Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling
<p>WAT GPX3 expression associates with obesity in humans. (<b>a</b>) Correlation of scWAT <span class="html-italic">GPX3</span> mRNA expression and patients’ BMIs. (<b>b</b>) Correlation of scWAT GPX3 mRNA expression and patients’ fasting plasma insulin levels.</p> "> Figure 2
<p>Selenite treatment improves insulin sensitivity under lipotoxic conditions. (<b>a</b>) Representative protein phosphorylation, expression, and densitometric analysis of members of the insulin signaling cascade in mature 3T3-L1 adipocytes treated with or without selenite during differentiation and after 100 nM insulin stimulation. (<b>b</b>) Representative protein phosphorylation, expression, and densitometric analysis of members of the insulin signaling cascade in 3T3-L1 preadipocytes pre-treated with or without palmitate for three days, with or without selenite for further three days, and after 100 nM insulin stimulation. (<b>c</b>) Oil-Red-O absorption and representative staining of 3T3-L1 adipocytes differentiated in the absence or presence of selenite and palmitate for 8 days. *: <span class="html-italic">p</span> < 0.05, ***: <span class="html-italic">p</span> < 0.001, ****: <span class="html-italic">p</span> < 0.0001 after two-tailed Student’s <span class="html-italic">t</span>-test. All data are presented as mean ± SEM.</p> "> Figure 3
<p>Selenite shows only a mild effect on selenium or selenoprotein contents. (<b>a</b>) Total Se content in plasma, liver, kidneys, and WAT, expressed as percent increase relative to the HFD-fed group. (<b>b</b>) mRNA expression of selenoproteins in gWAT of male C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. (<b>c</b>) Aggregated selenoprotein mRNA expression from (<b>b</b>). *: <span class="html-italic">p</span> < 0.05 after two-tailed Student’s <span class="html-italic">t</span>-test. #: <span class="html-italic">p</span> < 0.05 after two-way ANOVA. All data are presented as mean ± SEM.</p> "> Figure 4
<p>Selenite treatment in established obesity improves adipocyte morphology. (<b>a</b>) Body composition measured via NMR of male C57BL/6N mice fed either HFD or SRHFD for 9 weeks after established obesity. (<b>b</b>) Body fat percentage calculated from (<b>a</b>). (<b>c</b>) Final tissue weights of male C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. (<b>d</b>–<b>f</b>) Final triglyceride (<b>d</b>), non-esterified fatty acids (NEFA, <b>e</b>), and leptin (<b>f</b>) levels in plasma of male C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. (<b>g</b>,<b>h</b>) Morphology, area (<b>g</b>), and size distribution (<b>h</b>) of gonadal white adipocytes of C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. **: <span class="html-italic">p</span> < 0.01, ***: <span class="html-italic">p</span> < 0.001 after two-tailed Student’s <span class="html-italic">t</span>-test. All data are presented as mean ± SEM.</p> "> Figure 5
<p>WAT function after selenite treatment in established obesity. (<b>a</b>) mRNA expression of inflammatory markers in gWAT of male C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. (<b>b</b>) mRNA expression of adipocyte markers in gWAT of male C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. (<b>c</b>) Protein phosphorylation, expression, and densitometric analysis of insulin resistance markers in gWAT of male C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. (<b>d</b>) Protein carbonylation and densitometric analysis in gWAT of male C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. (<b>e</b>) Protein 3-nitrotyrosine modification and densitometric analysis in gWAT of male C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. *: <span class="html-italic">p</span> < 0.05 after two-tailed Student’s <span class="html-italic">t</span>-test. All data are presented as mean ± SEM.</p> "> Figure 6
