JP4-039 Mitigates Cisplatin-Induced Acute Kidney Injury by Inhibiting Oxidative Stress and Blocking Apoptosis and Ferroptosis in Mice
<p>Cisplatin-induced kidney injury and loss of function is mitigated by JP4-039. (<b>A</b>) Overview of the cisplatin AKI and JP4-039 administration protocols. Cisplatin was administered to three cohorts of 129Sv-Elite mice; cisplatin cohort (<b>C</b>) received a single dose of cisplatin (10 mg/kg), cohort 2 (C + JP4-039) received a single dose of cisplatin (10 mg/kg), followed by JP4-039 (20 mg/kg) 24 h later, and cohort 3 (JP4-039 + C) was injected with JP4-039 (20 mg/kg) followed by cisplatin (10 mg/kg) 1 h later. Control mice (ctrl) were injected with normal saline and DMSO (vehicles for cisplatin and JP4-039, respectively). Kidneys and blood were collected for analysis 3 days after cisplatin injection. (<b>B</b>) Histological analysis of kidney sections via periodic acid–Schiff (PAS) staining reveals that JP4-039 treatment preserves the kidneys from cisplatin injury. Green asterisks, protein casts; arrowheads, loss of brush-border. Scale bars: 100 μm. (<b>C</b>) Blood urea nitrogen (BUN) measurements demonstrate AKI in cisplatin-only but not in control and JP4-039-treated mice. Ordinary one-way ANOVA with Tukey’s multiple comparison ** <span class="html-italic">p</span> < 0.01, **** <span class="html-italic">p</span> < 0.0001, <span class="html-italic">n</span> = 5 each. (<b>D</b>) Tubular injury scores based on PAS-stained kidney sections. Ordinary one-way ANOVA with Tukey’s multiple comparison ** <span class="html-italic">p</span> < 0.01, <span class="html-italic">n</span> = 5 each. (<b>C</b>,<b>D</b>) Data are presented as the mean ± SEM. A two-way ANOVA with Tukey’s post hoc analysis.</p> "> Figure 2
<p>JP4-039 administration mitigated tubular injury in cisplatin AKI. (<b>A</b>) Representative images of Kim1 immunofluorescence staining in control (untreated) and cisplatin ± JP4-039-treated kidneys on day 3 after AKI induction, Kim1 (red), LTL (green), DAPI (blue). Scale bar: 200 μm. (<b>B</b>) Quantification of KIM1-positive area in LTL-positive proximal tubules shows that prophylactic and therapeutic JP4-039 administrations suppresses KIM1 expression in cisplatin-injected kidneys. One way-ANOVA, ** <span class="html-italic">p</span> < 0.01, <span class="html-italic">n</span> = 5 each. (<b>C</b>) <span class="html-italic">Havcr1</span> expression was increased in cisplatin AKI kidneys but remained at baseline in mice co-administered with JP4-039. One way-ANOVA, *** <span class="html-italic">p</span> < 0.001, <span class="html-italic">n</span> = 5 each. (<b>D</b>) <span class="html-italic">Ngal</span> expression was increased in cisplatin AKI kidneys but remained at baseline in the kidneys of mice co-administered JP4-039. One way-ANOVA, ** <span class="html-italic">p</span> < 0.01, <span class="html-italic">n</span> = 5 each. (<b>B</b>–<b>D</b>) Data are presented as the mean ± SEM. One way-ANOVA with Tukey’s post hoc analysis.</p> "> Figure 3
<p>JP4-039 blocked the development of tubular interstitial fibrosis in cisplatin AKI. (<b>A</b>) Representative images of Collagen1 immunofluorescence staining in control (untreated) and cisplatin ± JP4-039-treated kidneys on day 3 after AKI induction; collagen 1a1 (red), LTL (green), and DAPI (blue). Scale bar: 200 μm. (<b>B</b>) Quantification of collagen 1-positive area in the cortical region shows that prophylactic and therapeutic JP4-039 administrations suppress Col1a expression in cisplatin-injected kidneys. One way-ANOVA, **** <span class="html-italic">p</span> < 0.0001, <span class="html-italic">n</span> = 5 each. (<b>C</b>) Representative images of fibronectin 1 immunofluorescence staining in control (untreated) and cisplatin ± JP4-039-treated kidneys on day 3 after AKI induction; fibronectin 1 (red), LTL (green), DAPI (blue). Scale bar: 200 μm. (<b>D</b>) Quantification of fibronectin 1-positive area in the cortical region shows that prophylactic and therapeutic JP4-039 treatments suppress Fn1 expression in cisplatin-injected kidneys. (<b>B</b>,<b>D</b>) Data are presented as the mean ± SEM. One way-ANOVA, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001, <span class="html-italic">n</span> = 5 each.</p> "> Figure 4
