Monophosphate Derivatives of Luteolin and Apigenin as Efficient Precursors with Improved Oral Bioavailability in Rats
"> Figure 1
<p>HPLC chromatograms of (<b>A</b>) LutPs, with Lut3′P at a content of 665.0 mg/g, Lut4′P at 191.3 mg/g, and Lut7P at 54.7 mg/g, and (<b>B</b>) ApnPs, with Apn7P at 642.2 mg/g and Apn4′P at 272.9 mg/g, obtained through the flash chromatography process. Lut4′P, luteolin 4′-<span class="html-italic">O</span>-phosphate; Lut3′P, luteolin 3′-<span class="html-italic">O</span>-phosphate; Apn4′P, apigenin 4′-<span class="html-italic">O</span>-phosphate; and Apn7′P, apigenin 7′-<span class="html-italic">O</span>-phosphate.</p> "> Figure 2
<p>The physiological digestive stability of Lut, LutPs, Apn, and ApnPs at a concentration of 125 mg/L in (<b>A</b>) simulated gastric fluid and (<b>B</b>) simulated intestinal fluid, with an incubation period of 240 min, and dissolution profiles of Lut, LutPs, Apn, and ApnPs in (<b>C</b>) a pH of 6.8 in phosphate buffer alone and in (<b>D</b>) bile salt solution. Data are the mean ± SD (<span class="html-italic">n</span> = 3). Lut, luteolin; Lut4′P, luteolin 4′-<span class="html-italic">O</span>-phosphate; Lut3′P, luteolin 3′-<span class="html-italic">O</span>-phosphate; Lut7P, luteolin 7-<span class="html-italic">O</span>-phosphate; Apn, apigenin; Apn4′P, apigenin 4′-<span class="html-italic">O</span>-phosphate; and Apn7′P, apigenin 7′-<span class="html-italic">O</span>-phosphate.</p> "> Figure 3
<p>The elimination half-life (T<sub>1/2</sub>) of tested compounds at an initial concentration of 20 μM by apical membrane-associated alkaline phosphatase with 120 min of incubation. Data are the mean ± SD (<span class="html-italic">n</span> = 3). The elimination half-life was calculated as T<sub>1/2</sub> = −0.693/k. Values with different letters are significantly different by one-way ANOVA followed by Tukey’s multiple comparison test (<span class="html-italic">p</span> < 0.05). LutPs, luteolin phosphate derivatives; Lut4′P, luteolin 4′-<span class="html-italic">O</span>-phosphate; Lut3′P, luteolin 3′-<span class="html-italic">O</span>-phosphate; Lut7P, luteolin 7-<span class="html-italic">O</span>-phosphate; Apn4′P, apigenin 4′-<span class="html-italic">O</span>-phosphate; and Apn7′P, apigenin 7′-<span class="html-italic">O</span>-phosphate.</p> "> Figure 4
<p>Mean plasma concentration–time profiles of (<b>A</b>) aglyconic Lut, (<b>B</b>) Lut conjugates, and (<b>C</b>) sum of Lut and its conjugates in rats after the oral administration of Lut, Lut7G suspension, and LutPs solution at 174.67 μmol/kg B.W. Data are the mean ± SE (<span class="html-italic">n</span> = 3). Lut, luteolin; LutPs, luteolin phosphate derivatives; and Lut7G, luteolin 7-<span class="html-italic">O</span>-glucoside.</p> "> Figure 5
<p>Mean plasma concentration–time profiles of (<b>A</b>) aglyconic Apn, (<b>B</b>) Apn conjugates, and (<b>C</b>) sum of Apn and its conjugates in rats after the oral administration of Apn, Apn7G suspension, and ApnPs solution at 185.02 μmol/kg B.W. Data are the mean ± SE (<span class="html-italic">n</span> = 3–4). Apn, apigenin; ApnPs, apigenin phosphate derivatives; and Apn7G, apigenin 7-<span class="html-italic">O</span>-glucoside.</p> "> Figure 6
