Semi-Supervised Classification Based on Mixture Graph
<p>The performance of SSCMG on different <math display="inline"> <mrow> <mi>L</mi> <mi>s</mi> </mrow> </math> values. (<b>a</b>) Accuracy <span class="html-italic">vs.</span> <math display="inline"> <mrow> <mi>L</mi> <mi>s</mi> </mrow> </math> (ORL); (<b>b</b>) Accuracy <span class="html-italic">vs.</span> <math display="inline"> <mrow> <mi>L</mi> <mi>s</mi> </mrow> </math> (Pose27); (<b>c</b>) Accuracy <span class="html-italic">vs.</span> <math display="inline"> <mrow> <mi>L</mi> <mi>s</mi> </mrow> </math> (AR); (<b>d</b>) Accuracy <span class="html-italic">vs.</span> <math display="inline"> <mrow> <mi>L</mi> <mi>s</mi> </mrow> </math> (YaleB).</p> "> Figure 2
<p>Sensitivity under different values of <span class="html-italic">k</span>. (<b>a</b>) Accuracy <span class="html-italic">vs.</span> <span class="html-italic">k</span> (ORL); (<b>b</b>) Accuracy <span class="html-italic">vs.</span> <span class="html-italic">k</span> (Pose27).</p> "> Figure 3
<p>Sensitivity under different values of <span class="html-italic">d</span>. (<b>a</b>) Accuracy <span class="html-italic">vs.</span> <span class="html-italic">d</span> (ORL); (<b>b</b>) Accuracy <span class="html-italic">vs.</span> <span class="html-italic">d</span> (Pose27).</p> "> Figure 4
<p>Sensitivity under different values of <span class="html-italic">T</span>. (<b>a</b>) Accuracy <span class="html-italic">vs.</span> <span class="html-italic">T</span> (ORL); (<b>b</b>) Accuracy <span class="html-italic">vs.</span> <span class="html-italic">T</span> (Pose27).</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Gaussian Fields and Harmonic Functions
2.2. Mixture Graph Construction
3. Experiment
Notation | Means |
---|---|
n | Number of labeled and unlabeled samples |
l | Number of labeled samples |
C | Number of classes |
k | Neighborhood size |
T | Number of subspaces |
d | Dimensionality of random subspace |
Number of labeled samples per class |
3.1. Performance on Different Datasets
3.2. Sensitivity Analysis with Respect to Neighborhood Size
3.3. Sensitivity Analysis with Respect to Dimensionality of Random Subspace
3.4. Sensitivity Analysis with Respect to Number of Random Subspaces
4. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhu, X. Semi-Supervised Learning Literature Survey; Technical Report for Department of Computer Sciences; University of Wisconsin-Madision: Madision, WI, USA, 19 July 2008. [Google Scholar]
- Yu, G.; Zhang, G.; Yu, Z.; Domeniconi, C.; You, J.; Han, G. Semi-supervised Ensemble Classification in Subspaces. Appl. Soft Comput. 2012, 12, 1511–1522. [Google Scholar] [CrossRef]
- Duda, R.; Hart, P.; Stork, D. Pattern Classification; Wiley-Interscience: New York, NY, USA, 2001. [Google Scholar]
- Zhu, X.; Ghahramani, Z.; Lafferty, J. Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. In Proceedings of the International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; pp. 912–919.
- Zhou, D.; Bousquet, O.; Lal, T.; Weston, J.; Schölkopf, B. Learning with Local and Global Consistency. In Proceedings of the Advances in Neural Information Processing Systems, Whistler, British Columbia, CA, 11–13 December, 2003; pp. 321–328.
- Kriegel, H.; Kroger, P.; Zimek, A. Clustering High-Dimensional Data: A Survey on Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering. ACM Trans. Knowl. Discov. Data 2009, 9, 1–58. [Google Scholar] [CrossRef]
- Liu, W.; Chang, S.F. Robust Multi-Class Transductive Learning with Graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 381–388.
- Jebara, T.; Wang, J.; Chang, S.-F. Graph Construction and b-Matching for Semi-Supervised Learning. In Proceedings of the International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 81–88.
- Fan, M.; Gu, N.; Qiao, H.; Zhang, B. Sparse Regularization for Semi-supervised Classification. Pattern Recognit. 2011, 44, 1777–1784. [Google Scholar] [CrossRef]
- Zhao, M.; Chow, T.W.S.; Zhang, Z.; Li, B. Automatic Image Annotation via Compact Graph based Semi-Supervised Learning. Knowl. Based Syst. 2014, 76, 148–165. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; Zhang, C.; Shen, H.; Quan, L. Linear Neighborhood Propagation and Its Applications. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1600–1615. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Wang, H. Semi-Supervised Learning by Sparse Representation. In Proceedings of the SIAM International Conference on Data Mining, Sparks, NV, USA, 30 April–2 May 2009; pp. 792–801.
