Novel Graph Model for Solving Collision-Free Multiple-Vehicle Traveling Salesman Problem Using Ant Colony Optimization
<p>Augmented nodes and edges.</p> "> Figure 2
<p>The proposed augmented graph.</p> "> Figure 3
<p>Graph with CONFIG 10-1 configuration (10 nodes).</p> "> Figure 4
<p>Graph with CONFIG 15-1 configuration (15 nodes).</p> "> Figure 5
<p>Graph with CONFIG 20-1 configuration (20 nodes).</p> "> Figure 6
<p>The progression of searching the optimal solution for <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">t</mi> <mrow> <mi>occ</mi> </mrow> </msub> <mo>></mo> <mn>10</mn> </mrow> </semantics></math> s: (<b>a</b>) for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>The progression of searching the optimal solution for <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mrow> <mi>occ</mi> </mrow> </msub> <mo>></mo> <mn>150</mn> </mrow> </semantics></math> s: (<b>a</b>) for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Preliminaries
3. Problem Statement
- There is no collision between any vehicles (see Definition 6) at each node.
- The start times, , of all vehicles are zero, i.e., .
- .
4. Proposed Methods
4.1. Augmented Graph
4.1.1. Graph Model
4.1.2. Additional Adjacency Matrix
Algorithm 1 Determine the index of edge matrix |
1: Input: B |
2: ; |
3: For to |
4: For to |
5: If and , then q = q +1 and . |
6: End |
7: End |
8: Output: all . |
Algorithm 2 Determining the index of : |
1: Inputs: |
2: Output: , |
3: h = 0 |
4: For i = 1,…,// loop for all rows |
5: For j=1,…, // loop for all columns |
6: = ; = |
7: If |
8: If = |
9: h=h+1 |
10: |
11: |
12: Else |
13: |
14: End |
15: Else |
16: |
17: End if |
18: End for |
19: End for |
4.2. Ant Colony Optimization
Algorithm 3 Main Algorithm |
1: Inputs: , , , for all ,, |
2: Perform , , and . |
3: , for all . |
4: , for all . |
5: For r = 1 to |
6: |
7: Initialize(, ); |
8: , , , , , . |
9: For each k-th ant species |
10: While |
11: CreateEdgeList(). |
12: For each edge in , i.e., , |
13: If , |
14: If IsCollided(, ) is TRUE |
15: continue; |
16: End |
17: CreateSubTrajectoriesList(,). |
18: . |
19: For each p-th trajectory in i.e., , |
20: CreateAugmentedEdgesList(, ). |
21: End |
22: SelectAugmentedEdge(). |
23: CalculateMaxArrivalTime(). |
24: Remove(). |
25: Else |
26: continue. |
27: End |
28: End |
29: If |
30: ReducePheromoneTrailsAmount() |
31: go to Line 5. |
32: End |
33: . |
34: End //end while |
35: End // end for |
36: CalculatePheromoneTrailsAmount(), for all . |
37: = CalculateProbability(), for all . |
38: = min() |
39: |
40: End |
41: Outputs: with = , for all . |
5. Results and Discussions
5.1. The Effect of Minimum Allowable Arrival Time Difference
5.2. Successfulness of Finding a Solution
5.2.1. Simulations for 10 Nodes
5.2.2. Simulations for 15 Nodes
5.2.3. Simulations for 20 Nodes
5.3. Analysis of Accuracy
5.4. The Near-Optimal Trajectories
