Prolonged Supplementation of Ozonated Sunflower Oil Bestows an Antiaging Effect, Improves Blood Lipid Profile and Spinal Deformities, and Protects Vital Organs of Zebrafish (Danio rerio) against Age-Related Degeneration: Two-Years Consumption Study
<p>Long-term supplementation of sunflower oil (SO) and ozonated sunflower oil (OSO) on the survivability and body weight of zebrafish. (<b>A</b>) Time-dependent survivability. Data were expressed as mean ± SEM. (<b>B</b>) A time-dependent change in body weight. (<b>C</b>) Morphology of zebrafish at 12 and 24 months feeding. Data were expressed as mean ± SEM. ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups (based on the diet and time of feeding) resulting from the two-way ANOVA following Tukey’s post hoc analysis.</p> "> Figure 2
<p>Age-related structural deformities in zebrafish after 28 months of supplementation of sunflower oil (SO) and ozonated sunflower oil (OSO). (<b>A</b>) A pictorial view representing structural deformities. (<b>B</b>) X-ray images and (<b>C</b>) and digitally zoomed X-ray images of the zebrafish skeletal (backbone). (<b>D</b>) The angle of the spinal deformities (bending) was determined employing image J software version 1.53 (<a href="http://rsb.info.nih.gov/ij/" target="_blank">http://rsb.info.nih.gov/ij/</a>, accessed on 16 June 2023). ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis.</p> "> Figure 3
<p>Swimming trajectory and swimming speed of zebrafish after 28 months of supplementation of (<b>A</b>) normal diet (ND), (<b>B</b>) normal diet + 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>) and (<b>C</b>) normal diet + 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). (<b>D</b>) Average swimming speed of the zebrafish. Tracker video analysis and modeling tool version number 6.1.5 (available at <a href="https://physlets.org/tracker" target="_blank">https://physlets.org/tracker</a> accessed on 16 May 2023) was utilized to determine the swimming trajectory and swimming speed of zebrafish. ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The <span class="html-italic">p</span>-value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis; ns represent non-significant differences between the groups.</p> "> Figure 4
<p>A comparative assessment of 24 months of supplementation of sunflower oil (SO) and ozonated sunflower oil (OSO) on the hepatic tissue of zebrafish. (<b>A</b>) Hematoxylin and eosin (H&E) staining, senescence-associated β galactosidase (SA-β-gal) staining, dihydroethidium (DHE) and acridine orange (AO) fluorescent staining (100 μm, yellow scale bar). Red arrow indicates SA-β-gal positive cells. Scale bar indicates 100 μm. (<b>B</b>) Image J-based quantification of H&E and SA-β-gal-stained area, fluorescent intensities of DHE and AO-stained area. ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis.</p> "> Figure 5
<p>A comparative effect of 24 months of supplementation of sunflower oil (SO) and ozonated sunflower oil (OSO) on fatty liver alterations and IL-6 production in zebrafish. Yellow scale bar indicates 100 μm. (<b>A</b>) Oil red O staining. (<b>B</b>) Immunohistochemistry (IHC) for the assessment of IL-6 generation. (<b>C</b>) Employing Image J software, the brown color of the native IL-6-stained area has interchanged with red color, employing a brown color threshold value from 20 to 120 to intensify the visualization of the IHC stained area. (<b>D</b>,<b>E</b>) Quantification Oil red O stained and IL-6-stained area employing Image J software. ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis.</p> "> Figure 6
<p>A comparative effect of 24 months of supplementation of sunflower oil (SO) and ozonated sunflower oil (OSO) on the hepatic function biomarkers: (<b>A</b>) aspartate aminotransferase (AST) and (<b>B</b>) alanine aminotransferase (ALT). ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis. The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis.</p> "> Figure 7
