Oxidative Stress in Genetic Cataract Formation
<p>Summary of IPA canonical pathways enriched in genes associated with age-related cataracts. The left column includes genes identified in association studies, either GWAS or targeted studies listed in CAT-MAP. The right column also includes pathways enriched in genes identified through the transcriptome wide association study. Antioxidant related pathways are marked by blue arrows and corrected <span class="html-italic">p</span> values are shown as horizontal bars with a significance level of 0.05 shown by an orange line.</p> "> Figure 2
<p>Schematic diagram of glutathione redox reactions. Genes associated with age-related cataracts are shaded gray and glutathione and its metabolites are shaded yellow.</p> "> Figure 3
<p>Schematic diagram of the superoxide radical degradation pathway. Genes associated with age-related cataracts are shaded gray.</p> "> Figure 4
<p>Schematic diagram of the detoxification of reactive oxygen species pathway. Location within the cell is shown for cytoplasmic, nuclear, and peroxisomal proteins. Genes associated with age-related cataracts are shaded gray.</p> "> Figure 5
<p>Schematic diagram of the NRF2 (NFE2L2) mediated oxidative stress response pathway. Location within the cell is shown for cytoplasmic and nuclear proteins. Genes associated with age-related cataracts are shaded gray and stresses, outcomes, and downstream pathways are shaded yellow.</p> "> Figure 6
<p>Schematic diagram of the oxidative stress induced senescence pathway. Location within the cell is shown for cytoplasmic and nuclear proteins. Genes associated with age-related cataracts are shaded gray and stresses are shaded yellow.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. IPA Analysis
3. Classification of Inherited Cataracts by Their Onset and Clinical Morphology
4. Genes and Pathways Implicated in Mendelian and Age-Related Cataracts
5. Discussion and Overview
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Shiels, A.; Hejtmancik, J.F. Inherited cataracts: Genetic mechanisms and pathways new and old. Exp. Eye Res. 2021, 209, 108662. [Google Scholar] [CrossRef] [PubMed]
- Shiels, A.; Hejtmancik, J.F. Biology of Inherited Cataracts and Opportunities for Treatment. Annu. Rev. Vis. Sci. 2019, 5, 123–149. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Yonova-Doing, E.; Zhao, W.; Igo, R.P., Jr.; Wang, C.; Sundaresan, P.; Lee, K.E.; Jun, G.R.; Alves, A.C.; Chai, X.; Chan, A.S.; et al. Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract. Commun. Biol. 2020, 3, 755. [Google Scholar] [CrossRef]
- Choquet, H.; Melles, R.B.; Anand, D.; Yin, J.; Cuellar-Partida, G.; Wang, W.; Research, T.A.; Hoffmann, T.J.; Nair, K.S.; Hysi, P.G.; et al. A large multiethnic GWAS meta-analysis of cataract identifies new risk loci and sex-specific effects. Nat. Commun. 2021, 12, 3595. [Google Scholar] [CrossRef]
- Liao, J.; Su, X.; Chen, P.; Wang, X.; Xu, L.; Li, X.; Thean, L.; Tan, C.; Tan, A.G.; Tay, W.T.; et al. Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Hum. Mol. Genet. 2014, 23, 6119–6128. [Google Scholar] [CrossRef]
- Loomis, S.J.; Klein, A.P.; Lee, K.E.; Chen, F.; Bomotti, S.; Truitt, B.; Iyengar, S.K.; Klein, R.; Klein, B.E.; Duggal, P. Exome Array Analysis of Nuclear Lens Opacity. Ophthalmic Epidemiol. 2018, 25, 215–219. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, K.; Veluchamy, A.; Hebert, H.L.; Looker, H.C.; Colhoun, H.M.; Palmer, C.N.; Meng, W. A Genome-Wide Association Study Provides New Evidence That CACNA1C Gene is Associated With Diabetic Cataract. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2246–2250. [Google Scholar] [CrossRef]
