dias, L.G.; Pereira, J.A.; Estevinho, L. Antioxidant properties, total phenols and pollen analysis of propolis samples from portugal. Food Chem. Toxicol. 2008, 46, 3482–3485. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (frap) as a measure of “antioxidant power”: The frap assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Quispe-Fuentes, I.; Vega-Gálvez, A.; Aranda, M. Evaluation of phenolic profiles and antioxidant capacity of maqui (Aristotelia chilensis) berries and their relationships to drying methods. J. Sci. Food Agric. 2018, 98, 4168–4176. [Google Scholar] [CrossRef]
- Soto, C.; Caballero, E.; Pérez, E.; Zúñiga, M.E. Effect of extraction conditions on total phenolic content and antioxidant capacity of pretreated wild peumus boldus leaves from chile. Food Bioprod. Process. 2014, 92, 328–333. [Google Scholar] [CrossRef]
- Torres-Vega, J.; Gómez-Alonso, S.; Pérez-Navarro, J.; Pastene-Navarrete, E. Green extraction of alkaloids and polyphenols from peumus boldus leaves with natural deep eutectic solvents and profiling by hplc-pda-it-ms/ms and hplc-qtof-ms/ms. Plants 2020, 9, 242. [Google Scholar] [CrossRef]
- Zielinski, A.A.F.; Haminiuk, C.W.I.; Alberti, A.; Nogueira, A.; Demiate, I.M.; Granato, D. A comparative study of the phenolic compounds and the in vitro antioxidant activity of different brazilian teas using multivariate statistical techniques. Food Res. Int. 2014, 60, 246–254. [Google Scholar] [CrossRef]
- Che Sulaiman, I.S.; Basri, M.; Fard Masoumi, H.R.; Chee, W.J.; Ashari, S.E.; Ismail, M. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of clinacanthus nutans lindau leaves by response surface methodology. Chem. Cent. J. 2017, 11, 54. [Google Scholar] [CrossRef]
- Gutiérrez Pulido, H.; Salazar, R. Análisis y Diseño de Experimentos; McGraw Hill: New York, NY, USA, 2012. [Google Scholar]
- Reineccius, G. Flavor Chemistry and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Pasrija, D.; Ezhilarasi, P.N.; Indrani, D.; Anandharamakrishnan, C. Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT Food Sci. Technol. 2015, 64, 289–296. [Google Scholar] [CrossRef]
- Fazaeli, M.; Emam-Djomeh, Z.; Kalbasi Ashtari, A.; Omid, M. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod. Process. 2012, 90, 667–675. [Google Scholar] [CrossRef]
- Tengse, D.D.; Priya, B.; Kumar, P.A.R. Optimization for encapsulation of green tea (Camellia sinensis L.) extract by spray drying technology. J. Food Meas. Charact. 2017, 11, 85–92. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Pallet, D.; Brat, P.; Hubinger, M.D. Physicochemical and morphological characterisation of açai (euterpe oleraceae mart.) powder produced with different carrier agents. Int. J. Food Sci. Technol. 2009, 44, 1950–1958. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Choque-Quispe, D.; Moscoso-Moscoso, E.; Huamán-Carrión, M.L.; Ramos-Pacheco, B.S.; De la Cruz, G.; Arévalo-Quijano, J.C.; Muñoz-Saenz, J.C.; Muñoz-Melgarejo, M.; Quispe-Quezada, U.R.; et al. Microencapsulation of propolis and honey using mixtures of maltodextrin/tara gum and modified native potato starch/tara gum. Foods 2023, 12, 1873. [Google Scholar] [CrossRef] [PubMed]
- Naji-Tabasi, S.; Emadzadeh, B.; Shahidi-Noghabi, M.; Abbaspour, M.; Akbari, E. Physico-chemical and antioxidant properties of barberry juice powder and its effervescent tablets. Chem. Biol. Technol. Agric. 2021, 8, 23. [Google Scholar] [CrossRef]
- Karadag, A.; Cakmakoglu, S.K.; Bekiroglu, H.; Karasu, S.; Ozer, H.; Sagdic, O.; Yildirim, R.M. Innovative utilization of olive mill wastewater phenolics extracted by lecithin: Spray-dried powders in cake formulations. J. Food Meas. Charact. 2024, 18, 7979–7993. [Google Scholar] [CrossRef]