<p>A comparative effect of 24 months supplementation of sunflower oil (SO) and ozonated sunflower oil (OSO) on the kidney of zebrafish. Yellow scale bar indicates 100 μm. (<b>A</b>) Hematoxylin and eosin (H&E) staining. PT and DT symbolize the proximal and distal tubules, respectively. The red arrows indicate luminal debris. (<b>B</b>) Senescence-associated β galactosidase (SA-β-gal) staining. Red arrows indicate senescent area. (<b>C</b>) Dihydroethidium (DHE) fluorescent staining. (<b>D</b>) Acridine orange (AO) fluorescent staining. Quantification of (<b>E</b>) SA-β-gal-stained area, (<b>F</b>) DHE and (<b>G</b>) AO-stained area utilizing Image J software. ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis.</p> "> Figure 8
<p>A comparative effect of 24 months of supplementation of sunflower oil (SO) and ozonated sunflower oil (OSO) on the ovary of zebrafish. (<b>A</b>) Ovarian cell morphology was analyzed by hematoxylin and eosin (H&E) staining (P, E, and M represents pre, early and mature vitellogenin stages, respectively), senescence-associated β galactosidase (SA-β-gal) staining (red arrow indicating senescent area.), dihydroethidium (DHE) and acridine orange (AO) fluorescent staining. (100 μm, yellow scale bar). (<b>B</b>) Quantification of the different developmental stages of oocytes based on the H&E images. (<b>C</b>–<b>E</b>) Image J software-based quantification of SA-β-gal-stained area, DHE and AO-stained area, respectively. ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The alphabets (a,b) above the bar graphs showed the statistical difference between the groups. The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis.</p> "> Figure 9
<p>A comparative effect of 24 months of supplementation of sunflower oil (SO) and ozonated sunflower oil (OSO) on the zebrafish testis. Yellow scale bar indicates 100 μm. (<b>A</b>) Testis histology was analyzed by hematoxylin and eosin (H&E) staining. SG, ST, and SZ represent spermatogonia, spermatocytes and spermatozoa. The red arrow specifies the interstitial space between seminiferous tubules. (<b>B</b>) Transformation of the white color (void space) that appeared in the H&E section to the red color for the clear visualization of interstitial space between seminiferous tubules (at the threshold value of 220–255) employing Image J software. (<b>C</b>,<b>D</b>) DHE and AO-stained area, respectively. (<b>E</b>) Image J-based quantification of interstitial space in testis. (<b>F</b>,<b>G</b>) Quantification of dihydroethidium (DHE) and acridine orange (AO) fluorescent stained area, respectively, utilizing Image J software. ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis.</p> "> Figure 9 Cont.
<p>A comparative effect of 24 months of supplementation of sunflower oil (SO) and ozonated sunflower oil (OSO) on the zebrafish testis. Yellow scale bar indicates 100 μm. (<b>A</b>) Testis histology was analyzed by hematoxylin and eosin (H&E) staining. SG, ST, and SZ represent spermatogonia, spermatocytes and spermatozoa. The red arrow specifies the interstitial space between seminiferous tubules. (<b>B</b>) Transformation of the white color (void space) that appeared in the H&E section to the red color for the clear visualization of interstitial space between seminiferous tubules (at the threshold value of 220–255) employing Image J software. (<b>C</b>,<b>D</b>) DHE and AO-stained area, respectively. (<b>E</b>) Image J-based quantification of interstitial space in testis. (<b>F</b>,<b>G</b>) Quantification of dihydroethidium (DHE) and acridine orange (AO) fluorescent stained area, respectively, utilizing Image J software. ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis.</p> "> Figure 10