<p>Selenite treatment in established obesity increases pancreatic insulin content. (<b>a</b>) Calculated values for the homeostatic model assessment of insulin resistance HOMA-IR using data from the oGTT of male C57BL/6N mice fed either HFD or SRHFD for 8 weeks after established obesity. (<b>b</b>) Calculated values for the Matsuda insulin sensitivity index using data from the oGTT of male C57BL/6N mice fed either HFD or SRHFD for 8 weeks after established obesity. (<b>c</b>) Plasma insulin levels of male C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. (<b>d</b>) Plasma insulin levels during the oGTT of male C57BL/6N mice fed either HFD or SRHFD for 8 weeks after established obesity. (<b>e</b>) Pancreatic insulin levels of male C57BL/6N mice fed either HFD or SRHFD for 10 weeks after established obesity. *: <span class="html-italic">p</span> < 0.05 after two-tailed Student’s <span class="html-italic">t</span>-test. All data are presented as mean ± SEM.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Studies
2.2. Cell Culture
2.3. Analytical Procedures
2.4. RNA Isolation
2.5. Analysis of Gene Expression by Quantitative Real-Time PCR
2.6. Western Blot Analysis
2.7. Protein Carbonylation
2.8. Total Reflection X-ray Fluorescence (TXRF)
2.9. Human Studies, Study Participants
2.10. Human Studies, Analysis of GPX3 mRNA Expression in Human WAT
2.11. Statistical Analysis
2.12. Data and Resource Availability
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bluher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, a009191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigand, J.P.; Blackard, W.G. Downregulation of Insulin Receptors in Obese Man. Diabetes 1979, 28, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Ott, R.; Melchior, K.; Stupin, J.H.; Ziska, T.; Schellong, K.; Henrich, W.; Rancourt, R.C.; Plagemann, A. Reduced Insulin Receptor Expression and Altered DNA Methylation in Fat Tissues and Blood of Women with GDM and Offspring. J. Clin. Endocrinol. Metab. 2019, 104, 137–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, J.S.; Harris, A.K.; Rychly, D.J.; Ergul, A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc. Diabetol. 2005, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahadev, K.; Wu, X.; Zilbering, A.; Zhu, L.; Lawrence, J.T.; Goldstein, B.J. Hydrogen Peroxide Generated During Cellular Insulin Stimulation Is Integral to Activation of the Distal Insulin Signaling Cascade in 3t3-L1 Adipocytes. J. Biol. Chem. 2001, 276, 48662–48669. [Google Scholar] [CrossRef] [Green Version]
- Mahadev, K.; Zilbering, A.; Zhu, L.; Goldstein, B.J. Insulin-Stimulated Hydrogen Peroxide Reversibly Inhibits Protein-Tyrosine Phosphatase 1b In Vivo and Enhances the Early Insulin Action Cascade. J. Biol. Chem. 2001, 276, 21938–21942. [Google Scholar] [CrossRef] [Green Version]
- Ristow, M.; Zarse, K.; Oberbach, A.; Kloting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Bluher, M. Antioxidants Prevent Health-Promoting Effects of Physical Exercise in Humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8665–8670. [Google Scholar] [CrossRef] [Green Version]
- Leloup, C.; Tourrel-Cuzin, C.; Magnan, C.; Karaca, M.; Castel, J.; Carneiro, L.; Colombani, A.-L.; Ktorza, A.; Casteilla, L.; Pénicaud, L. Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion. Diabetes 2009, 58, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Pi, J.; Bai, Y.; Zhang, Q.; Wong, V.; Floering, L.M.; Daniel, K.; Reece, J.M.; Deeney, J.T.; Andersen, M.E.; Corkey, B.E.; et al. Reactive Oxygen Species as a Signal in Glucose-Stimulated Insulin Secretion. Diabetes 2007, 56, 1783–1791. [Google Scholar] [CrossRef] [Green Version]
- Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Ezaki, O. The insulin-like effects of selenate in rat adipocytes. J. Biol. Chem. 1990, 265, 1124–1128. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Lee, B.C.; Handy, D.E.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N. Both Maximal Expression of Selenoproteins and Selenoprotein Deficiency Can Promote Development of Type 2 Diabetes-Like Phenotype in Mice. Antioxid. Redox Signal. 2011, 14, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Hauffe, R.; Stein, V.; Chudoba, C.; Flore, T.; Rath, M.; Ritter, K.; Schell, M.; Wardelmann, K.; Deubel, S.; Kopp, J.F.; et al. GPx3 dysregulation impacts adipose tissue insulin receptor expression and sensitivity. JCI Insight 2020, 5(11), e136283. [Google Scholar] [CrossRef] [PubMed]
- Leibiger, C.; Kosyakova, N.; Mkrtchyan, H.; Glei, M.; Trifonov, V.; Liehr, T. First Molecular Cytogenetic High Resolution Characterization of the NIH 3T3 Cell Line by Murine Multicolor Banding. J. Histochem. Cytochem. 2013, 61, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Kloting, N.; Fasshauer, M.; Dietrich, A.; Kovacs, P.; Schon, M.R.; Kern, M.; Stumvoll, M.; Bluher, M. Insulin-Sensitive Obesity. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E506–E515. [Google Scholar] [CrossRef]
- Langhardt, J.; Flehmig, G.; Klöting, N.; Lehmann, S.; Ebert, T.; Kern, M.; Schön, M.R.; Gärtner, D.; Lohmann, T.; Dressler, M.; et al. Effects of Weight Loss on Glutathione Peroxidase 3 Serum Concentrations and Adipose Tissue Expression in Human Obesity. Obes. Facts 2018, 11, 475–490. [Google Scholar] [CrossRef]
- Samuel, V.T.; Petersen, K.F.; Shulman, G.I. Lipid-induced insulin resistance: Unravelling the mechanism. Lancet 2010, 375, 2267–2277. [Google Scholar] [CrossRef] [Green Version]
- Stenkula, K.G.; Erlanson-Albertsson, C. Adipose cell size: Importance in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R284–R295. [Google Scholar] [CrossRef] [Green Version]
- Ricardo-Gonzalez, R.R.; Red Eagle, A.; Odegaard, J.I.; Jouihan, H.; Morel, C.R.; Heredia, J.E.; Mukundan, L.; Wu, D.; Locksley, R.M.; Chawla, A. Il-4/Stat6 Immune Axis Regulates Peripheral Nutrient Metabolism and Insulin Sensitivity. Proc. Natl. Acad. Sci. USA 2010, 107, 22617–22622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, S.C.; Aldibbiat, A.; Marriott, C.E.; Landy, C.; Ali, T.; Ferris, W.F.; Butler, C.S.; Shaw, J.A.; Macfarlane, W.M. Selenium stimulates pancreatic beta-cell gene expression and enhances islet function. FEBS Lett. 2008, 582, 2333–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, A.; Ahn, J.; Suh, Y.; Choi, Y.M.; Chen, P.; Lee, K. Selenium Promotes Adipogenic Determination and Differentiation of Chicken Embryonic Fibroblasts with Regulation of Genes Involved in Fatty Acid Uptake, Triacylglycerol Synthesis and Lipolysis. J. Nutr. Biochem. 2014, 25, 858–867. [Google Scholar] [CrossRef]
- Flehmig, G.; Scholz, M.; Kloting, N.; Fasshauer, M.; Tonjes, A.; Stumvoll, M.; Youn, B.S.; Bluher, M. Identification of Adipokine Clusters Related to Parameters of Fat Mass, Insulin Sensitivity and Inflammation. PLoS ONE 2014, 9, e99785. [Google Scholar] [CrossRef] [PubMed]
- Merry, T.L.; Tran, M.; Stathopoulos, M.; Wiede, F.; Fam, B.C.; Dodd, G.; Clarke, I.; Watt, M.J.; Andrikopoulos, S.; Tiganis, T. High-Fat-Fed Obese Glutathione Peroxidase 1-Deficient Mice Exhibit Defective Insulin Secretion but Protection from Hepatic Steatosis and Liver Damage. Antioxid. Redox Signal. 2014, 20, 2114–2129. [Google Scholar] [CrossRef]
