Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review
<p>Illustration of the processes by which oxidative stress disrupts normal cells through the induction of reactive oxygen species. The red positive signs indicate ROS enhancers, while the red negative signs indicate ROS inhibitors. Oxidative stress radicals that modulate the shape of the cell are depicted by red stars and circles.</p> "> Figure 2
<p>(<b>a</b>) Illustration of the simulated membrane depolarization (black solid line), AP (red solid line), depolarization phase, repolarization phase, threshold potential (star mark), and resting membrane potential, which is maintained at −52 mV. (<b>b</b>–<b>d</b>) show simulated cardiac AP, slow wave with a burst, and series of neuronal Aps, respectively. The <span class="html-italic">X</span>-axis represents unscaled time, while the <span class="html-italic">Y</span>-axis represents unscaled membrane potential.</p> "> Figure 3
<p>(<b>a</b>) shows how connexins from Cell 1 and Cell 2 form a gap junction, enabling signal transfer between them, as indicated by the red bidirectional arrow. (<b>b</b>) depicts six cells connected in a linear arrangement through gap junctions (red arrow), illustrating signal transmission along this network. (<b>c</b>) is a schematic of the gap junction between Cell 1 and Cell 2, where V<sub>1</sub> and V<sub>2</sub> represent their membrane potentials, and r<sub>j</sub> indicates the gap junction resistance.</p> "> Figure 4
<p>A schematic representation of the ICC cell among smooth muscle cells (SM cells). An ICC cell consists of several ion channels and is connected to neighboring cells via a gap junction.</p> "> Figure 5
<p>Illustrates Ca<sup>2+</sup> dynamics processes with all cellular and sub-cellular compartments described in the previous paragraph.</p> "> Figure 6
<p>Illustrates protein-mediating ion fluxes in the outer mitochondria membrane described in the previous paragraph. The putative channel acetylcholine receptor is also illustrated.</p> "> Figure 7
<p>A schematic diagram of the representation of the redox modulation on membrane potential via several pathways that can modulate the AP parameter and cellular excitability.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Ion Channel Biophysics and Oxidative Stress
3.1. Voltage-Dependent Ca2+ Channels
3.2. Sodium (Na+) Channels
3.3. Potassium (K+) Channels
3.4. Transient Receptor Potential (TRP) Channels
3.5. Orai Ion Channels
3.6. P2X2 Receptors
4. Gap Junction and Oxidative Stress
5. Interstitial Cells of Cajal and Oxidative Stress
6. Calcium Dynamics and Oxidative Stress
7. Mitochondria and Oxidative Stress
8. The Model of Oxidative Stress Impact on AP
- Endo/Sarcoplasmic Ca2⁺ is sourced from the endoplasmic/sarcoplasmic reticulum (ER/SR), an intracellular reservoir. Ca2⁺ ions are transported from this storage site to the sarcoplasm via Ca2⁺ channels, which are regulated by intracellular agents. Ca2⁺ is replenished in the ER/SR by a pump powered by ATP. An increase in the Ca2+ concentration near the ER/SR triggers further release of Ca2+, which is called the calcium-induced calcium release (CICR) [197]. ROS can influence various factors affecting the filling or release of Ca2⁺ in/from the ER/SR. Additionally, Ca2⁺ modulates the release of ATP and ROS from mitochondria, and the ROS released can negatively impact the Endo/Sarcoplasmic Ca2⁺ dynamics. The red arrow indicates this negative feedback loop from mitochondria to the Endo/Sarcoplasmic reticulum.
- There is a potential increase in the concentration of a diffusible second messenger, which links the surface membrane to the release of intracellular Ca2+. This process primarily involves the activation of purinergic receptors (P2X) or M3 muscarinic receptors. Upon activation, these receptors initiate a series of membrane-bound processes that lead to the production of inositol trisphosphate (IP3). IP3, in turn, can influence Ca2+ dynamics as previously described [198]. Changes in the sensitivity or effectiveness of this mechanism can significantly impact the release of intracellular Ca2+. ATP may bind to the purinergic receptor (P2X/M), opening a non-specific cation channel that allows the influx of positive ions (X+), leading to an increase in membrane potential. This depolarization, modulated by ROS, can open L-type Ca2+ channels, facilitate Ca2+ influx, and trigger APs.
- The membrane potential can be transmitted from cell 2 to cell 1 through gap junctions, as some excitable cells function as a syncytium. Moreover, the activation of pacemaking interstitial cells of Cajal (ICC) can also induce an increase in membrane potential. ROS can modulate both gap junction and ICC internal mechanisms, and the resulting depolarization can trigger APs.
- The voltage-gated and Ca2+-activated K+ ion channels (Kv, KCa, and KATP) shown in Figure 7 facilitate the flow of K+ from the intracellular to the extracellular space, leading to hyperpolarization. However, the modulating effects of ROS compromise these ion channel mechanisms, resulting in abnormal AP generation. Conversely, VDCC (L-type, T-type, and P/Q type) and voltage-gated Na+ channels allow the influx of Ca2+ and Na+ ions, depolarizing the membrane. ROS also affects these ion channels, contributing to abnormal AP generation.
- CRAC channels are activated by intracellular depletion mediated by STIM1 and STIM2, allowing an influx of Ca2+ that depolarizes the membrane. Ca2+, along with other stimuli, can also activate various TRP ion channels, permitting the influx of cations (X+) and further depolarizing the membrane to generate APs. Additionally, ROS influences these ion channels, leading to abnormal AP generation.
9. Clinical Implications and Future Directions
- Advanced imaging techniques: Development of more sensitive and specific fluorescent probes and imaging techniques to measure real-time changes in membrane potential, ROS levels, and ion channel activity in live cells and tissues [199]. This will enhance our understanding of the spatial and temporal dynamics of oxidative stress.
- High-throughput screening: Implementing high-throughput screening methods to identify compounds that can protect against oxidative stress-induced ion channel dysfunction [200]. This approach can accelerate the discovery of new therapeutic agents.
- Integrative multi-omics approaches: Combining genomics, proteomics, and metabolomics with electrophysiological data to construct comprehensive models of how oxidative stress impacts ion channel function and cellular excitability [201]. This holistic view can uncover new regulatory mechanisms and potential drug targets.
- Personalized medicine: Investigating individual variability in oxidative stress responses and ion channel function to develop personalized therapeutic strategies [202]. Genetic and epigenetic factors that influence susceptibility to oxidative stress and ion channel modifications should be identified.
- Animal models and clinical trials: Utilizing animal models to study the in vivo relevance of findings from cellular and molecular studies. Translating these findings into clinical trials to evaluate the efficacy of targeted therapies in mitigating the effects of oxidative stress in human diseases [203].
- Novel therapeutics: Developing novel antioxidants, ion channel modulators, and gene therapies to specifically address the ion channel dysfunctions caused by oxidative stress [204]. Combination therapies that target multiple pathways involved in oxidative stress responses could prove particularly effective.
- Computational electrophysiology: This approach involves using mathematical models to simulate the electrical behavior of cells and tissues. By incorporating data on oxidative stress, such as altered ion channel conductance or gating properties, computational models can predict the impact on membrane potential and AP generation [205]. These simulations can help identify potential therapeutic targets for mitigating the effects of oxidative stress on neuronal and cardiac function.