- Lin, H.J.; Huang, Y.C.; Lin, J.M.; Liao, W.L.; Wu, J.Y.; Chen, C.H.; Chou, Y.C.; Chen, L.A.; Lin, C.J.; Tsai, F.J. Novel susceptibility genes associated with diabetic cataract in a Taiwanese population. Ophthalmic Genet. 2013, 34, 35–42. [Google Scholar] [CrossRef]
- Miller, B.; Torres, M.; Jiang, X.; McKean-Cowdin, R.; Nousome, D.; Kim, S.J.; Mehta, H.H.; Yen, K.; Cohen, P.; Varma, R. A Mitochondrial Genome-Wide Association Study of Cataract in a Latino Population. Transl. Vis. Sci. Technol. 2020, 9, 25. [Google Scholar] [CrossRef]
- Heyne, H.O.; Karjalainen, J.; Karczewski, K.J.; Lemmela, S.M.; Zhou, W.; FinnGen; Havulinna, A.S.; Kurki, M.; Rehm, H.L.; Palotie, A.; et al. Mono- and biallelic variant effects on disease at biobank scale. Nature 2023, 613, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Hicks, P.M.; Au, E.; Self, W.; Haaland, B.; Feehan, M.; Owen, L.A.; Siedlecki, A.; Nuttall, E.; Harrison, D.; Reynolds, A.L.; et al. Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala. Int. J. Environ. Res. Public Health 2021, 18, 7231. [Google Scholar] [CrossRef] [PubMed]
- Choquet, H.; Duot, M.; Herrera, V.A.; Shrestha, S.K.; Meyers, T.J.; Hoffmann, T.J.; Sangani, P.K.; Lachke, S.A. Multi-tissue transcriptome-wide association study identifies novel candidate susceptibility genes for cataract. Front. Ophthalmol. 2024, 4, 1362350. [Google Scholar] [CrossRef] [PubMed]
- Shiels, A.; Bennett, T.M.; Hejtmancik, J.F. Cat-Map: Putting cataract on the map. Mol. Vis. 2010, 16, 2007–2015. [Google Scholar]
- Delaye, M.; Tardieu, A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature 1983, 302, 415–417. [Google Scholar] [CrossRef]
- Benedek, G.B. Theory of transparency of the eye. Appl. Opt. 1971, 10, 459–473. [Google Scholar] [CrossRef]
- GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Hejtmancik, J.F.; Kantorow, M. Molecular genetics of age-related cataract. Exp. Eye Res. 2004, 79, 3–9. [Google Scholar] [CrossRef]
- Shiels, A.; Hejtmancik, J.F. Mutations and mechanisms in congenital and age-related cataracts. Exp. Eye Res. 2017, 156, 95–102. [Google Scholar] [CrossRef]
- Congdon, N.; Vingerling, J.R.; Klein, B.E.; West, S.; Friedman, D.S.; Kempen, J.; O’Colmain, B.; Wu, S.Y.; Taylor, H.R.; G Eye Diseases Prevalence Research. Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Arch. Ophthalmol. 2004, 122, 487–494. [Google Scholar]
- Shiels, A.; Hejtmancik, J.F. Genetic origins of cataract. Arch. Ophthalmol. 2007, 125, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Shiels, A.; Hejtmancik, J.F. Genetics of Human Cataract. Clin. Genet. 2013, 84, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Shiels, A. Through the Cat-Map Gateway: A Brief History of Cataract Genetics. Genes 2024, 15, 785. [Google Scholar] [CrossRef] [PubMed]
- Haargaard, B.; Wohlfahrt, J.; Fledelius, H.C.; Rosenberg, T.; Melbye, M. Incidence and cumulative risk of childhood cataract in a cohort of 2.6 million Danish children. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1316–1320. [Google Scholar] [CrossRef]
- Wu, X.; Long, E.; Lin, H.; Liu, Y. Prevalence and epidemiological characteristics of congenital cataract: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 28564. [Google Scholar] [CrossRef]
- Von Noorden, G.; Crawford, M. The sensitive period. Transactions of the ophthalmological societies of the United Kingdom. Br. J. Ophthalmol. 1979, 99, 442–446. [Google Scholar]