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Soleimani, H.; Zohal, M. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives. J. Clean. Prod. 2019, 227, 1161–1172. [Google Scholar] [CrossRef]
- Bae, H.; Moon, I. Multi-depot vehicle routing problem with time windows considering delivery and installation vehicles. Appl. Math. Model 2016, 40, 13–14. [Google Scholar] [CrossRef]
- Mandziuk, J.; Swiechowski, M. UCT in capacitated vehicle routing problem with traffic jams. Inf. Sci. 2017, 406–407, 42–56. [Google Scholar] [CrossRef]
- Bektas, T. The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega 2006, 34, 209–219. [Google Scholar] [CrossRef]
- Lawler, E.L. The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization; John Wiley and Sons: Hoboken, NJ, USA, 1985. [Google Scholar]
- Golden, B.; Raghavan, S.; Wasil, E.A. The vehicle routing problem: Latest advances and new challenges, operations research. In Computer Science Interfaces Series; Springer: Berlin/Heidelberg, Germany, 2008; Volume 43. [Google Scholar]
- Khachay, M.; Neznakhina, K. Polynomial time solvable subclass of the generalized traveling salesman problem on grid clusters. In Proceedings of the International Conference on Analysis of Images, Social Networks and Texts, Moskow, Russia, 5–7 July 2017; pp. 346–355. [Google Scholar]
- Chalarux, T.; Sripratak, P. Worst case analyses of nearest neighbor heuristic for finding the minimum weight K-cycle. Curr. Appl. Sci. Technol. 2020, 20, 178–185. [Google Scholar]
- Khachay, M.; Neznakhina, K. Approximability of the minimum-weight k-size cycle cover problem. J. Glob. Optim. 2016, 66, 65–82. [Google Scholar] [CrossRef]
- Fazlollahtabar, H.; Saidi-Mehrabad, M. Mathematical model for deadlock resolution in multiple AGV scheduling and routing network: A case study. Ind. Robot. 2015, 42, 252–263. [Google Scholar] [CrossRef]
- Vivaldini, K.; Rocha, L.F.; Martarelli, N.J.; Becker, M.; Moreira, A.P. Integrated tasks assignment and routing for the estimation of the optimal number of AGVS. Int. J. Adv. Manuf. Technol. 2016, 82, 719–736. [Google Scholar] [CrossRef]
- Hu, W.; Mao, J.; Wei, K. Energy-efficient rail guided vehicle routing for two-sided loading/unloading automated freight handling systems. Eur. J. Oper. Res. 2017, 258, 943–957. [Google Scholar] [CrossRef] [Green Version]
- Adamo, T.; Bektas, T.; Ghiani, G.; Guerriero, E.; Manni, E. Path and speed optimization for conflict-free pickup and delivery under time windows. Trans. Sci. 2018, 52, 739–755. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M.; Yang, Y.; Dessouky, Y.; Postolache, O. Multi-AGV scheduling for conflict-free path planning in automated container terminals. Comput. Ind. Eng. 2020, 142, 106371. [Google Scholar] [CrossRef]
- Ali, I.M.; Essam, D.; Kasmarik, K. A novel design of differential evolution for solving discrete traveling salesman problems. Swarm Evol. Comput. 2020, 53, 100607. [Google Scholar] [CrossRef]