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Veschetti, L.; Treccani, M.; De Tomi, E.; Malerba, G. Genomic Instability Evolutionary Footprints on Human Health: Driving Forces or Side Effects? Int. J. Mol. Sci. 2023, 24, 11437. [Google Scholar] [CrossRef] [PubMed]
- Salmaninejad, A.; Ilkhani, K.; Marzban, H.; Navashenaq, J.G.; Rahimirad, S.; Radnia, F.; Yousefi, M.; Bahmanpour, Z.; Azhdari, S.; Sahebkar, A. Genomic instability in cancer: Molecular mechanisms and therapeutic potentials. Curr. Pharm. Des. 2021, 27, 3161–3169. [Google Scholar] [CrossRef] [PubMed]
- Petrov, D.; Daura, X.; Zagrovic, B. Effect of oxidative damage on the stability and dimerization of superoxide dismutase 1. Biophys. J. 2016, 110, 1499–1509. [Google Scholar] [CrossRef]
- Merlo, D.; Mollinari, C.; Racaniello, M.; Garaci, E.; Cardinale, A. DNA double strand breaks: A common theme in neurodegenerative diseases. Curr. Alzheimer Res. 2016, 13, 1208–1218. [Google Scholar] [CrossRef] [PubMed]
- Dziąbowska-Grabias, K.; Sztanke, M.; Zając, P.; Celejewski, M.; Kurek, K.; Szkutnicki, S.; Korga, P.; Bulikowski, W.; Sztanke, K. Antioxidant therapy in inflammatory bowel diseases. Antioxidants 2021, 10, 412. [Google Scholar] [CrossRef] [PubMed]
- Penke, B.; Bogár, F.; Paragi, G.; Gera, J.; Fülöp, L. Key peptides and proteins in Alzheimer’s disease. Curr. Protein Pept. Sci. 2019, 20, 577–599. [Google Scholar] [CrossRef]
- Mullin, S.; Schapira, A. α-Synuclein and mitochondrial dysfunction in Parkinson’s disease. Mol. Neurobiol. 2013, 47, 587–597. [Google Scholar] [CrossRef]
- Lorey, M.B.; Öörni, K.; Kovanen, P.T. Modified lipoproteins induce arterial wall inflammation during atherogenesis. Front. Cardiovasc. Med. 2022, 9, 841545. [Google Scholar] [CrossRef]
- Schmitz, G.; Grandl, M. Role of redox regulation and lipid rafts in macrophages during Ox-LDL–mediated foam cell formation. Antioxid. Redox Signal. 2007, 9, 1499–1518. [Google Scholar] [CrossRef]
- Pinheiro, L.C.; Oliveira-Paula, G.H. Sources and effects of oxidative stress in hypertension. Curr. Hypertens. Rev. 2020, 16, 166–180. [Google Scholar] [CrossRef]
- Tousoulis, D.; Kampoli, A.-M.; Papageorgiou, C.T.N.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Phull, A.-R.; Nasir, B.; Haq, I.U.; Kim, S.J. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem.-Biol. Interact. 2018, 281, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Joshi-Barr, S.; de Gracia Lux, C.; Mahmoud, E.; Almutairi, A. Exploiting oxidative microenvironments in the body as triggers for drug delivery systems. Antioxid. Redox Signal. 2014, 21, 730–754. [Google Scholar] [CrossRef] [PubMed]
- Smallwood, M.J.; Nissim, A.; Knight, A.R.; Whiteman, M.; Haigh, R.; Winyard, P.G. Oxidative stress in autoimmune rheumatic diseases. Free Radic. Biol. Med. 2018, 125, 3–14. [Google Scholar] [CrossRef]
- Cernea, S.; Dobreanu, M. Diabetes and beta cell function: From mechanisms to evaluation and clinical implications. Biochem. Medica 2013, 23, 266–280. [Google Scholar] [CrossRef]
- González, I.; Lindner, C.; Schneider, I.; Diaz, E.; Morales, M.I.A.; Rojas, A. The Multifaceted Actions of Polyphenols in the Management of Type-2 Diabetes Mellitus. Preprints 2023, 2023070110. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant therapy: Current status and future prospects. Curr. Med. Chem. 2011, 18, 3871–3888. [Google Scholar] [CrossRef]
- Preedy, V.R.; Patel, V. (Eds.) Aging: Oxidative Stress and Dietary Antioxidants; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Hernandez-Ledesma, B.; Martinez-Villaluenga, C. (Eds.) Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Król, E.; Dziubinska, H.; Trebacz, K. What do plants need action potentials for. In Action Potential: Biophysical and Cellular Context, Initiation, Phases and Propagation; DuBois, M.L., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2010; pp. 1–26. [Google Scholar]
- András, V.; Tomek, J.; Nagy, N.; Virág, L.; Passini, E.; Rodriguez, B.; Baczkó, I. Cardiac transmembrane ion channels and action potentials: Cellular physiology and arrhythmogenic behavior. Physiol. Rev. 2021, 101, 1083–1176. [Google Scholar]
- Mahapatra, C.; Shanmugam, K. Computational Modeling of Sodium Ion Channel-Based Glucose Sensing Biophysics to Study Cardiac Atrial Cell Electrophysiology. Preprints 2024, 2024041524. [Google Scholar] [CrossRef]
- Rybak, I.A.; Ausborn, J. Vertebrate pattern generation: Overview. In Encyclopedia of Computational Neuroscience; Springer: New York, NY, USA, 2022; pp. 130–140. [Google Scholar]
- Iaizzo, P.A. Introduction to neurophysiology. In Neural Engineering; Springer: Cham, Switzerland, 2020; pp. 1–64. [Google Scholar]
- Mahapatra, C.; Kumar, R. Biophysical Mechanisms of Vaginal Smooth Muscle Contraction: The Role of the Membrane Potential and Ion Channels. Pathophysiology 2024, 31, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.G.; Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science; McGraw-Hill: New York, NY, USA, 2013; pp. 356–369. [Google Scholar]
- Yang, K.-C.; Bonini, M.G.; Dudley, S.C., Jr. Mitochondria and arrhythmias. Free Radic. Biol. Med. 2014, 71, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.M.; Salter, A.K.; Hennig, G.W.; Koh, S.D.; Perrino, B.A.; Ward, S.M.; Baker, S.A. Responses to enteric motor neurons in the gastric fundus of mice with reduced intramuscular interstitial cells of Cajal. J. Neurogastroenterol. Motil. 2014, 20, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Cain, S.M.; Snutch, T.P. Contributions of T-type calcium channel isoforms to neuronal firing. Channels 2010, 4, 475–482. [Google Scholar] [CrossRef]
- Mahapatra, C.; Brain, K.L.; Manchanda, R. A biophysically constrained computational model of the action potential of mouse urinary bladder smooth muscle. PLoS ONE 2018, 13, e0200712. [Google Scholar] [CrossRef]
- Bers, D.M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198–205. [Google Scholar] [CrossRef]
- Forsberg, A.M.; Bergström, J.; Lindholm, B.; Hultman, E. Resting membrane potential of skeletal muscle calculated from plasma and muscle electrolyte and water contents. Clin. Sci. 1997, 92, 391–396. [Google Scholar] [CrossRef]
- Hille, B. Ion Channels of Excitable Membranes; Sinauer: Sunderland, MA, USA, 2001. [Google Scholar]
- Ashcroft, F.M.; Rorsman, P. Electrophysiology of the pancreatic β-cell. Prog. Biophys. Mol. Biol. 1989, 54, 87–143. [Google Scholar] [CrossRef]
- Catterall, W.A. Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels 2023, 17, 2281714. [Google Scholar] [CrossRef]