<p>Blood lipid profile of zebrafish fed with sunflower oil (SO) and ozonated sunflower oil (OSO) for 24 months. TC (total cholesterol), TG (triglycerides), HDL-C (high-density lipoprotein cholesterol) and LDL-C (low-density lipoprotein cholesterol), ND represents the control normal diet; SO represents ND supplemented with 20% SO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>); OSO represents ND supplemented with 20% OSO (<span class="html-italic">wt</span>/<span class="html-italic">wt</span>). The <span class="html-italic">p</span> value signifies the statistical significance discerned between groups resulting from the one-way ANOVA following Tukey’s post hoc analysis.</p> "> Figure 11
<p>Impact of ozonated sunflower oil (OSO) consumption for 2 years on the aging and senescence associated changes in zebrafish. AST, aspartate aminotransferase; ALT, alanine aminotransferase; IL-6, interleukin-6; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol TC, total cholesterol; TG, triglyceride.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sunflower Oil (SO) and Ozonated Sunflower Oil (OSO) Supplemented Diet
2.3. Zebrafish Aquaculture
2.4. Zebrafish Fed with Sunflower Oil (SO) and Ozonated Sunflower Oil (OSO)
2.5. Radiology Imaging
2.6. Histology and Immunohistochemical Analysis
2.7. Imaging for Reactive Oxygen Species (ROS) Production and Apoptosis Extent
2.8. Senescence-Tied β Galactosidase Staining
2.9. Analysis of Blood Lipid Profile and Biomarkers Associated with Liver Function
2.10. Statistical Analysis
3. Results
3.1. Zebrafish Survivability and Body Weight
3.2. Radiology Imaging for the Structural Deformities and Swimming Behavior of Zebrafish
3.3. Evaluation of the Liver Section
3.4. Assessment of Fatty Liver Changes and Inflammation in Liver
3.5. Evaluation of Hepatic Function Biomarkers
3.6. Evaluation of the Kidney Section
3.7. Evaluation of the Ovary Section
3.8. Evaluation of the Testis Section
3.9. Plasma Lipid Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skorić, D.; Jocić, S.; Sakac, Z.; Lecić, N. Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can. J. Physiol. Pharmacol. 2008, 86, 215–221. [Google Scholar] [PubMed]
- Adeleke, B.S.; Babalola, O.O. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef]
- Raß, M.; Schein, C.; Matthäus, B. Virgin sunflower oil. Eur. J. Lipid Sci. Technol. 2008, 110, 618–624. [Google Scholar] [CrossRef]
- Khan, S.; Choudhary, S.; Pandey, A.; Khan, M.K.; Thomas, G. Sunflower oil: Efficient oil source for human consumption. Emergent Life Sci. Res. 2015, 1, 1–3. [Google Scholar]
- Díaz, M.F.; Sánchez, Y.; Gómez, M.; Hernández, F.; Da, C.; Veloso, M.C.; De, P.; Pereira, P.A.; Mangrich, A.S.; De Andrade, J.B. Physicochemical characteristics of ozonated sunflower oils obtained by different procedures. Grasas Aceites 2012, 63, 466–474. [Google Scholar] [CrossRef]
- Preuss, F. Ozone Oxidation of Fatty Acid Thin Films: A TIR Raman Study. 2022. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1701750 (accessed on 17 April 2023).
- Ugazio, E.; Tullio, V.; Binello, A.; Tagliapietra, S.; Dosio, F. Ozonated oils as antimicrobial systems in topical applications. Their characterization, current applications, and advances in improved delivery techniques. Molecules 2020, 25, 334. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-H.; Kang, D.-J.; Nam, H.-S.; Kim, J.-H.; Kim, S.-Y.; Lee, J.-O.; Kim, B.-J. Ozonated sunflower oil exerted protective effect for embryo and cell survival via potent reduction power and antioxidant activity in HDL with strong antimicrobial activity. Antioxidants 2021, 10, 1651. [Google Scholar] [CrossRef]
- Cho, K.-H.; Kim, J.-E.; Bahuguna, A.; Kang, D.-J. Long-term supplementation of ozonated sunflower oil improves dyslipidemia and hepatic inflammation in hyperlipidemic zebrafish: Suppression of oxidative stress and inflammation against carboxymethyllysine toxicity. Antioxidants 2023, 12, 1240. [Google Scholar] [CrossRef]