<p>JP4-039 treatment reduced intrarenal infiltration of inflammatory cells triggered by tubular cell death. (<b>A</b>–<b>D</b>) Evaluation of the expression of several inflammatory genes—<span class="html-italic">Il6</span> (<b>A</b>), <span class="html-italic">Cxcl10</span> (<b>B</b>), <span class="html-italic">Tnf</span> (<b>C</b>), and <span class="html-italic">Ccl2</span> (<b>D</b>) by qPCR reveals a robust inflammatory signaling in cisplatin AKI, which is suppressed in mice co-treated with JP4-039. (<b>A</b>–<b>D</b>) Data are presented as the mean ± SEM. One way-ANOVA with Tukey’s post hoc analysis, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, <span class="html-italic">n</span> = 5 per group.</p> "> Figure 5
<p>JP4-039 blocked the generation of reactive oxygen species (ROS) and activation of the Nrf2 antioxidant pathway in cisplatin-treated kidneys. (<b>A</b>) CM-H2DCFDA staining in untreated and cisplatin ± JP4-039-treated kidneys. Scale bar: 200 μm. (<b>B</b>) Quantification of the CM-H2DCFDA. **** <span class="html-italic">p</span> < 0.0001, n = 5. (<b>C</b>–<b>F</b>) Expression of <span class="html-italic">Nrf2</span> (<b>C</b>) and its target genes, <span class="html-italic">Nqo1</span> (<b>D</b>) and <span class="html-italic">Hmox</span> (<b>E</b>), was increased in cisplatin AKI kidneys but remained at baseline in mice co-administered with JP4-039, while <span class="html-italic">Gpx6</span> (<b>F</b>) expression was reduced in AKI kidneys but preserved at baseline in JP4-039 administered kidneys. One way-ANOVA, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001, <span class="html-italic">n</span> = 5 each. (<b>B</b>–<b>F</b>) Data are presented as the mean ± SEM. One way-ANOVA with Tukey’s post hoc analysis.</p> "> Figure 6
<p>JP4-039 reduced apoptosis and ferroptosis in tubular epithelial cells in cisplatin-injured kidneys. (<b>A</b>) Representative images of cleaved Caspase-3 immunohistochemistry staining in untreated and cisplatin ± JP4-039-treated kidneys. Scale bar: 100 μm. (<b>B</b>) Quantification of cleaved Caspase-3 positive cells in the kidney cortex. ** <span class="html-italic">p</span> < 0.01, <span class="html-italic">n</span> = 5 per group. (<b>C</b>) 4-Hydroxynonenal (4-HNE) staining in control and AKI ± JP4-039 kidneys showed that JP4-039 mitigated the cisplatin-induced accumulation of lipid peroxidation in kidneys 3 days after cisplatin administration. Scale bar: 100 μm. (<b>D</b>) Quantification of 4HNE positive area in the kidney cortical area. **** <span class="html-italic">p</span> <0.0001, <span class="html-italic">n</span> = 5 per group. (<b>E</b>) Quantification of free GSH concentration in whole kidney lysates. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, <span class="html-italic">n</span> = 3 per group. (<b>F</b>,<b>G</b>) qPCR analysis of <span class="html-italic">Acsl4</span> and <span class="html-italic">Gpx4</span> expression in kidneys normalized to <span class="html-italic">Gapdh,</span> * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, <span class="html-italic">n</span> = 5 per group. (<b>H</b>,<b>I</b>) Western blot and quantification of kidney Acsl4 protein. Tubulin is a loading control. ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> <0.0001, <span class="html-italic">n</span> = 5 per group. (<b>B</b>,<b>D</b>–<b>F</b>,<b>G</b>,<b>I</b>) Data are presented as the mean ± SEM. One way-ANOVA with Tukey’s post hoc analysis.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mouse Lines Used and Study Approval
2.2. Measurement of Renal Function
2.3. Histological Analysis of Kidney
2.4. Immunofluorescence Staining (IF)
2.5. Immunohistochemistry Staining (IHC)
2.6. Antibodies
2.7. RNA Extraction and Real-Time PCR
2.8. Western Blotting
2.9. Measurement of Cellular ROS
2.10. Glutathione Assay
2.11. Quantification
2.12. Statistical Methods
3. Results
3.1. JP4-039 Protects Against Cisplatin-Induced Kidney Injury
3.2. JP4-039 Blocks the Induction of Kidney Tubular Injury in Cisplatin Exposed Kidneys
3.3. Reduced Tubular Interstitial Fibrogenesis in Mice Treated with JP4-039
3.4. JP4-039 Attenuates the Expression of Inflammatory Cytokines and Chemokines in Cisplatin Injured Kidneys
3.5. JP4-039 Blocks Oxidative Stress in the Cisplatin Injury