- Mahapatra, C.; Samuilik, I. A Mathematical Model of Spontaneous Action Potential Based on Stochastics Synaptic Noise Dynamics in Non-Neural Cells. Mathematics 2024, 12, 1149. [Google Scholar] [CrossRef]
- Mahapatra, C.; Brain, K.; Manchanda, R. Biophysically Realistic Models of Detrusor Ion Channels: Role in Shaping Spike and Excitability. In Urinary Bladder Physiology: Computational Insights; Narosa Publishing House: New Delhi, India, 2024; pp. 150–165. [Google Scholar]
- Rajagopal, S.; Ponnusamy, M. Calcium Signaling: From Physiology to Diseases; Springer: Singapore, 2017. [Google Scholar]
- DiFrancesco, J.C.; DiFrancesco, D. Dysfunctional HCN ion channels in neurological diseases. Front. Cell. Neurosci. 2015, 6, 174. [Google Scholar] [CrossRef] [PubMed]
- Lepeta, K.; Lourenco, M.; Schweitzer, B.C.; Adami, P.V.; Banerjee, P.; Catuara-Solarz, S.; Revenga, M.D.L.F.; Guillem, A.M.; Haidar, M.; Ijomone, O.; et al. Synaptopathies: Synaptic dysfunction in neurological disorders–A review from students to students. J. Neurochem. 2016, 138, 785–805. [Google Scholar] [CrossRef] [PubMed]
- McCormick, D.A.; Contreras, D. On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol. 2001, 63, 815–846. [Google Scholar] [CrossRef] [PubMed]
- Lubetzki, C.; Stankoff, B. Demyelination in multiple sclerosis. In Handbook of Clinical Neurology; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 122, pp. 89–99. [Google Scholar]
- Friese, M.A.; Schattling, B.; Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2014, 10, 225–238. [Google Scholar] [CrossRef]
- Giudicessi, J.R.; Ackerman, M.J. Potassium-channel mutations and cardiac arrhythmias—Diagnosis and therapy. Nat. Rev. Cardiol. 2012, 9, 319–332. [Google Scholar] [CrossRef]
- Bourne, S.; Machado, A.G.; Nagel, S.J. Basic anatomy and physiology of pain pathways. Neurosurg. Clin. 2014, 25, 629–638. [Google Scholar] [CrossRef]
- Dubin, A.E.; Patapoutian, A. Nociceptors: The sensors of the pain pathway. J. Clin. Investig. 2010, 120, 3760–3772. [Google Scholar] [CrossRef]
- Vinayak, M.; Singh, A.K. Signaling of Nociceptors and Pain Perception: Impact of Age. In Models, Molecules and Mechanisms in Biogerontology: Physiological Abnormalities, Diseases and Interventions; Springer: Singapore, 2019; pp. 91–107. [Google Scholar]
- Berridge, M.J. Smooth muscle cell calcium activation mechanisms. J. Physiol. 2008, 586, 5047–5061. [Google Scholar] [CrossRef]
- Endo, M. Calcium-induced calcium release in skeletal muscle. Physiol. Rev. 2009, 89, 1153–1176. [Google Scholar] [CrossRef]
- Kuo, I.Y.; Ehrlich, B.E. Signaling in muscle contraction. Cold Spring Harb. Perspect. Biol. 2015, 7, a006023. [Google Scholar] [CrossRef]
- Cannon, S.C. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu. Rev. Neurosci. 2006, 29, 387–415. [Google Scholar] [CrossRef] [PubMed]
- Lascano, A.M.; Korff, C.M.; Picard, F. Seizures and epilepsies due to channelopathies and neurotransmitter receptor dysfunction: A parallel between genetic and immune aspects. Mol. Syndromol. 2016, 7, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Celesia, G.G. Disorders of membrane channels or channelopathies. Clin. Neurophysiol. 2001, 112, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Mall, M.A.; Galietta, L.J.V. Targeting ion channels in cystic fibrosis. J. Cyst. Fibros. 2015, 14, 561–570. [Google Scholar] [CrossRef]
- Sugiyama, K.; Sasano, T.; Kurokawa, J.; Takahashi, K.; Okamura, T.; Kato, N.; Isobe, M.; Furukawa, T. Oxidative stress induced ventricular arrhythmia and impairment of cardiac function in Nos1ap deleted mice. Int. Heart J. 2016, 57, 341–349. [Google Scholar] [CrossRef]
- Motschall, E.; Falck-Ytter, Y. Searching the MEDLINE literature database through PubMed: A short guide. Oncol. Res. Treat. 2005, 28, 517–522. [Google Scholar] [CrossRef]
- Schmucker, C.M.; Blümle, A.; Schell, L.K.; Schwarzer, G.; Oeller, P.; Cabrera, L.; von Elm, E.; Briel, M.; Meerpohl, J.J.; OPEN Consortium. Systematic review finds that study data not published in full text articles have unclear impact on meta-analyses results in medical research. PLoS ONE 2017, 12, e0176210. [Google Scholar] [CrossRef]
- Alexander, S.P.H.; Striessnig, J.; Kelly, E.; Marrion, N.V.; Peters, J.A.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; Southan, C.; et al. The Concise Guide to PHARMACOLOGY 2017/18: Voltage-gated ion channels. Br. J. Pharmacol. 2017, 174, S160–S194. [Google Scholar] [CrossRef]
- Petkov, G.V. Ion channels. In Pharmacology; Academic Press: Cambridge, MA, USA, 2009; pp. 387–427. [Google Scholar]
- Mahapatra, C.; Brain, K.L.; Manchanda, R. Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 832–835. [Google Scholar]
- Lemoine, D.; Jiang, R.; Taly, A.; Chataigneau, T.; Specht, A.; Grutter, T. Ligand-gated ion channels: New insights into neurological disorders and ligand recognition. Chem. Rev. 2012, 112, 6285–6318. [Google Scholar] [CrossRef]
- Delmas, P.; Coste, B. Mechano-gated ion channels in sensory systems. Cell 2013, 155, 278–284. [Google Scholar] [CrossRef]
- Heijman, J.; Dobrev, D. Ion channels as part of macromolecular multiprotein complexes: Clinical significance. Herzschrittmachertherapie Elektrophysiologie 2018, 29, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Gandini, M.A.; Zamponi, G.W. Voltage-gated calcium channel nanodomains: Molecular composition and function. FEBS J. 2022, 289, 614–633. [Google Scholar] [CrossRef] [PubMed]
- Annunziato, L.; Pannaccione, A.; Cataldi, M.; Secondo, A.; Castaldo, P.; Di Renzo, G.; Taglialatela, M. Modulation of ion channels by reactive oxygen and nitrogen species: A pathophysiological role in brain aging? Neurobiol. Aging 2002, 23, 819–834. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, A.; Duran, P.; Corzo-López, A.; Fernández-Gallardo, M.; Muñoz-Herrera, D.; Leyva-Leyva, M.; González-Ramírez, R.; Felix, R. The role of voltage-gated calcium channels in the pathogenesis of Parkinson’s disease. Int. J. Neurosci. 2024, 134, 452–461. [Google Scholar] [CrossRef]
- Aggarwal, N.T.; Makielski, J.C. Redox control of cardiac excitability. Antioxid. Redox Signal. 2013, 18, 432–468. [Google Scholar] [CrossRef]
- Rahi, V.; Kaundal, R.K. Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci. 2024, 347, 122651. [Google Scholar] [CrossRef]
- LLee, C.-J.; Lee, S.-H.; Kang, B.-S.; Park, M.-K.; Yang, H.-W.; Woo, S.-Y.; Park, S.-W.; Kim, D.-Y.; Jeong, H.-H.; Yang, W.-I.; et al. Effects of L-Type Voltage-Gated Calcium Channel (LTCC) Inhibition on Hippocampal Neuronal Death after Pilocarpine-Induced Seizure. Antioxidants 2024, 13, 389. [Google Scholar] [CrossRef]