- Lin, H.T.; Long, E.P.; Chen, J.J.; Liu, Z.Z.; Lin, Z.L.; Cao, Q.Z.; Zhang, X.Y.; Wu, X.H.; Wang, Q.W.; Lin, D.R.; et al. Timing and approaches in congenital cataract surgery: A four-year, two-layer randomized controlled trial. Int. J. Ophthalmol. 2017, 10, 1835–1843. [Google Scholar]
- Merin, S.; Crawford, J.S. The etiology of congenital cataracts. A survey of 386 cases. Can. J. Ophthalmol. 1971, 6, 178–182. [Google Scholar]
- Sparrow, J.; Bron, A.; Brown, N.; Ayliff, W.; Hall, A. The Oxford clinical cataract classification and grading system. Int. Ophthalmol. 1986, 9, 207–225. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study Research Group. The age-related eye disease study (AREDS) system for classifying cataracts from photographs: AREDS report no. 4. Am. J. Ophthalmol. 2001, 131, 167–175. [Google Scholar] [CrossRef]
- Chylack, L.T., Jr.; Wolfe, J.K.; Singer, D.M.; Leske, M.C.; Bullimore, M.A.; Bailey, I.L.; Friend, J.; McCarthy, D.; Wu, S.Y. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch. Ophthalmol. 1993, 111, 831–836. [Google Scholar] [CrossRef] [PubMed]
- McCarty, C.A.; Taylor, H.R. The genetics of cataract. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1677–1678. [Google Scholar]
- Truscott, R.J. Age-related nuclear cataract-oxidation is the key. Exp. Eye Res. 2005, 80, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cantrell, L.S.; Schey, K.L. Spatially Resolved Proteomic Analysis of the Lens Extracellular Diffusion Barrier. Investig. Ophthalmol. Vis. Sci. 2021, 62, 25. [Google Scholar] [CrossRef] [PubMed]
- Heiba, I.M.; Elston, R.C.; Klein, B.E.; Klein, R. Genetic etiology of nuclear cataract: Evidence for a major gene. Am. J. Med. Genet. 1993, 47, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Heiba, I.M.; Elston, R.C.; Klein, B.E.; Klein, R. Evidence for a major gene for cortical cataract. Investig. Ophthalmol. Vis. Sci. 1995, 36, 227–235. [Google Scholar]
- Hammond, C.J.; Snieder, H.; Spector, T.D.; Gilbert, C.E. Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. N. Engl. J. Med. 2000, 342, 1786–1790. [Google Scholar] [CrossRef]
- Hammond, C.J.; Duncan, D.D.; Snieder, H.; de Lange, M.; West, S.K.; Spector, T.D.; Gilbert, C.E. The heritability of age-related cortical cataract: The twin eye study. Investig. Ophthalmol. Vis. Sci. 2001, 42, 601–605. [Google Scholar]
- Hejtmancik, J.F.; Kaiser-Kupfer, M.I.; Piatigorsky, J. Molecular biology and inherited disorders of the eye lens. In The Metabolic and Molecular Basis of Inherited Disease; Scriver, C.R., Beaudet, A.L., Valle, D., Sly, W.S., Childs, B., Kinzler, K.W., Vogelstein, B., Eds.; McGraw Hill: New York, NY, USA, 2001; pp. 6033–6062. [Google Scholar]
- Shiels, A.; Bennett, T.M.; Knopf, H.L.; Maraini, G.; Li, A.; Jiao, X.; Hejtmancik, J.F. The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol. Vis. 2008, 14, 2042–2055. [Google Scholar]
- Goth, L.; Rass, P.; Pay, A. Catalase enzyme mutations and their association with diseases. Mol. Diagn. 2004, 8, 141–149. [Google Scholar] [CrossRef]
- Snehi, S.; Kaur, A.; Chaudhry, C.; Kaushik, S. Congenital glaucoma as a presenting feature of Rubinstein-Taybi syndrome in an infant with a novel pathogenic variant in the CREBBP gene. BMJ Case Rep. 2023, 16, e251543. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, C.; Leneuve, P.; Devaux, I.; Scoazec, J.Y.; Berthier, M.; Loiseau, M.N.; Grandchamp, B.; Bonneau, D. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat. Genet. 1995, 11, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Sun, D.; Li, Z.; Wang, L.; Liu, P. Genetic polymorphisms of superoxide dismutases, catalase, and glutathione peroxidase in age-related cataract. Mol. Vis. 2011, 17, 2325–2332. [Google Scholar] [PubMed]