3.6. JP4-039 Ameliorates Cisplatin-Induced Tubular Death by Inhibiting Apoptosis and Ferroptosis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005, 4, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003, 22, 7265–7279. [Google Scholar] [CrossRef] [PubMed]
- Ozkok, A.; Edelstein, C.L. Pathophysiology of cisplatin-induced acute kidney injury. Biomed. Res. Int. 2014, 2014, 967826. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kruidering, M.; Van de Water, B.; de Heer, E.; Mulder, G.J.; Nagelkerke, J.F. Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: Mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J. Pharmacol. Exp. Ther. 1997, 280, 638–649. [Google Scholar] [PubMed]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, M.; Wei, Q.; Pabla, N.; Dong, G.; Wang, C.Y.; Yang, T.; Smith, S.B.; Dong, Z. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem. Pharmacol. 2007, 73, 1499–1510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lieberthal, W.; Triaca, V.; Levine, J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: Apoptosis vs. necrosis. Am. J. Physiol. 1996, 270 Pt 2, F700–F708. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Liu, Y.; Cai, X.; Huang, X.; Fu, W.; Wang, L.; Qiu, L.; Li, J.; Sun, L. Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell Death Discov. 2022, 8, 127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ide, S.; Kobayashi, Y.; Ide, K.; Strausser, S.A.; Abe, K.; Herbek, S.; O’Brien, L.L.; Crowley, S.D.; Barisoni, L.; Tata, A.; et al. Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. elife 2021, 10, e68603. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ide, S.; Ide, K.; Abe, K.; Kobayashi, Y.; Kitai, H.; McKey, J.; Strausser, S.A.; O’Brien, L.L.; Tata, A.; Tata, P.R.; et al. Sex differences in resilience to ferroptosis underlie sexual dimorphism in kidney injury and repair. Cell Rep. 2022, 41, 111610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzuki, T.; Motohashi, H.; Yamamoto, M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci. 2013, 34, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxidative Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 2014, 16, 1180–1191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krainz, T.; Gaschler, M.M.; Lim, C.; Sacher, J.R.; Stockwell, B.R.; Wipf, P. A Mitochondrial-Targeted Nitroxide Is a Potent Inhibitor of Ferroptosis. ACS Cent. Sci. 2016, 2, 653–659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frantz, M.C.; Skoda, E.M.; Sacher, J.R.; Epperly, M.W.; Goff, J.P.; Greenberger, J.S.; Wipf, P. Synthesis of analogs of the radiation mitigator JP4-039 and visualization of BODIPY derivatives in mitochondria. Org. Biomol. Chem. 2013, 11, 4147–4153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shinde, A.; Berhane, H.; Rhieu, B.H.; Kalash, R.; Xu, K.; Goff, J.; Epperly, M.W.; Franicola, D.; Zhang, X.; Dixon, T.; et al. Intraoral Mitochondrial-Targeted GS-Nitroxide, JP4-039, Radioprotects Normal Tissue in Tumor-Bearing Radiosensitive Fancd2(−/−) (C57BL/6) Mice. Radiat. Res. 2016, 185, 134–150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glanzel, N.M.; Grings, M.; da Rosa-Junior, N.T.; de Carvalho, L.M.C.; Mohsen, A.W.; Wipf, P.; Wajner, M.; Vockley, J.; Leipnitz, G. The mitochondrial-targeted reactive species scavenger JP4-039 prevents sulfite-induced alterations in antioxidant defenses, energy transfer, and cell death signaling in striatum of rats. J. Inherit. Metab. Dis. 2021, 44, 481–491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Airik, M.; Arbore, H.; Childs, E.; Huynh, A.B.; Phua, Y.L.; Chen, C.W.; Aird, K.; Bharathi, S.; Zhang, B.; Conlon, P.; et al. Mitochondrial ROS Triggers KIN Pathogenesis in FAN1-Deficient Kidneys. Antioxidants 2023, 12, 900. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berhane, H.; Shinde, A.; Kalash, R.; Xu, K.; Epperly, M.W.; Goff, J.; Franicola, D.; Zhang, X.; Dixon, T.; Shields, D.; et al. Amelioration of radiation-induced oral cavity mucositis and distant bone marrow suppression in fanconi anemia Fancd2−/− (FVB/N) mice by intraoral GS-nitroxide JP4-039. Radiat. Res. 2014, 182, 35–49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruiz, S.; Pergola, P.E.; Zager, R.A.; Vaziri, N.D. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 2013, 83, 1029–1041. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shelton, L.M.; Lister, A.; Walsh, J.; Jenkins, R.E.; Wong, M.H.; Rowe, C.; Ricci, E.; Ressel, L.; Fang, Y.; Demougin, P.; et al. Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney. Kidney Int. 2015, 88, 1261–1273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008, 73, 994–1007. [Google Scholar] [CrossRef] [PubMed]