- Finol-Urdaneta, R.K.; McArthur, J.R.; Adams, D.J. Conservation of Ligand Binding Between Voltage-Gated Sodium and T-Type Calcium Channels. In Ion Channels as Targets in Drug Discovery; Springer International Publishing: Cham, Switzerland, 2024; pp. 35–55. [Google Scholar]
- Gupta, A.; Vejapi, M.; Knezevic, N.N. The role of nitric oxide and neuroendocrine system in pain generation. Mol. Cell. Endocrinol. 2024, 591, 112270. [Google Scholar] [CrossRef]
- Su, Y.; Cao, N.; Zhang, D.; Wang, M. The effect of Ferroptosis-related Mitochondrial Dysfunction in the Development of Temporal Lobe Epilepsy. Ageing Res. Rev. 2024, 96, 102248. [Google Scholar] [CrossRef]
- Evans, J.R.; Bielefeldt, K. Regulation of sodium currents through oxidation and reduction of thiol residues. Neuroscience 2000, 101, 229–236. [Google Scholar] [CrossRef]
- Murphy, M.B.; Yang, Z.; Subati, T.; Farber-Eger, E.; Kim, K.; Blackwell, D.J.; Fleming, M.R.; Stark, J.M.; Van Amburg, J.C.; Woodall, K.K.; et al. LNK/SH2B3 loss of function increases susceptibility to murine and human atrial fibrillation. Cardiovasc. Res. 2024, 120, 899–913. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Hage, A.; Stein, I.C.A.P.; Kriedemann, N.; Zweigerdt, R.; Leffler, A. A Possible Role of Tetrodotoxin-Sensitive Na+ Channels for Oxidation-Induced Late Na+ Currents in Cardiomyocytes. Int. J. Mol. Sci. 2024, 25, 6596. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, J.; Arrizabalaga-Iriondo, A.; Sanchez-del-Rey, A.; Martinez-Ibargüen, A.; Gallego, M.; Casis, O.; Revuelta, M. Therapeutic role of voltage-gated potassium channels in age-related neurodegenerative diseases. Front. Cell. Neurosci. 2024, 18, 1406709. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Bondarenko, V.E.; Morales, M.J.; Strauss, H.C. Closed-state inactivation in Kv4. 3 isoforms is differentially modulated by protein kinase C. Am. J. Physiol.-Cell Physiol. 2009, 297, C1236–C1248. [Google Scholar] [CrossRef]
- Pan, Y.; Weng, J.; Cao, Y.; Bhosle, R.C.; Zhou, M. Functional Coupling between the Kv1. 1 Channel and Aldoketoreductase Kvβ1. J. Biol. Chem. 2008, 283, 8634–8642. [Google Scholar] [CrossRef]
- Li, M.; Roeder, J.; Blázquez-Prieto, J.; Schulz, S.; Naujox, J.; Falivene, J.; Erfinanda, L.; Liedtke, W.; Albaiceta, G.M.; Kuebler, W.M.; et al. Calcium-Activated Potassium Channels as Amplifiers of TRPV4-Mediated Pulmonary Edema Formation in Male mice. Anesthesiology, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Mahapatra, C.; Brain, K.L.; Manchanda, R. Computational study of Hodgkin-Huxley type calcium-dependent potassium current in urinary bladder over activity. In Proceedings of the 2018 IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), Las Vegas, NV, USA, 18–20 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Van, N.T.H.; Kim, W.K.; Nam, J.H. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications. Int. J. Mol. Sci. 2024, 25, 2965. [Google Scholar] [CrossRef]
- Hilgers, R.H.; Das, K.C. Redox Regulation of K+ channel: Role of Thioredoxin. Antioxid. Redox Signal. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Tang, X.D.; Daggett, H.; Hanner, M.; Garcia, M.L.; McManus, O.B.; Brot, N.; Weissbach, H.; Heinemann, S.H.; Hoshi, T. Oxidative regulation of large conductance calcium-activated potassium channels. J. Gen. Physiol. 2001, 117, 253–274. [Google Scholar] [CrossRef]
- Mistry, D.K.; Garland, C.J. Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BKCa) in smooth muscle cells isolated from the rat mesenteric artery. Br. J. Pharmacol. 1998, 124, 1131–1140. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, B.; Yang, L.; Jiang, X. One potential new target of cancer therapy, mitochondrial ATP-sensitive potassium channels. Biosci. Hypotheses 2008, 1, 174–175. [Google Scholar] [CrossRef]
- Li, K.; McClenahan, S.J.; Han, C.; Bungard, J.D.; Rathnayake, U.; Boutaud, O.; Bauer, J.A.; Days, E.L.; Lindsley, C.W.; Shelton, E.L.; et al. Discovery and characterization of VU0542270, the first selective inhibitor of vascular Kir6. 1/SUR2B KATP channels. Mol. Pharmacol. 2024, 105, 202–212. [Google Scholar] [CrossRef]
- Zhou, M.; Li, T.-S.; Abe, H.; Akashi, H.; Suzuki, R.; Bando, Y. Expression levels of KATP channel subunits and morphological changes in the mouse liver after exposure to radiation. World J. Exp. Med. 2024, 14, 90374. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Liu, Y.; Goto, M.; Tsuchida, A.; Miki, T.; Nakano, A.; Nishino, Y.; Ohnuma, Y.; Shimamoto, K. Mitochondrial ATP-sensitive K+ channels play a role in cardioprotection by Na+-H+ exchange inhibition against ischemia/reperfusion injury. J. Am. Coll. Cardiol. 2001, 37, 957–963. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, D.L.; Ferreira, R.C.M.; Fonseca, F.C.; Machado, D.P.D.; Aguiar, D.D.; Guimaraes, F.S.; Duarte, I.D.G.; Romero, T.R.L. Cannabidiol induces systemic analgesia through activation of the PI3Kγ/nNOS/NO/KATP signaling pathway in neuropathic mice. A KATP channel S-nitrosylation-dependent mechanism. Nitric Oxide 2024, 146, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, W.; Chen, X.; Cui, N.; Konduru, A.S.; Shi, Y.; Trower, T.C.; Zhang, S.; Jiang, C. Molecular basis and structural insight of vascular KATP channel gating by S-glutathionylation. J. Biol. Chem. 2011, 286, 9298–9307. [Google Scholar] [CrossRef] [PubMed]
- Gade, A.R.; Kang, M.; Akbarali, H.I. Hydrogen sulfide as an allosteric modulator of ATP-sensitive potassium channels in colonic inflammation. Mol. Pharmacol. 2013, 83, 294–306. [Google Scholar] [CrossRef]
- Kang, Q.; Zhu, Z.; Liu, Z.; Li, F.; He, Y.; Yang, Y.; Wang, X.; Lei, S.; Yuan, Z.; Zhu, X. A novel hydrogen sulfide donor reduces neuroinflammation and seizures by activating ATP-sensitive potassium channels. Neurosci. Res. 2024, 199, 21–29. [Google Scholar] [CrossRef]
- Boulay, E.; Troncy, E.; Jacquemet, V.; Huang, H.; Pugsley, M.K.; Downey, A.-M.; Baca, R.V.; Authier, S. In Silico Human Cardiomyocyte Action Potential Modeling: Exploring Ion Channel Input Combinations. Int. J. Toxicol. 2024, 43, 357–367. [Google Scholar] [CrossRef]
- Sanguinetti, M.C.; Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 2006, 440, 463–469. [Google Scholar] [CrossRef]
- Fermini, B.; Fossa, A.A. The impact of drug-induced QT interval prolongation on drug discovery and development. Nat. Rev. Drug Discov. 2003, 2, 439–447. [Google Scholar] [CrossRef]