- Sun, L.; Xi, B.; Yu, L.; Gao, X.C.; Shi, D.J.; Yan, Y.K.; Xu, D.J.; Han, Q.; Wang, C. Association of glutathione S-transferases polymorphisms (GSTM1 and GSTT1) with senile cataract: A meta-analysis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6381–6386. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, J.; Guan, H. The association between copy number variations in glutathione S-transferase M1 and T1 and age-related cataract in a Han Chinese population. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3924–3928. [Google Scholar] [CrossRef]
- Aoki, Y.; Niihori, T.; Kawame, H.; Kurosawa, K.; Ohashi, H.; Tanaka, Y.; Filocamo, M.; Kato, K.; Suzuki, Y.; Kure, S.; et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat. Genet. 2005, 37, 1038–1040. [Google Scholar] [CrossRef]
- Jamieson, R.V.; Perveen, R.; Kerr, B.; Carette, M.; Yardley, J.; Heon, E.; Wirth, M.G.; Van Heyningen, V.; Donnai, D.; Munier, F.; et al. Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum. Mol. Genet. 2002, 11, 33–42. [Google Scholar] [CrossRef]
- Lou, M.F. Glutathione and Glutaredoxin in Redox Regulation and Cell Signaling of the Lens. Antioxidants 2022, 11, 1973. [Google Scholar] [CrossRef]
- Reddy, V.N. Glutathione and its function in the lens—An overview. Exp. Eye Res. 1990, 50, 771–778. [Google Scholar] [CrossRef]
- Toppo, S.; Flohe, L.; Ursini, F.; Vanin, S.; Maiorino, M. Catalytic mechanisms and specificities of glutathione peroxidases: Variations of a basic scheme. Biochim. Biophys. Acta 2009, 1790, 1486–1500. [Google Scholar] [CrossRef]
- Sun, W.; Su, L.; Sheng, Y.; Shen, Y.; Chen, G. Is there association between Glutathione S Transferases polymorphisms and cataract risk: A meta-analysis? BMC Ophthalmol. 2015, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Laborde, E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ. 2010, 17, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Giblin, F.J.; Reddan, J.R.; Schrimscher, L.; Dziedzic, D.C.; Reddy, V.N. The relative roles of the glutathione redox cycle and catalase in the detoxification of H2O2 by cultured rabbit lens epithelial cells. Exp. Eye Res. 1990, 50, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Behndig, A.; Svensson, B.; Marklund, S.L.; Karlsson, K. Superoxide dismutase isoenzymes in the human eye. Investig. Ophthalmol. Vis. Sci. 1998, 39, 471–475. [Google Scholar]
- Mancini, M.A.; Unaker, N.J.; Giblin, F.J.; Reddan, J.R. Histochemical localization of catalase in cultured lens epithelial cells. Ophthalmic Res. 1989, 21, 369–373. [Google Scholar] [CrossRef]
- Spector, A.; Ma, W.; Wang, R.R.; Yang, Y.; Ho, Y.S. The contribution of GSH peroxidase-1, catalase and GSH to the degradation of H2O2 by the mouse lens. Exp. Eye Res. 1997, 64, 477–485. [Google Scholar] [CrossRef]
- Reddy, V.N.; Giblin, F.J.; Lin, L.R.; Dang, L.; Unakar, N.J.; Musch, D.C.; Boyle, D.L.; Takemoto, L.J.; Ho, Y.S.; Knoernschild, T.; et al. Glutathione peroxidase-1 deficiency leads to increased nuclear light scattering, membrane damage, and cataract formation in gene-knockout mice. Investig. Ophthalmol. Vis. Sci. 2001, 42, 3247–3255. [Google Scholar]
- Varadaraj, K.; Gao, J.; Mathias, R.T.; Kumari, S.S. GPX1 knockout, not catalase knockout, causes accelerated abnormal optical aberrations and cataract in the aging lens. Mol. Vis. 2022, 28, 11–20. [Google Scholar]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef]
- Dent, P.; Yacoub, A.; Fisher, P.B.; Hagan, M.P.; Grant, S. MAPK pathways in radiation responses. Oncogene 2003, 22, 5885–5896. [Google Scholar] [CrossRef]