- Baniasadi, P.; Foumani, M.; Smith-Miles, K.; Ejov, V. A transformation technique for the clustered generalized traveling salesman problem with application to logistics. Eur. J. Oper. Res. 2020, 2, 444–457. [Google Scholar] [CrossRef]
- Pacheco-Valencia, V.; Hernandez, J.A.; Sigaretta, J.M.; Vakhania, N. Simple constructive, insertion, and improvement heuristics based on the girding polygon for the Euclidean traveling salesman problem. Algorithms 2020, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Pandiri, V.; Singh, A. An artificial bee colony algorithm with variable degree of perturbation for the generalized covering traveling salesman. Appl. Soft Comput. 2019, 78, 481–495. [Google Scholar] [CrossRef]
- Held, M.; Karp, R.M. The traveling salesman problem and minimum spanning tree. Oper. Res. 1970, 18, 1138–1162. [Google Scholar] [CrossRef]
- Fiechter, C.-N. A parallel tabu search algorithm for large traveling salesman problem. Discret. Appl. Math. 1994, 51, 243–267. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, P.H.; Steiner, M.T.A.; Scheer, S. A new approach to solve the traveling salesman problem. Neurocomputing 2007, 70, 1013–1021. [Google Scholar] [CrossRef]
- Rego, C.; Gamboa, D.; Glover, F.; Osterman, C. Traveling salesman problem heuristics: Leading methods, implementations and latest advances. Eur. J. Oper. Res. 2011, 211, 427–441. [Google Scholar] [CrossRef]
- Essani, F.H.; Haider, S. An algorithm for mapping the asymmetric multiple traveling salesman problem onto colored petri nets. Algorithms 2018, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Groba, C.; Sartal, A.; Vasquez, X.H. Integrating forecasting in metaheuristic methods to solve dynamic routing problems: Evidence from the logistic processes of tuna vessels. Eng. Appl. Artif. Intel. 2018, 76, 55–66. [Google Scholar] [CrossRef]
- Xu, W.; Guo, S.; Li, X.; Guo, C.; Wu, R.; Peng, Z. A dynamic scheduling method for logistics tasks oriented to intelligent manufacturing workshop. Math. Probl. Eng. 2019, 2019, 7237459. [Google Scholar] [CrossRef]
- Pandiri, V.; Singh, A. A swarm intelligence approach for the colored traveling salesman problem. Appl. Intell. 2018, 48, 4412–4428. [Google Scholar] [CrossRef]
- Lu, L.-C.; Yue, T.-W. Mission-oriented ant-team ACO for min–max MTSP. Appl. Soft. Comput. 2019, 76, 436–444. [Google Scholar] [CrossRef]
- Dorigo, M.; Gambardella, L. Ant colony: A cooperative learning approach to the travelling salesman problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Widyotriatmo, A.; Hong, K.-S. Navigation function-based control of multiple wheeled vehicles. IEEE Trans. Ind. Electron. 2011, 58, 1896–1906. [Google Scholar] [CrossRef]
- Fraichard, T.; Asama, H. Inevitable collision states—A step towards safer robots? Adv. Robot. 2004, 18, 1001–1024. [Google Scholar] [CrossRef] [Green Version]