- Vandenberg, J.I. Oxidative stress fine-tunes the dance of hERG K+ channels. J. Physiol. 2010, 588 Pt 16, 2975. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, J.; Wang, H.; Luo, X.; Wang, J.; Villeneuve, L.R.; Zhang, H.; Bai, Y.; Yang, B.; Wang, Z. Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits. Am. J. Physiol.-Heart Circ. Physiol. 2006, 291, H1446–H1455. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Korsunsky, A.; Yazdani, M.; Chen, J. Targeting TRP channels: Recent advances in structure, ligand binding, and molecular mechanisms. Front. Mol. Neurosci. 2024, 16, 1334370. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, C.; Thakkar, R. In Silico Electrophysiological Investigation of Transient Receptor Potential Melastatin-4 Ion Channel Biophysics to Study Detrusor Overactivity. Int. J. Mol. Sci. 2024, 25, 6875. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, C. Simulation study of transient receptor potential current in urinary bladder over activity: Student research abstract. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, Pau, France, 9–13 April 2018; pp. 74–75. [Google Scholar]
- Groschner, K.; Rosker, C.; Lukas, M. Role of TRP channels in oxidative stress. In Mammalian TRP Channels as Molecular Targets: Novartis Foundation Symposium 258; John Wiley & Sons, Ltd.: Chichester, UK, 2004; Volume 258, pp. 222–235. [Google Scholar]
- Hara, Y.; Wakamori, M.; Ishii, M.; Maeno, E.; Nishida, M.; Yoshida, T.; Yamada, H.; Shimizu, S.; Mori, E.; Kudoh, J.; et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell 2002, 9, 163–173. [Google Scholar] [CrossRef]
- Wehage, E.; Eisfeld, J.; Heiner, I.; Jüngling, E.; Zitt, C.; Lückhoff, A. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide: A splice variant reveals a mode of activation independent of ADP-ribose. J. Biol. Chem. 2002, 277, 23150–23156. [Google Scholar] [CrossRef]
- Kolisek, M.; Beck, A.; Fleig, A.; Penner, R. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol. Cell 2005, 18, 61–69. [Google Scholar] [CrossRef]
- Perraud, A.-L.; Takanishi, C.L.; Shen, B.; Kang, S.; Smith, M.K.; Schmitz, C.; Knowles, H.M.; Ferraris, D.; Li, W.; Zhang, J.; et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J. Biol. Chem. 2005, 280, 6138–6148. [Google Scholar] [CrossRef]
- Yamamoto, S.; Takahashi, N.; Mori, Y. Chemical physiology of oxidative stress-activated TRPM2 and TRPC5 channels. Prog. Biophys. Mol. Biol. 2010, 103, 18–27. [Google Scholar] [CrossRef]
- Cao, G.; Thébault, S.; Van Der Wijst, J.; Van Der Kemp, A.; Lasonder, E.; Bindels, R.J.M.; Hoenderop, J.G.J. RACK1 inhibits TRPM6 activity via phosphorylation of the fused α-kinase domain. Curr. Biol. 2008, 18, 168–176. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Levine, R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003, 25, 207–218. [Google Scholar] [CrossRef]
- Schilling, T.; Eder, C. Importance of the non-selective cation channel TRPV1 for microglial reactive oxygen species generation. J. Neuroimmunol. 2009, 216, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pan, Z. Store-operated calcium entry in the cardiovascular system. In Ion Channels in Biophysics and Physiology; Springer: Singapore, 2022; pp. 303–333. [Google Scholar]
- Kraft, R. STIM and ORAI proteins in the nervous system. Channels 2015, 9, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Bakowski, D.; Murray, F.; Parekh, A.B. Store-operated Ca2+ channels: Mechanism, function, pharmacology, and therapeutic targets. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 629–654. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Hediger, M.A.; Demaurex, N. Redox modulation of STIM-ORAI signaling. Cell Calcium 2016, 60, 142–152. [Google Scholar] [CrossRef]
- Galan, C.; Jardín, I.; Dionisio, N.; Salido, G.; Rosado, J.A. Role of oxidant scavengers in the prevention of Ca2+ homeostasis disorders. Molecules 2010, 15, 7167–7187. [Google Scholar] [CrossRef]
- Holzmann, C.; Kilch, T.; Kappel, S.; Dörr, K.; Jung, V.; Stöckle, M.; Bogeski, I.; Peinelt, C. Differential redox regulation of Ca2+ signaling and viability in normal and malignant prostate cells. Biophys. J. 2015, 109, 1410–1419. [Google Scholar] [CrossRef]
- Alves, L.A.; Da Silva, J.H.M.; Ferreira, D.N.M.; Fidalgo-Neto, A.A.; Teixeira, P.C.N.; De Souza, C.A.M.; Caffarena, E.R.; De Freitas, M.S. Structural and molecular modeling features of P2X receptors. Int. J. Mol. Sci. 2014, 15, 4531–4549. [Google Scholar] [CrossRef]
- Hattori, M.; Gouaux, E. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 2012, 485, 207–212. [Google Scholar] [CrossRef]
- Muller, C.E. Medicinal chemistry of P2X receptors: Allosteric modulators. Curr. Med. Chem. 2015, 22, 929–941. [Google Scholar] [CrossRef]
- Savio, L.E.B.; Leite-Aguiar, R.; Alves, V.S.; Coutinho-Silva, R.; Wyse, A.T.S. Purinergic signaling in the modulation of redox biology. Redox Biol. 2021, 47, 102137. [Google Scholar] [CrossRef]
- Gamper, N.; Ooi, L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid. Redox Signal. 2015, 22, 486–504. [Google Scholar] [CrossRef] [PubMed]
- Petrushenko, Y.A. P2X receptors: Peculiarities of the structure and modulation of the functions. Neurophysiology 2012, 44, 163–173. [Google Scholar] [CrossRef]
- Sahoo, N.; Hoshi, T.; Heinemann, S.H. Oxidative modulation of voltage-gated potassium channels. Antioxid. Redox Signal. 2014, 21, 933–952. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, F.; Leffler, A. Oxidation differentially modulates the recombinant voltage-gated Na+ channel α-subunits Nav1. 7 and Nav1. 8. Brain Res. 2016, 1648, 127–135. [Google Scholar] [CrossRef]
- Brini, M.; Leanza, L.; Szabo, I. Lipid-mediated modulation of intracellular ion channels and redox state: Physiopathological implications. Antioxid. Redox Signal. 2018, 28, 949–972. [Google Scholar] [CrossRef]
- Gonzalez, D.R.; Treuer, A.; Sun, Q.-A.; Stamler, J.S.; Hare, J.M. S-Nitrosylation of cardiac ion channels. J. Cardiovasc. Pharmacol. 2009, 54, 188–195. [Google Scholar] [CrossRef]
- Loh, K.W.Z.; Liang, M.C.; Soong, T.W.; Hu, Z. Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 653–667. [Google Scholar] [CrossRef]
- Vezzani, A.; Viviani, B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 2015, 96, 70–82. [Google Scholar] [CrossRef]
- Davis, M.J.; Wu, X.; Nurkiewicz, T.R.; Kawasaki, J.; Gui, P.; Hill, M.A.; Wilson, E. Regulation of ion channels by protein tyrosine phosphorylation. Am. J. Physiol.-Heart Circ. Physiol. 2001, 281, H1835–H1862. [Google Scholar] [CrossRef]
- Sesti, F.; Liu, S.; Cai, S.-Q. Oxidation of potassium channels by ROS: A general mechanism of aging and neurodegeneration? Trends Cell Biol. 2010, 20, 45–51. [Google Scholar] [CrossRef]