<p>MRM chromatograms of (<b>A</b>) standards (200 ng/mL) for Apn (<b>top</b>) and Lut (<b>bottom</b>) and (<b>B</b>) overlay of MRM chromatograms for Apn (<span class="html-italic">m</span>/<span class="html-italic">z</span> 269) and its metabolite Lut (<span class="html-italic">m</span>/<span class="html-italic">z</span> 285) in plasma. (<b>C</b>) UPLC-MS/MS spectrum of the Lut qualifier ion (<span class="html-italic">m</span>/<span class="html-italic">z</span> 133) from rat plasma. Mean plasma concentration–time profiles of (<b>D</b>) aglyconic Lut, (<b>E</b>) Lut conjugates, and (<b>F</b>) total Lut (Lut and its conjugates) in rats following the oral administration of Apn, Apn7G suspension, and ApnPs solution at 185.02 μmol/kg B.W. Data are the mean ± SE (<span class="html-italic">n</span> = 3−4). Lut, luteolin; Apn, apigenin; ApnPs, apigenin phosphate derivatives; and Apn7G, apigenin 7-<span class="html-italic">O</span>-glucoside.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of LutPs and ApnPs
2.3. Stability Assay in Simulated Gastric Fluid (SGF) and Simulated Intestinal Fluid (SIF)
2.4. Dissolution Study
2.5. Dephosphorylation Assay by Caco-2 Cell Apical Membrane-Associated ALP
2.6. Quantification by HPLC
2.7. Oral Bioavailability in Sprague Dawley (SD) Rats
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Properties of LutPs and ApnPs
3.2. In Vitro Digestibility and Dissolution Profiles of LutPs and ApnPs
3.3. Pharmacokinetic Studies of Lut and Its Derivatives
3.4. Pharmacokinetic Studies of Apn and Its Derivatives
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Alam, W.; Rocca, C.; Khan, H.; Hussain, Y.; Aschner, M.; De Bartolo, A.; Amodio, N.; Angelone, T.; Cheang, W.S. Current status and future perspectives on therapeutic potential of apigenin: Focus on metabolic-syndrome-dependent organ dysfunction. Antioxidants 2021, 10, 1643. [Google Scholar] [CrossRef] [PubMed]
- Assalve, G.; Lunetti, P.; Zara, V.; Ferramosca, A. In vivo antioxidant activity of common dietary flavonoids: Insights from the yeast model Saccharomyces cerevisiae. Antioxidants 2024, 13, 1103. [Google Scholar] [CrossRef]
- Singh, J.P.V.; Selvendiran, K.; Banu, S.M.; Padmavathi, R.; Sakthisekaran, D. Protective role of apigenin on the status of lipid peroxidation and antioxidant defense against hepatocarcinogenesis in Wistar albino rats. Phytomedicine 2004, 11, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Gonzalez, X.; Fuentes, F.; Jeffery, S.; Saw, C.L.L.; Shu, L.; Su, Z.Y.; Kong, A.N.T. Induction of NRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharm. Drug Dispos. 2015, 36, 440–451. [Google Scholar] [CrossRef]
- Qiao, H.; Dong, L.; Zhang, X.; Zhu, C.; Zhang, X.; Wang, L.; Liu, Z.; Chen, L.; Xing, Y.; Wang, C.; et al. Protective Effect of Luteolin in Experimental Ischemic Stroke: Upregulated SOD1, CAT, Bcl-2 and Claudin-5, Down-Regulated MDA and Bax Expression. Neurochem. Res. 2012, 37, 2014–2024. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Chen, M.Y.; Hsu, C.; Kuan, K.Y.; Chang, C.F.; Wang, C.W.; Hsu, C.P.; Su, N.W. Luteolin phosphate derivatives generated by cultivating Bacillus subtilis var. natto BCRC 80517 with luteolin. J. Agric. Food Chem. 2022, 70, 8738–8745. [Google Scholar] [CrossRef]
- Zumerle, S.; Sarill, M.; Saponaro, M.; Colucci, M.; Contu, L.; Lazzarini, E.; Sartori, R.; Pezzini, C.; Rinaldi, A.; Scanu, A.; et al. Targeting senescence induced by age or chemotherapy with a polyphenol-rich natural extract improves longevity and healthspan in mice. Nat. Aging 2024, 4, 1231–1248. [Google Scholar] [CrossRef]