- Vargas, V.; Saldarriaga, S.; Sánchez, F.S.; Cuellar, L.N.; Paladines, G.M. Effects of the spray-drying process using maltodextrin on bioactive compounds and antioxidant activity of the pulp of the tropical fruit açai (Euterpe oleracea mart.). Heliyon 2024, 10, e33544. [Google Scholar] [CrossRef]
- Cruz-Molina, A.V.D.L.; Ayala Zavala, J.F.; Bernal Mercado, A.T.; Cruz Valenzuela, M.R.; González-Aguilar, G.A.; Lizardi-Mendoza, J.; Brown-Bojorquez, F.; Silva-Espinoza, B.A. Maltodextrin encapsulation improves thermal and ph stability of green tea extract catechins. J. Food Process. Preserv. 2021, 45, e15729. [Google Scholar] [CrossRef]
Independent Variable | Units | Code Levels | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Temperature | °C | 80 | 90 | 100 |
Time | min | 30 | 45 | 60 |
Solid-liquid ratio | g/mL | 1:100 | 1:166 | 1:500 |
Experiment | Independent Variables | Response Variable | ||
---|---|---|---|---|
Temperature (°C) | Time (min) | Solid-Liquid Ratio (g/mL) | TPC (GAE mg/g Sample) | |
1 | 90 (0) | 45 (0) | 1:166 (0) | 23.04 ± 0.03 |
2 | 80 (−1) | 45 (0) | 1:100 (+1) | 28.86 ± 0.06 |
3 | 90 (0) | 60 (+1) | 1:100 (+1) | 32.26 ± 0.11 |
4 | 100 (+1) | 60 (+1) | 1:166 (0) | 28.93 ± 0.04 |
5 | 90 (0) | 45 (0) | 1:166 (0) | 34.13 ± 0.05 |
6 | 80 (−1) | 60 (+1) | 1:166 (0) | 22.89 ± 0.02 |
7 | 90 (0) | 60 (+1) | 1:500 (−1) | 19.94 ± 0.06 |
8 | 100 (+1) | 45 (0) | 1:100 (+1) | 37.78 ± 0.01 |
9 | 100 (+1) | 30 (−1) | 1:166 (0) | 20.23 ± 0.02 |
10 | 90 (0) | 30 (−1) | 1:100 (+1) | 26.95 ± 0.07 |
11 | 100 (+1) | 45 (0) | 1:500 (−1) | 2.05 ± 0.01 |
12 | 90 (0) | 30 (−1) | 1:500 (−1) | 2.65 ± 0.07 |
13 | 80 (−1) | 30 (−1) | 1:166 (0) | 26.70 ± 0.02 |
14 | 90 (0) | 45 (0) | 1:166 (0) | 31.95 ± 0.01 |
15 | 80 (−1) | 45 (0) | 1:500 (−1) | 2.65 ± 0.02 |
Treatment | Inlet Air Temperature (°C) | Feed Flow (mL/min) | Water Activity | Moisture (%) | Yield (%) | Efficiency (%) | Z Potential (mV) |
---|---|---|---|---|---|---|---|
1 | 130 | 2 | 0.29 ± 0.04 a | 3.29 ± 0.17 a | 79.91 ± 0.84 a | 93.53 ± 1.10 ab | −14.0 ± 3.19 ab |
2 | 150 | 2 | 0.24 ± 0.05 a | 2.10 ± 0.25 b | 76.56 ± 0.67 a | 90.55 ± 1.34 b | −11.7 ± 3.82 b |
3 | 130 | 4 | 0.28 ± 0.03 a | 2.75 ± 0.36 ab | 71.33 ± 0.01 b | 97.02 ± 2.63 a | −18.7 ± 3.49 a |
4 | 150 | 4 | 0.26 ± 0.04 a | 2.52 ± 0.11 b | 73.43 ± 2.37 b | 88.06 ± 2.36 b | −20.1 ± 3.12 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polanco, V.; Cerdá-Bernad, D.; Quispe-Fuentes, I.; Bernal, C.; López, J. Bioactive Content and Antioxidant Properties of Spray-Dried Microencapsulates of Peumus boldus M. Leaf Extracts. Antioxidants 2024, 13, 1568. https://doi.org/10.3390/antiox13121568
Polanco V, Cerdá-Bernad D, Quispe-Fuentes I, Bernal C, López J. Bioactive Content and Antioxidant Properties of Spray-Dried Microencapsulates of Peumus boldus M. Leaf Extracts. Antioxidants. 2024; 13(12):1568. https://doi.org/10.3390/antiox13121568
Chicago/Turabian StylePolanco, Valentina, Débora Cerdá-Bernad, Issis Quispe-Fuentes, Claudia Bernal, and Jéssica López. 2024. "Bioactive Content and Antioxidant Properties of Spray-Dried Microencapsulates of Peumus boldus M. Leaf Extracts" Antioxidants 13, no. 12: 1568. https://doi.org/10.3390/antiox13121568
APA StylePolanco, V., Cerdá-Bernad, D., Quispe-Fuentes, I., Bernal, C., & López, J. (2024). Bioactive Content and Antioxidant Properties of Spray-Dried Microencapsulates of Peumus boldus M. Leaf Extracts. Antioxidants, 13(12), 1568. https://doi.org/10.3390/antiox13121568