- Zatechka, S.D., Jr.; Lou, M.F. Studies of the mitogen-activated protein kinases and phosphatidylinositol-3 kinase in the lens. 1. The mitogenic and stress responses. Exp. Eye Res. 2002, 74, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jin, Z.; Xia, R.; Zheng, Z.; Zha, Y.; Wang, Q.; Wan, X.; Yang, H.; Cai, J. Protection of Human Lens Epithelial Cells from Oxidative Stress Damage and Cell Apoptosis by KGF-2 through the Akt/Nrf2/HO-1 Pathway. Oxid. Med. Cell Longev. 2022, 2022, 6933812. [Google Scholar] [CrossRef] [PubMed]
- Jemnitz, K.; Heredi-Szabo, K.; Janossy, J.; Ioja, E.; Vereczkey, L.; Krajcsi, P. ABCC2/Abcc2: A multispecific transporter with dominant excretory functions. Drug Metab. Rev. 2010, 42, 402–436. [Google Scholar] [CrossRef] [PubMed]
- James, M.C.; Peters, G. Alternative product of the p16/CKDN2A locus connects the Rb and p53 tumor suppressors. Prog. Cell Cycle Res. 2000, 4, 71–81. [Google Scholar] [PubMed]
- Zhao, Y.; Li, X.; Zhu, S. rs78378222 polymorphism in the 3′-untranslated region of TP53 contributes to development of age-associated cataracts by modifying microRNA-125b-induced apoptosis of lens epithelial cells. Mol. Med. Rep. 2016, 14, 2305–2310. [Google Scholar] [CrossRef]
- Lee, B.; Afshari, N.A.; Shaw, P.X. Oxidative stress and antioxidants in cataract development. Curr. Opin. Ophthalmol. 2024, 35, 57–63. [Google Scholar] [CrossRef]
- McGreal, R.S.; Kantorow, W.L.; Chauss, D.C.; Wei, J.; Brennan, L.A.; Kantorow, M. alphaB-crystallin/sHSP protects cytochrome c and mitochondrial function against oxidative stress in lens and retinal cells. Biochim. Biophys. Acta 2012, 1820, 921–930. [Google Scholar] [CrossRef]
- Cai, M.; Li, J.; Lin, S.F.; Chen, X.Y.; Huang, J.; Jiang, X.Y.; Yang, L.Z.; Luo, Y. Mitochondria-Targeted Antioxidant Peptide SS31 Protects Cultured Human Lens Epithelial Cells against Oxidative Stress. Curr. Eye Res. 2015, 40, 822–829. [Google Scholar] [CrossRef]
- Babizhayev, M.A. Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma. BBA Clin. 2016, 6, 49–68. [Google Scholar]
- Snytnikova, O.A.; Tsentalovich, Y.P.; Stefanova, N.A.; Fursova, A.Z.; Kaptein, R.; Sagdeev, R.Z.; Kolosova, N.G. The therapeutic effect of mitochondria-targeted antioxidant SkQ1 andis associated with increased levels of tryptophan and kynurenine in the rat lens. Dokl. Biochem. Biophys. 2012, 447, 300–303. [Google Scholar] [CrossRef]
- Savion, N.; Dahamshi, S.; Morein, M.; Kotev-Emeth, S. Allylmercapro-Acetylcysteine Attenuates the Oxidation-Induced Lens Opacification and Retinal Pigment Epithelial Cell Death In Vitro. Antioxidants 2019, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Cui, Y.L.; Tang, Y.L.; Tang, X.J.; Yu, X.N.; Zhou, J.Y.; Yin, Q.C.; Shentu, X.C. Cytoprotective role of humanin in lens epithelial cell oxidative stress-induced injury. Mol. Med. Rep. 2020, 22, 1467–1479. [Google Scholar] [CrossRef] [PubMed]
- Vinson, J.A. Oxidative stress in cataracts. Pathophysiology 2006, 13, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Zhao, X.W.; Cheng, R.; Huang, Y.S. Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Biosci. Rep. 2020, 40, BSR20193006. [Google Scholar] [CrossRef] [PubMed]
- Nambu, H.; Kubo, E.; Takamura, Y.; Tsuzuki, S.; Tamura, M.; Akagi, Y. Attenuation of aldose reductase gene suppresses high-glucose-induced apoptosis and oxidative stress in rat lens epithelial cells. Diabetes Res. Clin. Pract. 2008, 82, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.X.; Ma, X.P.; Zhang, R.X.; Yan, H. Oxidative stress, epigenetic regulation and pathological processes of lens epithelial cells underlying diabetic cataract. Adv. Ophthalmol. Pract. 2023, 3, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Kanth, V.R.; Lavanya, K.; Srinivas, J. Elevated Expression of Indoleamine 2,3-Dioxygenase (IDO) and Accumulation of Kynurenic Acid in the Pathogenesis of STZ-Induced Diabetic Cataract in Wistar Rats. Curr. Eye Res. 2009, 34, 274–281. [Google Scholar] [CrossRef]