- Zhou, N.; Cao, Y.; Luo, Y.; Wang, L.; Li, R.; Di, H.; Gu, T.; Cao, Y.; Zeng, T.; Zhu, J.; et al. The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H2O2. Antioxidants 2024, 13, 611. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Jiang, Z.-h.; Li, C.-g.; Zhu, Y.-j.; Li, Z.; Tang, Y.-z.; Ni, C.-l. Apigenin prevents metabolic syndrome in high-fructose diet-fed mice by Keap1-Nrf2 pathway. Biomed. Pharmacother. 2018, 105, 1283–1290. [Google Scholar] [CrossRef]
- Xi, X.; Wang, J.; Qin, Y.; You, Y.; Huang, W.; Zhan, J. The biphasic effect of flavonoids on oxidative stress and cell proliferation in breast cancer cells. Antioxidants 2022, 11, 622. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, S.; Turkekul, K.; Serttas, R.; Erdogan, Z. The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy. Biomed. Pharmacother. 2017, 88, 210–217. [Google Scholar] [CrossRef]
- Borges, G.; Fong, R.Y.; Ensunsa, J.L.; Kimball, J.; Medici, V.; Ottaviani, J.I.; Crozier, A. Absorption, distribution, metabolism and excretion of apigenin and its glycosides in healthy male adults. Free Radic. Biol. Med. 2022, 185, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Sarawek, S.; Derendorf, H.; Butterweck, V. Pharmacokinetics of luteolin and metabolites in rats. Nat. Prod. Commun. 2008, 3, 1934578X0800301218. [Google Scholar] [CrossRef]
- Seo, S.W.; Choi, S.H.; Hong, J.K.; Kim, K.M.; Kang, S.C.; Yoon, I.S. Pharmacokinetics and extensive intestinal first-pass effects of apigenin and its active metabolite, apigenin-7-O-glucuronide, in rats. J. Pharm. Investig. 2024, 54, 467–481. [Google Scholar] [CrossRef]
- Deng, C.; Gao, C.; Tian, X.; Chao, B.; Wang, F.; Zhang, Y.; Zou, J.; Liu, D. Pharmacokinetics, tissue distribution and excretion of luteolin and its major metabolites in rats: Metabolites predominate in blood, tissues and are mainly excreted via bile. J. Funct. Foods 2017, 35, 332–340. [Google Scholar] [CrossRef]
- Lin, C.W.; Wu, M.J.; Liu, I.Y.C.; Su, J.D.; Yen, J.H. Neurotrophic and Cytoprotective Action of Luteolin in PC12 Cells through ERK-Dependent Induction of Nrf2-Driven HO-1 Expression. J. Agric. Food Chem. 2010, 58, 4477–4486. [Google Scholar] [CrossRef] [PubMed]
- Kazi, M.; Alhajri, A.; Alshehri, S.M.; Elzayat, E.M.; Al Meanazel, O.T.; Shakeel, F.; Noman, O.; Altamimi, M.A.; Alanazi, F.K. Enhancing Oral Bioavailability of Apigenin Using a Bioactive Self-Nanoemulsifying Drug Delivery System (Bio-SNEDDS): In Vitro, In Vivo and Stability Evaluations. Pharmaceutics 2020, 12, 749. [Google Scholar] [CrossRef]
- Gutiérrez-Venegas, G.; González-Rosas, Z. Apigenin reduce lipoteichoic acid-induced inflammatory response in rat cardiomyoblast cells. Arch. Pharmacal Res. 2017, 40, 240–249. [Google Scholar] [CrossRef]
- Yan, T.; Wang, H.; Song, X.; Yan, T.; Ding, Y.; Luo, K.; Zhen, J.; He, G.; Nian, L.; Wang, S.; et al. Fabrication of apigenin nanoparticles using antisolvent crystallization technology: A comparison of supercritical antisolvent, ultrasonic-assisted liquid antisolvent, and high-pressure homogenization technologies. Int. J. Pharm. 2022, 624, 121981. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Y.; Cheng, M.; Liu, Q.; Liu, W.; Gao, C.; Feng, J.; Jin, Y.; Tu, L. Improving oral bioavailability of luteolin nanocrystals by surface modification of sodium dodecyl sulfate. AAPS PharmSciTech 2021, 22, 1–11. [Google Scholar] [CrossRef]