- Snape, J.; van den Berg, J.; Guy, S.J.; Manocha, D. The hybrid reciprocal velocity obstacle. IEEE Trans. Robot. 2011, 27, 696–706. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Mora, J.; Beardsley, P.; Siegwart, R. Cooperative collision avoidance for nonholonomic robots. IEEE Trans. Robot. 2018, 34, 404–420. [Google Scholar] [CrossRef] [Green Version]
- Makarem, L.; Gillet, D. Model predictive coordination of autonomous vehicles crossing intersections. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC), Hague, The Netherlands, 6–9 October 2013. [Google Scholar]
- Mahbub, A.M.I.; Malikopoulos, A.A.; Zhao, L. Decentralized optimal coordination of connected and automated vehicles for multiple traffic scenarios. Automatica 2020, 117, 108958. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.Y.; Huang, S.; Tan, K.K.; Teo, R.S.H. Three-dimensional collision avoidance for multi unmanned aerial. Vehicles Using Velocity Obstacle. J. Intell. Robot. Syst. 2020, 97, 227–248. [Google Scholar] [CrossRef]
- Pamosoaji, A.K.; Piao, M.; Hong, K.-S. PSO-based minimum-time motion planning for multiple-vehicle systems considering acceleration and velocity limitations. Int. J. Control Autom. Syst. 2019, 17, 2610–2623. [Google Scholar] [CrossRef]
- Yu, M.; Qi, X. A Vehicle routing problem with multiple overlapped batches. Trans. Res. E 2014, 61, 40–55. [Google Scholar] [CrossRef]
- Baranwal, M.; Roehl, B.; Salapaka, S.M. Multiple traveling salesmen and related problems: A maximum-entropy principle-based approach. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017. [Google Scholar]
- Pamosoaji, A.K.; Hong, K.-S. Group-based particle swarm optimization for multiple-vehicles trajectory planning. In Proceedings of the 15th International Conference on Control, Automation, and Systems (ICCAS), Busan, Korea, 13–16 October 2015; pp. 862–867. [Google Scholar]
- Chalissery, J.M.; Renyard, A.; Gries, R.; Hoefele, D.; Alamsetti, S.K.; Gries, G. Ant sense, and follow, trail pheromones of ant community members. Insects 2019, 10, 383. [Google Scholar] [CrossRef] [Green Version]
(1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|
(s) | (s) | (s) | (s) | |
10.00 | 10 | 1754.16 | 320.69 | 1482.50 |
50.00 | 9 | 2648.04 | 663.91 | 1896.30 |
100.00 | 8 | 3412.84 | 1191.16 | 1961.10 |
150.00 | 8 | 3314.01 | 841.83 | 1684.20 |
300.00 | 5 | 3735.32 | 1180.45 | 2851.00 |
(1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|
(s) | (s) | |||
0.1 | 9 | 2977.72 | 732.50 | 1949.00 |
0.2 | 7 | 3317.33 | 636.00 | 2189.30 |
0.3 | 6 | 2269.77 | 403.38 | 1744.00 |
0.4 | 8 | 3213.81 | 777.59 | 1966.40 |
0.5 | 9 | 2929.99 | 609.94 | 2064.70 |
Number of Degree of Nodes | ||||||||
Node | CONFIG 10-1 | CONFIG 10-2 | CONFIG 10-3 | CONFIG 10-4 | ||||
1 | 3 | 3 | 3 | 4 | ||||
2 | 4 | 4 | 4 | 4 | ||||
3 | 3 | 3 | 3 | 4 | ||||
4 | 2 | 2 | 2 | 4 | ||||
5 | 5 | 4 | 3 | 5 | ||||