- Mirsky, N.; Cohen, R.; Eliaz, A.; Dovrat, A. Featured Article Inhibition of diabetic cataract by glucose tolerance factor extracted from yeast. Exp. Biol. Med. 2016, 241, 817–829. [Google Scholar] [CrossRef]
- Osawa, T.; Kato, Y. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann. N. Y. Acad. Sci. 2005, 1043, 440–451. [Google Scholar] [CrossRef]
- Zhou, Y.R.; Li, L.; Li, S.H.; Li, S.F.; Zhao, M.; Zhou, Q.H.; Gong, X.Q.; Yang, J.; Chang, J. Autoregenerative redox nanoparticles as an antioxidant and glycation inhibitor for palliation of diabetic cataracts. Nanoscale 2019, 11, 13126–13138. [Google Scholar] [CrossRef]
- Ioannidis, J.P. Why most published research findings are false. PLoS Med. 2005, 2, e124. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.I.; Vance, J.M.; Pericak-Vance, M.A.; Martin, E.R. No gene is an island: The flip-flop phenomenon. Am. J. Hum. Genet. 2007, 80, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Jiao, X.; Ma, Z.; Hejtmancik, J.F. Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the CRYAA promoter. Sci. Rep. 2016, 6, 23206. [Google Scholar] [CrossRef] [PubMed]
Symbol | Entrez Gene Name | Location | Mendelian Inheritance | Pathway | Cataract Type | Associations | Ref |
---|---|---|---|---|---|---|---|
CAT | catalase | Cytoplasm | None | detoxification of radical oxygen species, NRF2 pathways, superoxide radical degradation | [41] | ||
CREBBP | CREB binding protein | Nucleus | None | NRF2 pathways | nuclear-lamellar | Rubenstein Tabi syndrome | [42] |
FTL | ferritin light chain | Cytoplasm | AD | NRF2 pathways | nuclear, stellate, Y-sutural, crystalline | [43] | |
GPX1 | glutathione peroxidase 1 | Cytoplasm | AR | detoxification of radical oxygen species, glutathione redox reactions | hemolytic anemia | [44] | |
GSTM1 | glutathione S-transferase mu 1 | Cytoplasm | None | glutathione, glutathione redox reactions, NRF2 pathways | cortical, nuclear, mixed | [45] | |
GSTP1 | glutathione S-transferase pi 1 | Cytoplasm | None | detoxification of radical oxygen species, glutathione redox reactions, NRF2 pathways | [46] | ||
GSTT1 | glutathione S-transferase theta 1 | Cytoplasm | None | glutathione, glutathione redox reactions, NRF2 pathways | cortical (dln) | [46] | |
HRAS | HRas proto-oncogene, GTPase | Plasma Membrane | AD | NRF2 pathways | Costello syndrome | [47] | |
MAF | MAF bZIP transcription factor | Nucleus | AD | NRF2 pathways | cortical pulverulent, posterior polar, nuclear, lamellar, cerulean | Aymé-Gripp Syndrome | [48] |
SOD1 | superoxide dismutase 1 | Cytoplasm | None | detoxification of radical oxygen species, NRF2 pathways, superoxide radical degradation | cortical, mixed | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hejtmancik, J.F. Oxidative Stress in Genetic Cataract Formation. Antioxidants 2024, 13, 1315. https://doi.org/10.3390/antiox13111315
Hejtmancik JF. Oxidative Stress in Genetic Cataract Formation. Antioxidants. 2024; 13(11):1315. https://doi.org/10.3390/antiox13111315
Chicago/Turabian StyleHejtmancik, James Fielding. 2024. "Oxidative Stress in Genetic Cataract Formation" Antioxidants 13, no. 11: 1315. https://doi.org/10.3390/antiox13111315
APA StyleHejtmancik, J. F. (2024). Oxidative Stress in Genetic Cataract Formation. Antioxidants, 13(11), 1315. https://doi.org/10.3390/antiox13111315