- Kozai, D.; Ogawa, N.; Mori, Y. Redox regulation of transient receptor potential channels. Antioxid. Redox Signal. 2014, 21, 971–986. [Google Scholar] [CrossRef] [PubMed]
- Nunes, P.; Demaurex, N. Redox regulation of store-operated Ca2+ entry. Antioxid. Redox Signal. 2014, 21, 915–932. [Google Scholar] [CrossRef] [PubMed]
- Stojilkovic, S.S.; Leiva-Salcedo, E.; Rokic, M.B.; Coddou, C. Regulation of ATP-gated P2X channels: From redox signaling to interactions with other proteins. Antioxid. Redox Signal. 2014, 21, 953–970. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ye, P.; Chen, S.-L.; Zhang, D.-M. Functional regulation of large conductance Ca2+-activated K+ channels in vascular diseases. Metabolism 2018, 83, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, R.; Buchholz, B.; Kraus, A.; Schley, G.; Scholz, J.; Ousingsawat, J.; Kunzelmann, K. Lipid peroxidation drives renal cyst growth in vitro through activation of TMEM16A. J. Am. Soc. Nephrol. 2019, 30, 228–242. [Google Scholar] [CrossRef]
- Dhein, S.; Salameh, A. Remodeling of Cardiac Gap Junctional Cell-Cell Coupling. Cells 2021, 10, 2422. [Google Scholar] [CrossRef]
- Moreno, A.P.; Lau, A.F. Gap junction channel gating modulated through protein phosphorylation. Prog. Biophys. Mol. Biol. 2007, 94, 107–119. [Google Scholar] [CrossRef]
- Zong, Y.-J.; Liu, X.-Z.; Tu, L.; Sun, Y. Cytomembrane trafficking pathways of Connexin 26, 30, and 43. Int. J. Mol. Sci. 2023, 24, 10349. [Google Scholar] [CrossRef]
- Le, H.T.; Sin, W.C.; Lozinsky, S.; Bechberger, J.; Vega, J.L.; Guo, X.Q.; Sáez, J.C.; Naus, C.C. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress. J. Biol. Chem. 2014, 289, 1345–1354. [Google Scholar] [CrossRef]
- Feine, I.; Pinkas, I.; Salomon, Y.; Scherz, A. Local oxidative stress expansion through endothelial cells–a key role for gap junction intercellular communication. PLoS ONE 2012, 7, e41633. [Google Scholar] [CrossRef]
- Evans, W.H.; De Vuyst, E.; Leybaert, L. The gap junction cellular internet: Connexin hemichannels enter the signalling limelight. Biochem. J. 2006, 397, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Aasen, T.; Mesnil, M.; Naus, C.C.; Lampe, P.D.; Laird, D.W. Gap junctions and cancer: Communicating for 50 years. Nat. Rev. Cancer 2016, 16, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.W. Connexin phosphorylation as a regulatory event linked to gap junction internalization and degradation. Biochim. Biophys. Acta (BBA)-Biomembr. 2005, 1711, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.M.; Koh, S.D.; Ro, S.; Ward, S.M. Regulation of gastrointestinal motility—Insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 633–645. [Google Scholar] [CrossRef]
- Hao, A.; Guo, S.; Shi, S.; Wang, X.; Zhan, Y.; Chen, Y.; An, H. Emerging modulators of TMEM16A and their therapeutic potential. J. Membr. Biol. 2021, 254, 353–365. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef]
- Lees-Green, R.; Gibbons, S.J.; Farrugia, G.; Sneyd, J.; Cheng, L.K. Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal. Am. J. Physiol. -Gastrointest. Liver Physiol. 2014, 306, G711–G727. [Google Scholar] [CrossRef]
- Morgan, M.J.; Kim, Y.-S.; Liu, Z. Lipid rafts and oxidative stress–induced cell death. Antioxid. Redox Signal. 2007, 9, 1471–1484. [Google Scholar] [CrossRef]
- Ma, M.-M.; Gao, M.; Guo, K.-M.; Wang, M.; Li, X.-Y.; Zeng, X.-L.; Sun, L.; Lv, X.-F.; Du, Y.-H.; Wang, G.-L.; et al. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase–Derived Reactive Oxygen Species Generation in Hypertension. Hypertension 2017, 69, 892–901. [Google Scholar] [CrossRef]
- Abiria, S.A.; Krapivinsky, G.; Sah, R.; Santa-Cruz, A.G.; Chaudhuri, D.; Zhang, J.; Adstamongkonkul, P.; DeCaen, P.G.; Clapham, D.E. TRPM7 senses oxidative stress to release Zn2+ from unique intracellular vesicles. Proc. Natl. Acad. Sci. USA 2017, 114, E6079–E6088. [Google Scholar] [CrossRef]
- Kaji, N.; Horiguchi, K.; Iino, S.; Nakayama, S.; Ohwada, T.; Otani, Y.; Murata, T.; Sanders, K.M.; Ozaki, H.; Hori, M. Nitric oxide-induced oxidative stress impairs pacemaker function of murine interstitial cells of Cajal during inflammation. Pharmacol. Res. 2016, 111, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, L.; Ettorre, E.; Zicari, A.M.; Inghilleri, M.; Nocella, C.; Perri, L.; Spalice, A.; Fossati, C.; De Lucia, M.C.; Pigozzi, F.; et al. Oxidative stress and gut-derived lipopolysaccharides in neurodegenerative disease: Role of NOX2. Oxidative Med. Cell. Longev. 2020, 2020, 8630275. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kong, P.; Chen, C.; Tang, J.; Jin, X.; Yan, J.; Wang, Y. Targeting IL-17A Improves the Dysmotility of the Small Intestine and Alleviates the Injury of the Interstitial Cells of Cajal during Sepsis. Oxidative Med. Cell. Longev. 2019, 2019, 1475729. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Pollock, J.; Schmidt, H.H.H.; Ward, S.M.; Sanders, K.M. Expression of nitric oxide synthase immunoreactivity by interstitial cells of the canine proximal colon. J. Auton. Nerv. Syst. 1994, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rivera, L.R.; Poole, D.P.; Thacker, M.; Furness, J.B. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol. Motil. 2011, 23, 980–988. [Google Scholar] [CrossRef]
- Bódi, N.; Szalai, Z.; Bagyánszki, M. Nitrergic enteric neurons in health and disease—Focus on animal models. Int. J. Mol. Sci. 2019, 20, 2003. [Google Scholar] [CrossRef]
- Klein, S.; Seidler, B.; Kettenberger, A.; Sibaev, A.; Rohn, M.; Feil, R.; Allescher, H.-D.; Vanderwinden, J.-M.; Hofmann, F.; Schemann, M.; et al. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat. Commun. 2013, 4, 1630. [Google Scholar] [CrossRef]
- Chaudhury, A. No role of interstitial cells of Cajal (ICCs) in genesis of inhibitory junction potentials (IJPs): Evidence from a novel mouse model of genomic ICC depletion. Nature 2014, 464, 10–1038. [Google Scholar]
- Lin, G.; Rennie, M.; Adeeko, A.; Scarlata, S. The role of calcium in neuronal membrane tension and synaptic plasticity. Biochem. Soc. Trans. 2024, 52, 937–945. [Google Scholar] [CrossRef]
- Gorobets, O.; Gorobets, S.; Polyakova, T.; Zablotskii, V. Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields. Nanoscale Adv. 2024, 6, 1163–1182. [Google Scholar] [CrossRef]
- Dave, V.; Mahapatra, C.; Manchanda, R. A mathematical model of the calcium transient in urinary bladder smooth muscle cells. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 5359–5362. [Google Scholar]