6 | 3 | 3 | 3 | 4 | ||||
7 | 3 | 3 | 3 | 5 | ||||
8 | 3 | 2 | 2 | 3 | ||||
9 | 4 | 4 | 3 | 4 | ||||
10 | 2 | 2 | 2 | 3 | ||||
Average | 3.20 | 3.00 | 2.80 | 4.00 | ||||
Number of Vehicles | φ | Success Rate (%) | φ | Success Rate (%) | φ | Success Rate (%) | φ | Success Rate (%) |
3 | 0.09 | 100.00 | 0.10 | 100.00 | 0.11 | 100.00 | 0.08 | 100.00 |
4 | 0.13 | 90.00 | 0.13 | 100.00 | 0.14 | 100.00 | 0.10 | 100.00 |
5 | 0.16 | 100.00 | 0.17 | 100.00 | 0.18 | 100.00 | 0.13 | 100.00 |
6 | 0.19 | 90.00 | 0.20 | 90.00 | 0.21 | 0.00 | 0.15 | 100.00 |
7 | 0.22 | 0.00 | 0.23 | 0.00 | 0.25 | 0.00 | 0.18 | 90.00 |
Number of Degree of Nodes | ||||||||
Node | CONFIG 15-1 | CONFIG 15-2 | CONFIG 15-3 | CONFIG 15-4 | ||||
1 | 5 | 5 | 6 | 6 | ||||
2 | 5 | 5 | 6 | 6 | ||||
3 | 4 | 4 | 4 | 5 | ||||
4 | 4 | 4 | 5 | 6 | ||||
5 | 5 | 6 | 6 | 6 | ||||
6 | 3 | 3 | 3 | 4 | ||||
7 | 3 | 3 | 4 | 5 | ||||
8 | 4 | 4 | 4 | 4 | ||||
9 | 4 | 4 | 4 | 4 | ||||
10 | 4 | 4 | 5 | 5 | ||||
11 | 3 | 3 | 3 | 3 | ||||
12 | 2 | 2 | 3 | 3 | ||||
13 | 3 | 3 | 3 | 3 | ||||
14 | 2 | 3 | 3 | 3 | ||||
15 | 3 | 3 | 3 | 3 | ||||
Average | 3.60 | 3.73 | 4.13 | 4.40 | ||||
Number of Vehicles | φ | Success Rate (%) | φ | Success Rate (%) | φ | Success Rate (%) | φ | Success Rate (%) |
3 | 0.06 | 100.00 | 0.05 | 100.00 | 0.05 | 90.00 | 0.05 | 90.00 |
4 | 0.07 | 90.00 | 0.07 | 90.00 | 0.06 | 90.00 | 0.06 | 100.00 |
5 | 0.09 | 10.00 | 0.09 | 20.00 | 0.08 | 10.00 | 0.08 | 50.00 |
6 | 0.11 | 0.00 | 0.11 | 0.00 | 0.10 | 0.00 | 0.09 | 0.00 |
7 | 0.13 | 0.00 | 0.13 | 0.00 | 0.11 | 0.00 | 0.11 | 0.00 |
Number of Degree of Nodes | ||||||||
Node | CONFIG 20-1 | CONFIG 20-2 | CONFIG 20-3 | CONFIG 20-4 | ||||
1 | 6 | 7 | 7 | 7 | ||||
2 | 7 | 8 | 9 | 9 | ||||
3 | 6 | 6 | 6 | 7 | ||||
4 | 6 | 7 | 5 | 7 | ||||
5 | 8 | 8 | 9 | 10 | ||||
6 | 3 | 4 | 4 | 4 | ||||
7 | 5 | 4 | 5 | 5 | ||||
8 | 5 | 5 | 5 | 5 | ||||
9 | 4 | 5 | 6 | 6 | ||||
10 | 6 | 6 | 5 | 6 | ||||
11 | 4 | 4 | 4 | 4 | ||||
12 | 6 | 7 | 8 | 8 | ||||
13 | 5 | 5 | 6 | 6 | ||||
14 | 3 | 4 | 4 | 5 | ||||
15 | 5 | 5 | 7 | 7 | ||||
16 | 3 | 5 | 4 | 5 | ||||
17 | 3 | 4 | 5 | 6 | ||||
18 | 5 | 5 | 5 | 5 | ||||
19 | 5 | 6 | 6 | 6 | ||||
20 | 3 | 4 | 5 | 5 | ||||
Average | 4.90 | 5.45 | 5.75 | 6.15 | ||||
Number of Vehicles | φ | Success Rate (%) | φ | Success Rate (%) | φ | Success Rate (%) | φ | Success Rate (%) |
2 | 0.02 | 10.00 | 0.02 | 100.00 | 0.02 | 100.00 | 0.02 | 100.00 |
3 | 0.03 | 0.00 | 0.03 | 90.00 | 0.03 | 100.00 | 0.02 | 90.00 |
4 | 0.04 | 0.00 | 0.04 | 0.00 | 0.03 | 80.00 | 0.03 | 90.00 |
5 | 0.05 | 0.00 | 0.05 | 0.00 | 0.04 | 0.00 | 0.04 | 0.00 |
6 | 0.06 | 0.00 | 0.06 | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 |
7 | 0.07 | 0.00 | 0.06 | 0.00 | 0.06 | 0.00 | 0.06 | 0.00 |
Vehicle 1 | Routes | 4 | 10 | 2 | 6 | 7 | 9 | 1 | 5 | 3 | 8 |
Arrival Time (s) | 0 | 365.6 | 446.9 | 511.5 | 584.0 | 659.5 | 767.8 | 874.4 | 998.3 | 1194.9 | |