- Cho, K.-H.; Kim, J.-E.; Bahuguna, A.; Kang, D.-J. Ozonated sunflower oil exerted potent anti-inflammatory activities with enhanced wound healing and tissue regeneration abilities against acute toxicity of carboxymethyllysine in zebrafish with improved blood lipid profile. Antioxidants 2023, 12, 1625. [Google Scholar] [CrossRef]
- Ginel, P.J.; Negrini, J.; Guerra, R.; Lucena, R.; Ruiz-Campillo, M.T.; Mozos, E. Effect of topical ozonated sunflower oil on second intention wound healing in turtles: A randomised experimental study. J. Vet. Sci. 2021, 22, e27. [Google Scholar] [CrossRef]
- Zamora Rodríguez, Z.B.; González Alvarez, R.; Guanche, D.; Merino, N.; Hernández Rosales, F.; Menéndez Cepero, S.; Alonso González, Y.; Schulz, S. Antioxidant mechanism is involved in the gastroprotective effects of ozonized sunflower oil in ethanol-induced ulcers in rats. Mediat. Inflamm. 2007, 2007, 65873. [Google Scholar] [CrossRef]
- Zeng, J.; Lu, J. Mechanisms of action involved in ozone-therapy in skin diseases. Int. Immunopharmacol. 2018, 56, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Kurtoglu, T.; Durmaz, S.; Kozaci, L.D.; Abacigil, F.; Ertugrul, B.; Erel, O. The effects of ozone on bacterial growth and thiol-disulphide homeostasis in vascular graft infection caused by MRSA in rats. Acta Cir. Bras. 2017, 32, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Jenerowicz, D.; Silny, W.; Da’nczak-Pazdrowska, A.; Pola´nska, A.; Osmola-Ma´nkowska, A.; Olek-Hrab, K. Environmental factors and allergic diseases. Ann. Agric. Environ. Med. 2012, 19, 475–481. [Google Scholar]
- Borges, G.Á.; Elias, S.T.; da Silva, S.M.M.; Magalhães, P.O.; Macedo, S.B.; Ribeiro, A.P.D.; Guerra, E.N.S. In vitro evaluation of wound healing and antimicrobial potential of ozone therapy. J. Cranio-Maxillofac. Surg. 2017, 45, 364–370. [Google Scholar] [CrossRef]
- Menéndez, S.; Falcón, L.; Maqueira, Y. Therapeutic efficacy of topical OLEOZON® in patients suffering from onychomycosis. Mycoses 2011, 54, 272–277. [Google Scholar] [CrossRef]
- Nusslein-Volhard, C.; Dahm, R. Zebrafish: A Practical Approach, 1st ed.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- (NRC) National Research Council of the National Academy of Sciences. Guide for the Care and Use of Laboratory Animals; National Academy Press: Washington, DC, USA, 2010. [Google Scholar]
- Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. In Basic Methods in Microscopy; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2006; Chapter 4. [Google Scholar]
- Cho, K.-H.; Nam, H.-S.; Kim, J.-E.; Na, H.-J.; del Carmen Dominguez-Horta, M.; Martinez-Donato, G. CIGB-258 exerts potent anti-inflammatory activity against carboxymethyllysine-induced acute inflammation in hyperlipidemic zebrafish via the protection of apolipoprotein AI. Int. J. Mol. Sci. 2023, 24, 7044. [Google Scholar] [CrossRef] [PubMed]
- Hull, L.C.; Sen, R.; Menzel, J.; Goyama, S.; Kurokawa, M.; Artinger, K.B. The conserved and divergent roles of Prdm3 and Prdm16 in zebrafish and mouse craniofacial development. Dev. Biol. 2020, 461, 132–144. [Google Scholar]
- Owusu-Ansah, E.; Yavari, A.; Mandal, S.; Banerjee, U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat. Genet. 2008, 40, 356–361. [Google Scholar] [CrossRef]
- Umali, J.; Hawkey-Noble, A.; French, C.R. Loss of foxc1 in zebrafish reduces optic nerve size and cell number in the retinal ganglion cell layer. Vision Res. 2019, 156, 66–72. [Google Scholar] [CrossRef]
- Kim, S.H.; Yadav, D.; Kim, S.J.; Kim, J.R.; Cho, K.-H. High consumption of iron exacerbates hyperlipidemia, atherosclerosis, and female sterility in zebrafish via acceleration of glycation and degradation of serum lipoproteins. Nutrients 2017, 9, 690. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, R.; Cantarella, G.; Bernardini, R.; Di Rosa, M.; Barbagallo, I.; Distefano, A.; Longhitano, L.; Vicario, N.; Nicolosi, D.; Lazzarino, G.; et al. The biochemical and pharmacological properties of ozone: The smell of protection in acute and chronic diseases. Int. J. Mol. Sci. 2019, 20, 634. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, L.; Gao, L.; Zeng, J.; Lu, J. Ozone therapy for skin diseases: Cellular and molecular mechanisms. Int. Wound J. 2023, 20, 2376–2385. [Google Scholar] [CrossRef]