- Mahapatra, C.; Manchanda, R. Computational assessment of calcium channel effects on subthalamic nucleus neuronal cells: Study of abnormal bursting patterns in Parkinson’s disease. In Movement Disorders; Wiley-Blackwell: Hoboken, NJ, USA, 2016; Volume 31, pp. S620–S621. [Google Scholar]
- Hernández-Oliveras, A.; Zarain-Herzberg, A. The role of Ca2+-signaling in the regulation of epigenetic mechanisms. Cell Calcium 2024, 117, 102836. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, J.; Zhao, K.; Wu, S.; Chen, X.; Hu, W. The Role of Calcium and Iron Homeostasis in Parkinson’s Disease. Brain Sci. 2024, 14, 88. [Google Scholar] [CrossRef] [PubMed]
- Khamis, H.; Cohen, O. Coupled action potential and calcium dynamics underlie robust spontaneous firing in dopaminergic neurons. Phys. Biol. 2024, 21, 026005. [Google Scholar] [CrossRef] [PubMed]
- Wray, S.; Burdyga, T.; Noble, K. Calcium signalling in smooth muscle. Cell Calcium 2005, 38, 397–407. [Google Scholar] [CrossRef]
- Brini, M.; Calì, T.; Ottolini, D.; Carafoli, E. Intracellular calcium homeostasis and signaling. Met. Cell 2013, 12, 119–168. [Google Scholar]
- Woll, K.A.; Van Petegem, F. Calcium-release channels: Structure and function of IP3 receptors and ryanodine receptors. Physiol. Rev. 2022, 102, 209–268. [Google Scholar] [CrossRef]
- Brini, M.; Carafoli, E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol. 2011, 3, a004168. [Google Scholar] [CrossRef]
- Chen, J.; Sitsel, A.; Benoy, V.; Sepúlveda, M.R.; Vangheluwe, P. Primary active Ca2+ transport systems in health and disease. Cold Spring Harb. Perspect. Biol. 2020, 12, a035113. [Google Scholar] [CrossRef]
- Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol. 2015, 6, 260–271. [Google Scholar] [CrossRef]
- Steinert, J.R.; Wyatt, A.W.; Jacob, R.; Mann, G.E. Redox modulation of Ca2+ signaling in human endothelial and smooth muscle cells in pre-eclampsia. Antioxid. Redox Signal. 2009, 11, 1149–1163. [Google Scholar] [CrossRef]
- Zima, A.V.; Blatter, L.A. Redox regulation of cardiac calcium channels and transporters. Cardiovasc. Res. 2006, 71, 310–321. [Google Scholar] [CrossRef]
- Davidson, S.M.; Duchen, M.R. Calcium microdomains and oxidative stress. Cell Calcium 2006, 40, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Terentyev, D.; Györke, I.; Belevych, A.E.; Terentyeva, R.; Sridhar, A.; Nishijima, Y.; de Blanco, E.C.; Khanna, S.; Sen, C.K.; Cardounel, A.J.; et al. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ. Res. 2008, 103, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: Evidence from clinical and experimental investigations. J. Urol. 2013, 189, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Jardín, I.; Redondo, P.C.; Salido, G.M.; Pariente, J.A.; Rosado, J.A. Endogenously generated reactive oxygen species reduce PMCA activity in platelets from patients with non-insulin-dependent diabetes mellitus. Platelets 2006, 17, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Takuma, K.; Ago, Y.; Matsuda, T. The glial sodium-calcium exchanger: A new target for nitric oxide-mediated cellular toxicity. Curr. Protein Pept. Sci. 2013, 14, 43–50. [Google Scholar] [CrossRef]
- Harrington, J.S.; Ryter, S.W.; Plataki, M.; Price, D.R.; Choi, A.M.K. Mitochondria in health, disease, and aging. Physiol. Rev. 2023, 103, 2349–2422. [Google Scholar] [CrossRef]
- Perry, S.W.; Norman, J.P.; Barbieri, J.; Brown, E.B.; Gelbard, H.A. Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. Biotechniques 2011, 50, 98–115. [Google Scholar] [CrossRef]
- Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; et al. Mitochondrial membrane potential. Anal. Biochem. 2018, 552, 50–59. [Google Scholar] [CrossRef]
- Szabo, I.; Szewczyk, A. Mitochondrial ion channels. Annu. Rev. Biophys. 2023, 52, 229–254. [Google Scholar] [CrossRef]
- Hadi, F.; Mortaja, M.; Hadi, Z. Calcium (Ca2+) hemostasis, mitochondria, autophagy, and mitophagy contribute to Alzheimer’s disease as early moderators. Cell Biochem. Funct. 2024, 42, e4085. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T. Mitochondria and Ageing. In Cellular and Molecular Aspects of Ageing; Springer Nature: Cham, Switzerland, 2024; pp. 61–75. [Google Scholar]
- Moon, D.-O. Exploring the Role of Surface and Mitochondrial ATP-Sensitive Potassium Channels in Cancer: From Cellular Functions to Therapeutic Potentials. Int. J. Mol. Sci. 2024, 25, 2129. [Google Scholar] [CrossRef] [PubMed]
- Bierhansl, L.; Gola, L.; Narayanan, V.; Dik, A.; Meuth, S.G.; Wiendl, H.; Kovac, S. Neuronal Mitochondrial Calcium Uniporter (MCU) Deficiency Is Neuroprotective in Hyperexcitability by Modulation of Metabolic Pathways and ROS Balance. Mol. Neurobiol. 2024; online ahead of print. [Google Scholar]
- Safiulina, D.; Kaasik, A. Energetic and dynamic: How mitochondria meet neuronal energy demands. PLoS Biol. 2013, 11, e1001755. [Google Scholar] [CrossRef] [PubMed]
- Lionello, S.; Marzaro, G.; Martinvalet, D. SAM50, a side door to the mitochondria: The case of cytotoxic proteases. Pharmacol. Res. 2020, 160, 105196. [Google Scholar] [CrossRef] [PubMed]
- Sas, K.; Robotka, H.; Toldi, J.; Vécsei, L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J. Neurol. Sci. 2007, 257, 221–239. [Google Scholar] [CrossRef]
- Kim, B.M.; Kim, G.T.; Kim, E.J.; Lim, E.G.; Kim, S.-Y.; Kim, Y.M. Extract from Artemisia annua Linné induces apoptosis through the mitochondrial signaling pathway in HepG2 cells. J. Korean Soc. Food Sci. Nutr. 2016, 45, 1708–1716. [Google Scholar] [CrossRef]
- Varughese, J.T.; Buchanan, S.K.; Pitt, A.S. The role of voltage-dependent anion channel in mitochondrial dysfunction and human disease. Cells 2021, 10, 1737. [Google Scholar] [CrossRef]
- Kulawiak, B.; Bednarczyk, P.; Szewczyk, A. Multidimensional regulation of cardiac mitochondrial potassium channels. Cells 2021, 10, 1554. [Google Scholar] [CrossRef]
- Sayeed, N.; Sugaya, K. Exosome mediated Tom40 delivery protects against hydrogen peroxide-induced oxidative stress by regulating mitochondrial function. PLoS ONE 2022, 17, e0272511. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, X.; Hui, Y.; Zhu, C.; Wu, J.; Taylor, D.H.; Ji, J.; Fan, W.; Huang, Z.; Hu, J. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: Implications for Parkinson’s disease. Neuropharmacology 2015, 91, 87–96. [Google Scholar] [CrossRef]
- Park, H.-A.; Broman, K.; Jonas, E.A. Oxidative stress battles neuronal Bcl-xL in a fight to the death. Neural Regen. Res. 2021, 16, 12–15. [Google Scholar] [CrossRef]
- Shoshan-Barmatz, V.; Maldonado, E.N.; Krelin, Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress 2017, 1, 11–36. [Google Scholar] [CrossRef]