Applied Speed (m/s) | 0.1 | 1 | 1.5 | 1.5 | 1 | 1.5 | 1.5 | 1.5 | 1 | 1.5 | |
Vehicle 2 | Routes | 1 | 5 | 6 | 7 | 9 | 4 | 10 | 2 | 3 | 8 |
Arrival Time (s) | 0 | 290.7 | 313.6 | 404.3 | 467.3 | 565.9 | 817.2 | 944.3 | 1174.1 | 1292.0 | |
Applied Speed (m/s) | 1 | 1 | 0.5 | 1.5 | 1.5 | 0.1 | 1.5 | 0.1 | 1.5 | 1 | |
Vehicle 3 | Routes | 3 | 8 | 5 | 1 | 9 | 7 | 6 | 2 | 10 | 4 |
Arrival Time (s) | 0 | 184.3 | 403.0 | 602.9 | 711.2 | 786.7 | 859.2 | 956.0 | 1091.5 | 1292.6 | |
Applied Speed (m/s) | 0.1 | 1.5 | 0.1 | 1.5 | 1.5 | 1 | 1.5 | 0.5 | 1 | 1 |
Vehicle 1 | Routes | 4 | 10 | 2 | 6 | 5 | 3 | 8 | 1 | 9 | 7 |
Arrival Time (s) | 0 | 670.3 | 805.8 | 981.8 | 1003.3 | 1106.6 | 1290.9 | 1723.7 | 1886.1 | 1949.0 | |
Applied Speed (m/s) | 0.1 | 0.5 | 1 | 0.1 | 1.5 | 1.5 | 0.1 | 0.5 | 1.5 | 1.5 | |
Vehicle 2 | Routes | 1 | 8 | 5 | 3 | 2 | 10 | 4 | 9 | 7 | 6 |
Arrival Time (s) | 0 | 432.8 | 666.2 | 872.8 | 1240.5 | 1342.2 | 1476.2 | 1539.3 | 1710.9 | 1875.8 | |
Applied Speed (m/s) | 0.1 | 0.5 | 1 | 0.5 | 0.5 | 1.5 | 1.5 | 1 | 0.1 | 1 | |
Vehicle 3 | Routes | 3 | 8 | 5 | 1 | 9 | 4 | 10 | 2 | 6 | 7 |
Arrival Time (s) | 0 | 184.3 | 324.3 | 537.5 | 754.0 | 832.9 | 993.8 | 1075.1 | 1171.9 | 1262.6 | |
Applied Speed (m/s) | 0.1 | 1.5 | 1 | 0.5 | 1 | 1 | 1.5 | 1 | 1 | 1 |
Nodes | Vehicles 1 and 2 | Vehicles 1 and 3 | Vehicles 2 and 3 | Vehicles 1 and 2 | Vehicles 1 and 3 | Vehicles 2 and 3 |
---|---|---|---|---|---|---|
1 | 767.8 | 364.8 | 403 | 1723.7 | 1186.2 | 537.5 |
2 | 497.4 | 509.1 | 11.7 | 434.7 | 269.3 | 165.4 |
3 | 175.8 | 998.3 | 1174.1 | 233.8 | 1106.6 | 872.8 |
4 | 565.9 | 1292.6 | 726.7 | 1476.2 | 832.9 | 643.3 |
5 | 583.7 | 471.4 | 112.3 | 337.1 | 679 | 341.9 |
6 | 197.9 | 347.7 | 545.6 | 894 | 190.1 | 703.9 |
7 | 179.7 | 202.7 | 382.4 | 238.1 | 686.4 | 448.3 |
8 | 97.1 | 1010.6 | 1107.7 | 858.1 | 1106.6 | 248.5 |
9 | 192.2 | 51.7 | 243.9 | 346.8 | 1132.1 | 785.3 |
10 | 451.6 | 725.9 | 274.3 | 671.9 | 323.5 | 348.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pamosoaji, A.K.; Setyohadi, D.B. Novel Graph Model for Solving Collision-Free Multiple-Vehicle Traveling Salesman Problem Using Ant Colony Optimization. Algorithms 2020, 13, 153. https://doi.org/10.3390/a13060153
Pamosoaji AK, Setyohadi DB. Novel Graph Model for Solving Collision-Free Multiple-Vehicle Traveling Salesman Problem Using Ant Colony Optimization. Algorithms. 2020; 13(6):153. https://doi.org/10.3390/a13060153
Chicago/Turabian StylePamosoaji, Anugrah K., and Djoko Budiyanto Setyohadi. 2020. "Novel Graph Model for Solving Collision-Free Multiple-Vehicle Traveling Salesman Problem Using Ant Colony Optimization" Algorithms 13, no. 6: 153. https://doi.org/10.3390/a13060153
APA StylePamosoaji, A. K., & Setyohadi, D. B. (2020). Novel Graph Model for Solving Collision-Free Multiple-Vehicle Traveling Salesman Problem Using Ant Colony Optimization. Algorithms, 13(6), 153. https://doi.org/10.3390/a13060153