- Herrera, M.; Jagadeeswaran, P. Annual fish as a genetic model for aging. J. Gerontol. 2004, 59, 101–107. [Google Scholar] [CrossRef]
- Kishi, S.; Slack, B.E.; Uchiyama, J.; Zhdanova, I.V. Zebrafish as a genetic model in biological and behavioral gerontology: Where development meets aging in vertebrates—A mini-review. Gerontology 2009, 55, 430–441. [Google Scholar] [CrossRef]
- Siccardi, A.J.; Garris, H.W.; Jones, W.T.; Moseley, D.B.; D’Abramo, L.R.; Watts, S.A. Growth and survival of zebrafish (Danio rerio) fed different commercial and laboratory diets. Zebrafish 2009, 6, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, G.S.; Kauffman, E.J.; Wang, X.; Stewart, R.; Moore, J.L.; Kasales, C.J.; Demidenko, E.; Cheng, K.C. Life spans and senescent phenotypes in two strains of zebrafish (Danio rerio). Exp. Gerontol. 2002, 37, 1055–1068. [Google Scholar] [CrossRef]
- Gilbert, M.J.; Zerulla, T.C.; Tierney, K.B. Zebrafish (Danio rerio) as a model for the study of aging and exercise: Physical ability and trainability decrease with age. Exp. Gerontol. 2014, 50, 106–113. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging hallmarks and the role of oxidative stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-J.; Jiang, S.-S.; Zhang, J.; Luo, D.; Yu, B.; Yang, L.-Y.; Zhong, H.; Yang, M.-W.; Liu, L.-Y.; Hong, F.-F.; et al. Effects of apoptosis on liver aging. World J. Clin. Cases 2019, 7, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Watkins, S.M.; Hotamisligil, G.S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 2012, 15, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.; Guralnik, J.M.; Longo, D.L.; Ferrucci, L. Interleukin-6 in aging and chronic disease: A magnificent pathway. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 575–584. [Google Scholar] [CrossRef]
- Ferrucci, L.; Corsi, A.; Lauretani, F.; Bandinelli, S.; Bartali, B.; Taub, D.D.; Guralnik, J.M.; Longo, D.L. The origins of age-related proinflammatory state. Blood 2005, 105, 2294–2299. [Google Scholar] [CrossRef]
- Sarkar, D.; Fisher, P.B. Molecular mechanisms of aging-associated inflammation. Cancer Lett. 2006, 236, 13–23. [Google Scholar] [CrossRef]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Kamal, N.S.; Safuan, S.; Shamsuddin, S.; Foroozandeh, P. Aging of the cells: Insight into cellular senescence and detection methods. Eur. J. Cell Biol. 2020, 99, 151108. [Google Scholar] [CrossRef] [PubMed]
- Wiemann, S.U.; Satyanarayana, A.; Tsahuridu, M.; Tillmann, H.L.; Zender, L.; Klempnauer, J.; Flemming, P.; Franco, S.; Blasco, M.A.; Manns, M.P.; et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 2002, 16, 935–942. [Google Scholar] [CrossRef]
- Guo, M. Cellular senescence and liver disease: Mechanisms and therapeutic strategies. Biomed. Pharmacother. 2017, 96, 1527–1537. [Google Scholar] [CrossRef]
- Tower, J. Programmed cell death in aging. Ageing Res. Rev. 2015, 23, 90–100. [Google Scholar] [CrossRef]
- Gomes, P.; Simão, S.; Silva, E.; Pinto, V.; Amaral, J.S.; Afonso, J.; Serrão, M.P.; Pinho, M.J.; Soares-da-Silva, P. Aging increases oxidative stress and renal expression of oxidant and antioxidant enzymes that are associated with an increased trend in systolic blood pressure. Oxidative Med. Cell. Longev. 2009, 2, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bonventre, J.V.; Parrish, A.R. The aging kidney: Increased susceptibility to nephrotoxicity. Int. J. Mol. Sci. 2014, 15, 15358–15376. [Google Scholar] [CrossRef] [PubMed]
- Pole, A.; Dimri, M.; Dimri, G. Oxidative stress, cellular senescence and ageing. AIMS Mol. Sci. 2016, 3, 300–324. [Google Scholar] [CrossRef]