- Arsić, I.; Tadić, V.; Vlaović, D.; Homšek, I.; Vesić, S.; Isailović, G.; Vuleta, G. Preparation of novel apigenin—Enriched, liposomal and non-liposomal, antiinflammatory topical formulations as substitutes for corticosteroid therapy. Phytother. Res. 2011, 25, 228–233. [Google Scholar] [CrossRef]
- Wu, G.; Li, J.; Yue, J.; Zhang, S.; Yunusi, K. Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma. Mol. Med. Rep. 2018, 17, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Guo, S.; Liu, C.; Yang, C.; Dou, J.; Li, L.; Zhai, G. Preparation and in vitro evaluation of apigenin-loaded polymeric micelles. Colloids Surf. Physicochem. Eng. Aspects 2013, 429, 24–30. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, J.; Zhao, L.; Wang, C.; Shi, F.; Li, Z.; Liu, X.; Miao, Z. Enhancement of oral bioavailability and anti-colitis effect of luteolin-loaded polymer micelles with RA (rosmarinic acid)-SS-mPEG as carrier. Drug Dev. Ind. Pharm. 2023, 49, 17–29. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, L.; Meng, L.; Wang, J.; Zhai, G. Design and evaluation of a self-microemulsifying drug delivery system for apigenin. Drug Dev. Ind. Pharm. 2013, 39, 662–669. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, F.; Xu, S.; Yun, K.; Wu, W.; Pan, W. Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability. J. Drug Deliv. Sci. Technol. 2020, 58, 101783. [Google Scholar] [CrossRef]
- Hsu, C.; Ho, H.W.; Chang, C.F.; Wang, S.T.; Fang, T.F.; Lee, M.H.; Su, N.W. Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Res. Int. 2013, 53, 487–495. [Google Scholar] [CrossRef]
- Wang, S.T.; Chen, J.A.; Hsu, C.; Su, N.W. Microbial phosphorylation product of hesperetin by Bacillus subtilis BCRC 80517 improves oral bioavailability in rats. J. Agric. Food Chem. 2021, 69, 10184–10193. [Google Scholar] [CrossRef]
- Wang, S.T.; Fang, T.F.; Hsu, C.; Chen, C.H.; Lin, C.J.; Su, N.W. Biotransformed product, genistein 7-O-phosphate, enhances the oral bioavailability of genistein. J. Funct. Foods 2015, 13, 323–335. [Google Scholar] [CrossRef]
- Wang, S.T.; Chang, H.S.; Hsu, C.; Su, N.W. Osteoprotective effect of genistein 7-O-phosphate, a derivative of genistein with high bioavailability, in ovariectomized rats. J. Funct. Foods 2019, 58, 171–179. [Google Scholar] [CrossRef]
- Makioka, A.; Kumagai, M.; Kobayashi, S.; Takeuchi, T. Effect of artificial gastrointestinal fluids on the excystation and metacystic development of Entamoeba invadens. Parasitol. Res. 2006, 98, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration, Center for Drug Evaluation and Research. Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. FDA Guidance for Industry; Food and Drug Administration, Center for Drug Evaluation and Research: Silver Spring, MD, USA, 2005. [Google Scholar]
- Hsu, C.; Tsai, H.Y.; Chang, C.F.; Yang, C.C.; Su, N.W. Discovery of a novel phosphotransferase from Bacillus subtilis that phosphorylates a broad spectrum of flavonoids. Food Chem. 2023, 400, 134001. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, L.P.; Lu, X.Y.; Jiang, H.D.; Zeng, S. Absorption and excretion of luteolin and apigenin in rats after oral Administration of Chrysanthemum morifolium extract. J. Agric. Food Chem. 2007, 55, 273–277. [Google Scholar] [CrossRef]