- Reddish, F.N.; Miller, C.L.; Gorkhali, R.; Yang, J.J. Calcium dynamics mediated by the endoplasmic/sarcoplasmic reticulum and related diseases. Int. J. Mol. Sci. 2017, 18, 1024. [Google Scholar] [CrossRef]
- Thillaiappan, N.B.; Chavda, A.P.; Tovey, S.C.; Prole, D.L.; Taylor, C.W. Ca2+ signals initiate at immobile IP3 receptors adjacent to ER-plasma membrane junctions. Nat. Commun. 2017, 8, 1505. [Google Scholar] [CrossRef]
- Lin, B.; Liu, Y.; Zhang, X.; Fan, L.; Shu, Y.; Wang, J. Membrane-activated fluorescent probe for high-fidelity imaging of mitochondrial membrane potential. ACS Sens. 2021, 6, 4009–4018. [Google Scholar] [CrossRef]
- Sanz, F.J.; Solana-Manrique, C.; Torres, J.; Masiá, E.; Vicent, M.J.; Paricio, N. A high-throughput chemical screen in DJ-1β mutant flies identifies Zaprinast as a potential Parkinson’s disease treatment. Neurotherapeutics 2021, 18, 2565–2578. [Google Scholar] [CrossRef]
- Choi, S.B.; Polter, A.M.; Nemes, P. Patch-clamp proteomics of single neurons in tissue using electrophysiology and subcellular capillary electrophoresis mass spectrometry. Anal. Chem. 2021, 94, 1637–1644. [Google Scholar] [CrossRef]
- Angelini, F.; Pagano, F.; Bordin, A.; Milan, M.; Chimenti, I.; Peruzzi, M.; Valenti, V.; Marullo, A.; Schirone, L.; Palmerio, S.; et al. The impact of environmental factors in influencing epigenetics related to oxidative states in the cardiovascular system. Oxidative Med. Cell. Longev. 2017, 2017, 2712751. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Ashok, A.; Andrabi, S.S.; Mansoor, S.; Kuang, Y.; Kwon, B.K.; Labhasetwar, V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants 2022, 11, 408. [Google Scholar] [CrossRef]
- Vagos, M.; van Herck, I.G.M.; Sundnes, J.; Arevalo, H.J.; Edwards, A.G.; Koivumäki, J.T. Computational modeling of electrophysiology and pharmacotherapy of atrial fibrillation: Recent advances and future challenges. Front. Physiol. 2018, 9, 1221. [Google Scholar] [CrossRef] [PubMed]
Cell Type | RMP (mV) | AP/SW | Reference |
---|---|---|---|
Smooth Muscle | −45 to −65 | AP/SW | [31] |
Cardiac Muscle | −80 to −90 | AP | [32] |
Skeletal Muscle | −65 to −91 | AP | [33] |
Neuronal Cell | −60 to −70 | AP | [34] |
Pancreatic beta cells | −60 to −70 | SW | [35] |
Type of Oxidative Stress | Affected Ion Channels | Mechanism | Effect on AP/SW | Associated Pathological Disorders | Reference |
---|---|---|---|---|---|
Direct Oxidation | Voltage-gated K+ channels (Kv) | Oxidation of thiol groups on cysteine residues alters gating and ion selectivity | Prolonged repolarization, leading to extended AP | Cardiac arrhythmias (e.g., Long QT syndrome), Parkinson’s, Alzheimer’s | [123] |
Direct Oxidation | Voltage-gated Na+ channels (Nav) | Modification of channel gating, leading to altered excitability | Increased AP amplitude and duration, leading to hyperexcitability | Epilepsy, Neurodegenerative diseases, Chronic pain syndromes | [124] |
Lipid Peroxidation | Various membrane-bound ion channels | Disruption of membrane fluidity and integrity, affecting ion channel function | Altered membrane potential, leading to impaired AP propagation | Atherosclerosis, Stroke | [125] |
Nitrosative Stress | Voltage-gated Na+ channels (Nav) | Nitrosylation leads to altered channel function and increased neuronal excitability | Increased excitability, causing repetitive firing of APs | Epilepsy, Migraine, ALS | [126] |
Nitrosative Stress | Voltage-gated Ca2+ channels (Cav) | Nitrosylation causing dysregulation of Ca2+ homeostasis | Prolonged depolarization phase, leading to excessive Ca2+ influx | Neurodegenerative diseases, Cardiac arrhythmias | [127] |
Indirect Effects (Inflammation) | Multiple ion channels (Kv, Nav, Cav) | Inflammatory cytokines alter channel expression, kinase/phosphatase modulation affecting channel function | Disrupted AP duration and frequency | Diabetes, Hypertension, Autoimmune disorders (e.g., Multiple Sclerosis) | [128] |
Indirect Effects (Kinase/Phosphatase Modulation) | Voltage- K+ channels, Ca2+ channels | Altered phosphorylation state of ion channels due to disrupted kinase/phosphatase activity | Abnormal AP propagation leading to arrhythmias or seizure activity | Cardiac arrhythmias, Epilepsy, Chronic pain, Ischemic heart disease | [129] |
Oxidative Stress-Induced Channel Trafficking Disruption | Multiple ion channels (Kv, Nav) | ROS affects the trafficking of ion channels to the cell membrane, leading to reduced channel availability | Reduced AP initiation and propagation | Cystic Fibrosis, Myotonia | [130] |
Direct Oxidation | TRPM channels | Oxidation of critical cysteine residues, affecting channel gating | Altered ion influx, leading to changes in cellular excitability and AP generation | Pain, Inflammation, Neurodegenerative diseases | [131] |
Direct Oxidation | Orai (CRAC) channels | ROS-induced conformational changes affecting channel opening | Impaired calcium entry, leading to altered AP and cellular signaling | Immune dysfunction, Autoimmune disorders | [132] |
Direct Oxidation | P2X purinergic receptors | Oxidative modification altering ATP binding and receptor activation | Enhanced or reduced receptor activation, leading to changes in excitability and synaptic transmission | Chronic pain, Inflammation, Neurological disorders | [133] |
Oxidative Modulation | BK/SK Ca2+-activated K+ channels | ROS-mediated modulation affecting channel activity | Altered repolarization phase, affecting AP duration and neuronal excitability | Hypertension, Epilepsy, Muscle dysfunction | [134] |
Oxidative Stress | TMEM16A/ANO1 channels | ROS-induced modifications affecting channel gate and chloride conductance | Disrupted membrane potential, leading to altered AP propagation and smooth muscle function | Asthma, Hypertension, Cystic Fibrosis | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahapatra, C.; Thakkar, R.; Kumar, R. Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review. Antioxidants 2024, 13, 1172. https://doi.org/10.3390/antiox13101172
Mahapatra C, Thakkar R, Kumar R. Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review. Antioxidants. 2024; 13(10):1172. https://doi.org/10.3390/antiox13101172
Chicago/Turabian StyleMahapatra, Chitaranjan, Ravindra Thakkar, and Ravinder Kumar. 2024. "Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review" Antioxidants 13, no. 10: 1172. https://doi.org/10.3390/antiox13101172
APA StyleMahapatra, C., Thakkar, R., & Kumar, R. (2024). Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review. Antioxidants, 13(10), 1172. https://doi.org/10.3390/antiox13101172