- Thermozier, S.; Hou, W.; Zhang, X.; Shields, D.; Fisher, R.; Bayir, H.; Kagan, V.; Yu, J.; Liu, B.; Bahar, I.; et al. Anti-Ferroptosis Drug Enhances Total-Body Irradiation Mitigation by Drugs that Block Apoptosis and Necroptosis. Radiat. Res. 2020, 193, 435–450. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, L.; Guo, C.; Yu, Y.; Tie, L.; Lu, G.; Liu, F.; Han, X.; Ji, L.; Zou, X. Differential effects of PGAM5 knockout on high fat high fructose diet and methionine choline-deficient diet induced non-alcoholic steatohepatitis (NASH) in mice. Cell Biosci. 2023, 13, 154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, Y.; Sun, Y.; Liu, Z.; Lu, Y.; Zhu, X.; Lan, B.; Mi, Z.; Dang, L.; Li, N.; Zhan, W.; et al. Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease. Sci. Transl. Med. 2020, 12, eaba3613. [Google Scholar] [CrossRef] [PubMed]
- Shema, R.; Kulicke, R.; Cowley, G.S.; Stein, R.; Root, D.E.; Heiman, M. Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington’s disease. Proc. Natl. Acad. Sci. USA 2015, 112, 268–272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, M.; Reddy, N.M.; Higbee, E.M.; Potteti, H.R.; Noel, S.; Racusen, L.; Kensler, T.W.; Sporn, M.B.; Reddy, S.P.; Rabb, H. The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice. Kidney Int. 2014, 85, 134–141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, J.; Liu, X.; Fan, J.; Chen, W.; Wang, J.; Zeng, Y.; Feng, X.; Yu, X.; Yang, X. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway. Toxicology 2014, 318, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Small, D.M.; Sanchez, W.Y.; Roy, S.F.; Morais, C.; Brooks, H.L.; Coombes, J.S.; Johnson, D.W.; Gobe, G.C. N-acetyl-cysteine increases cellular dysfunction in progressive chronic kidney damage after acute kidney injury by dampening endogenous antioxidant responses. Am. J. Physiol. Renal. Physiol. 2018, 314, F956–F968. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 35, 724–742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ademowo, O.S.; Dias, H.K.I.; Burton, D.G.A.; Griffiths, H.R. Lipid (per) oxidation in mitochondria: An emerging target in the ageing process? Biogerontology 2017, 18, 859–879. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nezu, M.; Souma, T.; Yu, L.; Suzuki, T.; Saigusa, D.; Ito, S.; Suzuki, N.; Yamamoto, M. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression. Kidney Int. 2017, 91, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Chen, Y.; Mo, D.; Jin, R.; Huang, Y.; Zhang, L.; Zhang, C.; Gao, H.; Yan, Q. Inhibition of ACSL4 ameliorates tubular ferroptotic cell death and protects against fibrotic kidney disease. Commun. Biol. 2023, 6, 907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Z.; Wu, J.; Xu, H.; Zhou, C.; Han, B.; Zhu, H.; Hu, Z.; Ma, Z.; Ming, Z.; Yao, Y.; et al. XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis. 2020, 11, 629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Airik, M.; Clayton, K.; Wipf, P.; Airik, R. JP4-039 Mitigates Cisplatin-Induced Acute Kidney Injury by Inhibiting Oxidative Stress and Blocking Apoptosis and Ferroptosis in Mice. Antioxidants 2024, 13, 1534. https://doi.org/10.3390/antiox13121534
Airik M, Clayton K, Wipf P, Airik R. JP4-039 Mitigates Cisplatin-Induced Acute Kidney Injury by Inhibiting Oxidative Stress and Blocking Apoptosis and Ferroptosis in Mice. Antioxidants. 2024; 13(12):1534. https://doi.org/10.3390/antiox13121534
Chicago/Turabian StyleAirik, Merlin, Kacian Clayton, Peter Wipf, and Rannar Airik. 2024. "JP4-039 Mitigates Cisplatin-Induced Acute Kidney Injury by Inhibiting Oxidative Stress and Blocking Apoptosis and Ferroptosis in Mice" Antioxidants 13, no. 12: 1534. https://doi.org/10.3390/antiox13121534
APA StyleAirik, M., Clayton, K., Wipf, P., & Airik, R. (2024). JP4-039 Mitigates Cisplatin-Induced Acute Kidney Injury by Inhibiting Oxidative Stress and Blocking Apoptosis and Ferroptosis in Mice. Antioxidants, 13(12), 1534. https://doi.org/10.3390/antiox13121534