- Jayawickreme, D.K.; Ekwosi, C.; Anand, A.; Andres-Mach, M.; Wlaź, P.; Socała, K. Luteolin for neurodegenerative diseases: A review. Pharmacol. Rep. 2024, 76, 644–664. [Google Scholar] [CrossRef]
- Haridevamuthu, B.; Ranjan Nayak, S.P.R.; Murugan, R.; Pachaiappan, R.; Ayub, R.; Aljawdah, H.M.; Arokiyaraj, S.; Guru, A.; Arockiaraj, J. Prophylactic effects of apigenin against hyperglycemia-associated amnesia via activation of the Nrf2/ARE pathway in zebrafish. Eur. J. Pharmacol. 2024, 976, 176680. [Google Scholar] [CrossRef]
- Shi, M.; Chen, Z.; Gong, H.; Peng, Z.; Sun, Q.; Luo, K.; Wu, B.; Wen, C.; Lin, W. Luteolin, a flavone ingredient: Anticancer mechanisms, combined medication strategy, pharmacokinetics, clinical trials, and pharmaceutical researches. Phytother. Res. 2024, 38, 880–911. [Google Scholar] [CrossRef]
- Ganai, S.A.; Sheikh, F.A.; Baba, Z.A.; Mir, M.A.; Mantoo, M.A.; Yatoo, M.A. Anticancer activity of the plant flavonoid luteolin against preclinical models of various cancers and insights on different signalling mechanisms modulated. Phytother. Res. 2021, 35, 3509–3532. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Jung, J.; Moon, A.; Kang, H.; Cho, H. Antitumor and anti-invasive effect of apigenin on human breast carcinoma through suppression of IL-6 expression. Int. J. Mol. Sci. 2019, 20, 3143. [Google Scholar] [CrossRef]
- Abbas, H.; Sayed, N.S.E.; Youssef, N.A.H.A.; ME Gaafar, P.; Mousa, M.R.; Fayez, A.M.; Elsheikh, M.A. Novel luteolin-loaded chitosan decorated nanoparticles for brain-targeting delivery in a sporadic Alzheimer’s disease mouse model: Focus on antioxidant, anti-inflammatory, and amyloidogenic pathways. Pharmaceutics 2022, 14, 1003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, D.; Huang, Y.; Gao, Y.; Qian, S. Biopharmaceutics classification and intestinal absorption study of apigenin. Int. J. Pharm. 2012, 436, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Kure, A.; Nakagawa, K.; Kondo, M.; Kato, S.; Kimura, F.; Watanabe, A.; Shoji, N.; Hatanaka, S.; Tsushida, T.; Miyazawa, T. Metabolic fate of luteolin in rats: Its relationship to anti-inflammatory effect. J. Agric. Food Chem. 2016, 64, 4246–4254. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.T.; Fujita, K.; Hosoya, T.; Imai, S.; Shimoi, K. Absorption and metabolism of luteolin and its glycosides from the extract of Chrysanthemum morifolium flowers in rats and Caco-2 cells. J. Agric. Food Chem. 2015, 63, 7693–7699. [Google Scholar] [CrossRef] [PubMed]
- Gradolatto, A.; Canivenc-Lavier, M.-C.; Basly, J.-P.; Siess, M.-H.; Teyssier, C. Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metab. Dispos. 2004, 32, 58–65. [Google Scholar] [CrossRef]
- Gradolatto, A.; Basly, J.P.; Berges, R.; Teyssier, C.; Chagnon, M.C.; Siess, M.H.; Canivenc-Lavier, M.C. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab. Dispos. 2005, 33, 49–54. [Google Scholar] [CrossRef]
- Hayasaka, N.; Shimizu, N.; Komoda, T.; Mohri, S.; Tsushida, T.; Eitsuka, T.; Miyazawa, T.; Nakagawa, K. Absorption and metabolism of luteolin in rats and humans in relation to in vitro anti-inflammatory effects. J. Agric. Food Chem. 2018, 66, 11320–11329. [Google Scholar] [CrossRef]