- Roweis, S.T.; Saul, L.K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust Face Recognition via Sparse Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 2, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Zhang, G.; Zhang, Z.; Yu, Z.; Deng, L. Semi-Supervised Classification Based on Subspace Sparse Representation. Knowl. Inf. Syst. 2015, 43, 81–101. [Google Scholar] [CrossRef]
- Foggia, P.; Percannella, G.; Vento, M. Graph Matching and Learning in Pattern Recognition in the Last 10 Years. Int. J. Pattern Recognit. Artif. Intell. 2014, 28. [Google Scholar] [CrossRef]
- Wang, M.; Hua, X.; Hong, R.; Tang, J.; Qi, G.; Song, Y. Unified Video Annotation via Multigraph Learning. IEEE Trans. Circuits Syst. Video Technol. 2009, 19, 733–746. [Google Scholar] [CrossRef]
- Karasuyama, M.; Mamitsuka, H. Multiple Graph Label Propagation by Sparse Integration. IEEE Trans. Neural Netw. Learning Syst. 2013, 24, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
- Shiga, M.; Mamitsuka, H. Efficient Semi-Supervised Learning on Locally Informative Multiple Graphs. Pattern Recognit. 2012, 45, 1035–1049. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Zhu, H.; Domeniconi, C.; Guo, M. Integrating Multiple Networks for Protein Function Prediction. BMC Syst. Biol. 2015, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gönen, M.; Alpaydin, E. Multiple Kernel Learning Algorithms. J. Mach. Learning Res. 2011, 12, 2211–2268. [Google Scholar]
- Cortes, C.; Mohri, M.; Rostamizadeh, A. Algorithms for Learning Kernels based on Centered Alignment. J. Mach. Learning Res. 2012, 13, 795–828. [Google Scholar]
- Ho, T.K. The Random Subspace Method for Constructing Decision Forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Yu, G.; Peng, H.; Wei, J.; Ma, Q. Mixture Graph based Semi-Supervised Dimensionality Reduction. Pattern Recognit. Image Anal. 2010, 20, 536–541. [Google Scholar] [CrossRef]
- Breiman, L. Random Forest. Mach. Learning 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kuncheva, L.; Alonso, C. Rotation forest: A New Classifier Ensemble Method. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.R.K. Spectral Graph Theory; American Mathematical Soc.: Ann Arbor, MI, USA, 1997; pp. 1–212. [Google Scholar]
- Yan, S.; Xu, D.; Zhang, B.; Zhang, H.J.; Yang, Q.; Lin, S. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Maier, M.; Luxburg, U.V.; Hein, M. Influence of Graph Construction on Graph-based Clustering Measures. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008; pp. 1025–1032.
- Zhou, Z. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Bertozzi, A.L.; Flenner, A. Diffuse Interface Models on Graphs for Classification of High Dimensional Data. Multiscale Modeling Simul. 2012, 10, 1090–1118. [Google Scholar] [CrossRef]
- Buhler, T.; Hein, M. Spectral Clustering Based on the Graph p-Laplacian. In Proceedings of the International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 81–88.
- Samaria, F.S.; Harter, A.C. Parameterisation of a Stochastic Model for Human Face Identification. In Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision, Sarasota, FL, USA, 5–7 December 1994; pp. 138–142.
- Bsat, M.; Baker, S.; Sim, T. The CMU Pose, Illumination, and Expression Database. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1615–1618. [Google Scholar]
- Martmhnez, A.M. The AR-Face Database; CVC Technical Report 24; Computer Vision Center: Barcelona, Spain, 1 June 1998. [Google Scholar]
- Georghiades, A.S.; Belhumeur, P.N.; Kriegman, D.J. From Few to Many: Illumination Cone Models for Face Recognition under Bariable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 643–660. [Google Scholar] [CrossRef]
- Four Face Databases in Matlab Format. Available online: http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html (accessed on 8 November 2015).
- Zelnik-Manor, L.; Perona, P. Self-Tuning Spectral Clustering. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 17–19 December 2004; pp. 1601–1608.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Yu, G. Semi-Supervised Classification Based on Mixture Graph. Algorithms 2015, 8, 1021-1034. https://doi.org/10.3390/a8041021
Feng L, Yu G. Semi-Supervised Classification Based on Mixture Graph. Algorithms. 2015; 8(4):1021-1034. https://doi.org/10.3390/a8041021
Chicago/Turabian StyleFeng, Lei, and Guoxian Yu. 2015. "Semi-Supervised Classification Based on Mixture Graph" Algorithms 8, no. 4: 1021-1034. https://doi.org/10.3390/a8041021
APA StyleFeng, L., & Yu, G. (2015). Semi-Supervised Classification Based on Mixture Graph. Algorithms, 8(4), 1021-1034. https://doi.org/10.3390/a8041021