- McClung, J.P.; Roneker, C.A.; Mu, W.; Lisk, D.J.; Langlais, P.; Liu, F.; Lei, X.G. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc. Natl. Acad. Sci. USA 2004, 101, 8852–8857. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Kim, A.Y.; Choi, J.W.; Kim, M.; Yasue, S.; Son, H.J.; Masuzaki, H.; Park, K.S.; Kim, J.B. Dysregulation of Adipose Glutathione Peroxidase 3 in Obesity Contributes to Local and Systemic Oxidative Stress. Mol. Endocrinol. 2008, 22, 2176–2189. [Google Scholar] [CrossRef] [Green Version]
- Sunde, R.A.; Li, J.-L.; Taylor, R.M. Insights for Setting of Nutrient Requirements, Gleaned by Comparison of Selenium Status Biomarkers in Turkeys and Chickens versus Rats, Mice, and Lambs. Adv. Nutr. Int. Rev. J. 2016, 7, 1129–1138. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Q.; Xiao, Y.; Li, P.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Varied Doses and Chemical Forms of Selenium Supplementation Differentially Affect Mouse Intestinal Physiology. Food Funct. 2019, 10, 5398–5412. [Google Scholar] [CrossRef]
- Leblondel, G.; Mauras, Y.; Cailleux, A.; Allain, P. Transport Measurements across Caco-2 Monolayers of Different Organic and Inorganic Selenium: Influence of Sulfur Compounds. Biol. Trace Elem. Res. 2001, 83, 191–206. [Google Scholar] [CrossRef]
- Kahle, M.; Schafer, A.; Seelig, A.; Schultheiss, J.; Wu, M.; Aichler, M.; Leonhardt, J.; Rathkolb, B.; Rozman, J.; Sarioglu, H.; et al. High Fat Diet-Induced Modifications in Membrane Lipid and Mitochondrial-Membrane Protein Signatures Precede the Development of Hepatic Insulin Resistance in Mice. Mol. Metab. 2015, 4, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.T.; Postal, B.G.; Demignot, S.; Ribeiro, A.; Osinski, C.; de Barros, J.-P.P.; Blachnio-Zabielska, A.; Leturque, A.; Rousset, M.; Ferre, P.; et al. Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production. J. Biol. Chem. 2016, 291, 16328–16338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, D.; Stuetz, W.; Bernhard, W.; Franz, A.; Raith, M.; Grune, T.; Breusing, N. Oxidative Stress Markers and Micronutrients in Maternal and Cord Blood in Relation to Neonatal Outcome. Eur. J. Clin. Nutr. 2014, 68, 215–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimsrud, P.A.; Picklo Sr, M.J.; Griffin, T.J.; Bernlohr, D.A. Carbonylation of Adipose Proteins in Obesity and Insulin Resistance: Identification of Adipocyte Fatty Acid-Binding Protein as a Cellular Target of 4-Hydroxynonenal. Mol. Cell Proteom. 2007, 6, 624–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.-L.; Zhang, H.-L.; Feng, L.-L.; Chen, M.-L.; Liu, Y.-Y.; Yu, X.; Huan, F.-N.; Lu, J.; Wang, D.; Liu, H.-S.; et al. Selenoprotein SelK increases the secretion of insulin from MIN6 β cells. RSC Adv. 2017, 7, 35038–35047. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hauffe, R.; Rath, M.; Agyapong, W.; Jonas, W.; Vogel, H.; Schulz, T.J.; Schwarz, M.; Kipp, A.P.; Blüher, M.; Kleinridders, A. Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling. Antioxidants 2022, 11, 862. https://doi.org/10.3390/antiox11050862
Hauffe R, Rath M, Agyapong W, Jonas W, Vogel H, Schulz TJ, Schwarz M, Kipp AP, Blüher M, Kleinridders A. Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling. Antioxidants. 2022; 11(5):862. https://doi.org/10.3390/antiox11050862
Chicago/Turabian StyleHauffe, Robert, Michaela Rath, Wilson Agyapong, Wenke Jonas, Heike Vogel, Tim J. Schulz, Maria Schwarz, Anna P. Kipp, Matthias Blüher, and André Kleinridders. 2022. "Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling" Antioxidants 11, no. 5: 862. https://doi.org/10.3390/antiox11050862
APA StyleHauffe, R., Rath, M., Agyapong, W., Jonas, W., Vogel, H., Schulz, T. J., Schwarz, M., Kipp, A. P., Blüher, M., & Kleinridders, A. (2022). Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling. Antioxidants, 11(5), 862. https://doi.org/10.3390/antiox11050862