- Hu, W.; Wang, X.; Wu, L.; Shen, T.; Ji, L.; Zhao, X.; Si, C.-L.; Jiang, Y.; Wang, G. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock. Food Funct. 2016, 7, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Kurnia, D.; Putri, S.A.; Tumilaar, S.G.; Zainuddin, A.; Dharsono, H.D.A.; Amin, M.F. In silico study of antiviral activity of polyphenol compounds from ocimum basilicum by molecular docking, ADMET, and drug-likeness analysis. Adv. Appl. Bioinform. Chem. 2023, 16, 37–47. [Google Scholar] [CrossRef]
Tested Substances a | Aqueous Solubility b (μg/mL) | cLogP c |
---|---|---|
LutPs | 1.8 × 104 | |
Lut7P | 0.44 | |
Lut3′P | 0.37 | |
Lut4′P | 0.37 | |
Lut | 1.3 × 101 | 1.78 |
Lut7G | 5.4 × 101 | 0.28 |
ApnPs | 1.8 × 104 | |
Apn7P | 1.04 | |
Apn4′P | 1.04 | |
Apn | 1.2 × 100 | 2.38 |
Apn7G | 6.9 × 101 | 0.88 |
Parameters | Lut | Lut7G | LutPs | |
---|---|---|---|---|
aglyconic luteolin | Tmax (h) | 1.00 | 1.00 | 0.25 |
Cmax (nM) | 139.91 ± 193.96 | 749.71 ± 571.00 | 3005.33 ± 170.99 | |
AUC0–t (nM·h) | 635.00 | 2009.35 | 5441.02 | |
conjugates | Tmax (h) | 8.00 | 4.00 | 4.00 |
Cmax (nM) | 4178.78 ± 695.78 | 4904.73 ± 1703.25 | 11,865.30 ± 1567.45 | |
AUC0–t (nM·h) | 26,762.14 | 31,336.03 | 70,161.75 | |
overall | Tmax (h) | 1.00 | 2.00 | 1.00 |
Cmax (nM) | 3947.45 ± 740.01 | 5203.57 ± 384.04 | 13,923.22 ± 2007.41 | |
AUC0–t (nM·h) | 28,347.76 | 33,111.44 | 80,371.46 |
Parameters | Apn | Apn7G | ApnPs | ||||
---|---|---|---|---|---|---|---|
Apn | Lut (Metabolite) | Apn | Lut (Metabolite) | Apn | Lut (Metabolite) | ||
aglyconic form | Tmax (h) | 0.5 | 0.25 | 0.5 | 1.00 | 0.25 | 0.25 |
Cmax (nM) | 14.02 ± 1.27 | 7.14 ± 3.65 | 107.38 ± 37.37 | 3.22 ± 1.52 | 688.44 ± 145.45 | 43.30 ± 15.57 | |
AUC0–t (nM·h) | 112.91 | 18.8 | 371.71 | 18.54 | 1743.87 | 84.09 | |
conjugates | Tmax (h) | 4.00 | 2.00 | 2.00 | 2.00 | 1.00 | 0.5 |
Cmax (nM) | 1456.25 ± 127.23 | 1504.61 ± 101.91 | 1718.13 ± 235.57 | 978.66 ± 104.92 | 6638.24 ± 1217.89 | 1436.15 ± 89.57 | |
AUC0–t (nM·h) | 12,833.31 | 13,672.08 | 13,243.27 | 8788.63 | 48,599.48 | 10,758.80 | |
overall | Tmax (h) | 2.00 | 2.00 | 2.00 | 2.00 | 1.00 | 0.5 |
Cmax (nM) | 1371.03 ± 76.08 | 1506.66 ± 102.40 | 1776.48 ± 237.17 | 981 ± 104.32 | 6927.39 ± 1236.64 | 1474.62 ± 99.55 | |
AUC0–t (nM·h) | 13,314.82 | 13,559.48 | 13,614.98 | 8870.17 | 50,385.91 | 11,301.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Wang, S.-T.; Chen, G.-Y.; Hsu, C.; Chen, Y.-H.; Tsai, H.-Y.; Weng, T.-I.; Chen, C.-L.; Wu, Y.-F.; Su, N.-W. Monophosphate Derivatives of Luteolin and Apigenin as Efficient Precursors with Improved Oral Bioavailability in Rats. Antioxidants 2024, 13, 1530. https://doi.org/10.3390/antiox13121530
Wu S, Wang S-T, Chen G-Y, Hsu C, Chen Y-H, Tsai H-Y, Weng T-I, Chen C-L, Wu Y-F, Su N-W. Monophosphate Derivatives of Luteolin and Apigenin as Efficient Precursors with Improved Oral Bioavailability in Rats. Antioxidants. 2024; 13(12):1530. https://doi.org/10.3390/antiox13121530
Chicago/Turabian StyleWu, Sydney, Shang-Ta Wang, Guan-Yuan Chen, Chen Hsu, Yi-Hsin Chen, Hsin-Ya Tsai, Te-I Weng, Chien-Li Chen, Yi-Fang Wu, and Nan-Wei Su. 2024. "Monophosphate Derivatives of Luteolin and Apigenin as Efficient Precursors with Improved Oral Bioavailability in Rats" Antioxidants 13, no. 12: 1530. https://doi.org/10.3390/antiox13121530
APA StyleWu, S., Wang, S. -T., Chen, G. -Y., Hsu, C., Chen, Y. -H., Tsai, H. -Y., Weng, T. -I., Chen, C. -L., Wu, Y. -F., & Su, N. -W. (2024). Monophosphate Derivatives of Luteolin and Apigenin as Efficient Precursors with Improved Oral Bioavailability in Rats. Antioxidants, 13(12), 1530. https://doi.org/10.3390/antiox13121530