- Matzkin, M.E.; Calandra, R.S.; Rossi, S.P.; Bartke, A.; Frungieri, M.B. Hallmarks of testicular aging: The challenge of anti-inflammatory and antioxidant therapies using natural and/or pharmacological compounds to improve the physiopathological status of the aged male gonad. Cells 2021, 10, 3114. [Google Scholar] [CrossRef] [PubMed]
- Li, C.J.; Lin, L.T.; Tsai, H.W.; Chern, C.U.; Wen, Z.H.; Wang, P.H.; Tsui, K.H. The molecular regulation in the pathophysiology in ovarian aging. Aging Dis. 2021, 12, 934–949. [Google Scholar] [CrossRef]
- Timóteo-Ferreira, F.; Abreu, D.; Mendes, S.; Matos, L.; Rodrigues, A.R.; Almeida, H.; Silva, E. Redox imbalance in age-related ovarian dysfunction and perspectives for its prevention. Ageing Res. Rev. 2021, 68, 101345. [Google Scholar] [CrossRef] [PubMed]
- Kasapoglu, I.; Seli, E. Mitochondrial dysfunction and ovarian aging. Endocrinology 2020, 161, bqaa001. [Google Scholar] [CrossRef]
- Kang, M.-H.; Kim, Y.J.; Cho, M.J.; Jang, J.; Koo, Y.D.; Kim, S.H.; Lee, J.H. Mitigating age-related ovarian dysfunction with the anti-inflammatory agent MIT-001. Int. J. Mol. Sci. 2023, 24, 15158. [Google Scholar] [CrossRef]
- Nehra, D.; Le, H.D.; Fallon, E.M.; Carlson, S.J.; Woods, D.; White, Y.A.; Pan, A.H.; Guo, L.; Rodig, S.J.; Tilly, J.L.; et al. Prolonging the female reproductive lifespan and improving egg quality with dietary omega-3 fatty acids. Aging Cell 2012, 11, 1046–1054. [Google Scholar] [CrossRef]
- Cho, S.M.J.; Lee, H.J.; Shim, J.S.; Song, B.M.; Kim, H.C. Associations between age and dyslipidemia are differed by education level: The cardiovascular and metabolic diseases etiology research center (CMERC) cohort. Lipids Health Dis. 2020, 19, 12. [Google Scholar] [CrossRef]
- Liu, H.-H.; Li, J.-J. Aging and dyslipidemia: A review of potential mechanisms. Ageing Res. Rev. 2015, 19, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Khovidhunkit, W.; Kim, M.S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Effects of infection and inflammation on lipid and lipoprotein metabolism: Mechanisms and consequences to the host. J. Lipid Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R.; Grunfeld, C. The Effect of Inflammation and Infection on Lipids and Lipoproteins. In Endotext; De Groot, L.J., Chrousos, G., Dungan, K., Feingold, K.R., Grossman, A., Hershman, J.M., Koch, C., Korbonits, M., McLachlan, R., New, M., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, K.-H.; Bahuguna, A.; Kang, D.-J.; Kim, J.-E. Prolonged Supplementation of Ozonated Sunflower Oil Bestows an Antiaging Effect, Improves Blood Lipid Profile and Spinal Deformities, and Protects Vital Organs of Zebrafish (Danio rerio) against Age-Related Degeneration: Two-Years Consumption Study. Antioxidants 2024, 13, 123. https://doi.org/10.3390/antiox13010123
Cho K-H, Bahuguna A, Kang D-J, Kim J-E. Prolonged Supplementation of Ozonated Sunflower Oil Bestows an Antiaging Effect, Improves Blood Lipid Profile and Spinal Deformities, and Protects Vital Organs of Zebrafish (Danio rerio) against Age-Related Degeneration: Two-Years Consumption Study. Antioxidants. 2024; 13(1):123. https://doi.org/10.3390/antiox13010123
Chicago/Turabian StyleCho, Kyung-Hyun, Ashutosh Bahuguna, Dae-Jin Kang, and Ji-Eun Kim. 2024. "Prolonged Supplementation of Ozonated Sunflower Oil Bestows an Antiaging Effect, Improves Blood Lipid Profile and Spinal Deformities, and Protects Vital Organs of Zebrafish (Danio rerio) against Age-Related Degeneration: Two-Years Consumption Study" Antioxidants 13, no. 1: 123. https://doi.org/10.3390/antiox13010123
APA StyleCho, K.-H., Bahuguna, A., Kang, D.-J., & Kim, J.-E. (2024). Prolonged Supplementation of Ozonated Sunflower Oil Bestows an Antiaging Effect, Improves Blood Lipid Profile and Spinal Deformities, and Protects Vital Organs of Zebrafish (Danio rerio) against Age-Related Degeneration: Two-Years Consumption Study. Antioxidants, 13(1), 123. https://doi.org/10.3390/antiox13010123