A Low Complexity Reactive Tabu Search Based Constellation Constraints in Signal Detection
<p>Constellation constraints structure. <math display="inline"><semantics> <msub> <mi>a</mi> <mi>i</mi> </msub> </semantics></math> is the coordinate point on the constellation. Shaded areas is unreliable area, and bright areas is reliable area. Value <math display="inline"><semantics> <msub> <mi>d</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </semantics></math> is the CC radius and <span class="html-italic">d</span> denotes the distance between the estimated symbol and its nearest constellation.</p> "> Figure 2
<p>Bit error rate performance of different <math display="inline"><semantics> <msub> <mi>d</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>16</mn> <mo>×</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>24</mn> <mo>×</mo> <mn>24</mn> </mrow> </semantics></math> MIMO systems with QPSK modulation. (The dashed line indicates the performance of the reference traditional RTS.)</p> "> Figure 3
<p>Bit error rate performance of CC-RTS taking MMSE solution as the initial vector for <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>16</mn> <mo>×</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>24</mn> <mo>×</mo> <mn>24</mn> </mrow> </semantics></math> MIMO system with Rayleigh channel , QPSK modulation, <math display="inline"><semantics> <msub> <mi>d</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </semantics></math> = 0.02.</p> "> Figure 4
<p>Bit error performance of CC-RTS taking MMSE solution as the initial vector for <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>16</mn> <mo>×</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>24</mn> <mo>×</mo> <mn>24</mn> </mrow> </semantics></math> MIMO system with Channel with Doppler Frequency Shift, QPSK modulation, <math display="inline"><semantics> <msub> <mi>d</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </semantics></math> = 0.02.</p> "> Figure 5
<p>Candidates reduction: percentage of candidates over traditional RTS algorithm for <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>16</mn> <mo>×</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>24</mn> <mo>×</mo> <mn>24</mn> </mrow> </semantics></math> MIMO systems with QPSK modulation, <math display="inline"><semantics> <msub> <mi>d</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </semantics></math> = 0.02. With the proposed scheme, 50% of the candidates and their corresponding complexity of ML calculation can be saved.</p> "> Figure 6
<p>Per-symbol-complexity (PSC) in number of real operations and SNR required to achieve <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> BER in QPSK for <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>8</mn> <mo>×</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>16</mn> <mo>×</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>24</mn> <mo>×</mo> <mn>24</mn> </mrow> </semantics></math> MIMO system (Ref: <a href="#algorithms-11-00099-f005" class="html-fig">Figure 5</a> ).</p> ">
Abstract
:1. Introduction
- We propose a scheme, namely Constellation Constraints (CC) algorithm for determining the reliability of the initial vector.
- With the proposed CC structure, the algorithm separate the reliable symbol estimates in the initial vector from unreliable symbols.
- A algorithm is developed for generating a new candidate set and neighborhood searching space and their implementation with RTS detection.
- The simulation results of the proposed scheme are given to verify that similar BER performance can be achieved with significant lower computational complexity.
2. System Model
3. CC-RTS Algorithm
- Reliable: The reliable condition is defined as that if the signal to be detected falls into the bright area of the graph. For instance if is the initial value of RTS, and the soft output falls into the bright area of graph, a hard decision is considered to determine the output of the nearest constellation and, then we neither consider generating candidates nor conduct RTS algorithm for this soft output. A quantization operation is then performed as
- Unreliable: The unreliable condition is that the detection signal falls into the shaded area of the graph. If is the initial value of RTS, and the soft output falls into the shaded area of the graph, we conduct hard decision for and generate candidates of for the RTS algorithm. The CC processing is invoked and a candidates set is generated asThe generated candidates are constrained by the constellation map and the candidate set is a selection of the M nearest constellation points to . The size of can be either fixed or adaptive with the channel condition which introduces a tradeoff between the performance and the detection complexity with a selection algorithm.
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Telatar, I.E. Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecommun. 1999, 10, 585–595. [Google Scholar] [CrossRef]
- Paulraj, A.; Nabar, R.; Gore, D. Introduction to Space-Time Wireless Communications; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Lu, L.; Li, G.; Swindlehurst, A.; Ashikhmin, A.; Zhang, R. An Overview of Massive MIMO: Benefits and Challenges. IEEE J. 2014, 8, 742–758. [Google Scholar] [CrossRef]
- Wu, M.; Yin, B.; Wang, G.; Dick, C.; Cavallaro, J.; Studer, C. Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations. IEEE J. 2014, 8, 916–929. [Google Scholar] [CrossRef] [Green Version]
- Noh, H.; Myoungseok, K.; Jaesang, H.; Chungyong, L. A practical MMSE-ML detector for a MIMO SC-FDMA system. IEEE Commun. Lett. 2009, 13, 902–904. [Google Scholar] [CrossRef]
- Tran, X.N.; Le, A.T.; Fujino, T. Performance comparison of MMSE-SIC and MMSE-ML multiuser detectors in a STBC-OFDM system. In Proceedings of the IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, Berlin, Germany, 11–14 September 2005; pp. 1050–1054. [Google Scholar]
- Guo, Z.; Nilsson, P. Algorithm and Implementation of the K-Best Sphere Decoding for MIMO Detection. IEEE J. 2006, 24, 491–503. [Google Scholar]
- Glover, F. Tabu Search-Part I. ORSA J. Comput. 1989, 1, 190–206. [Google Scholar] [CrossRef]
- Rajan, B.; Mohammed, S.; Chockalingam, A.; Srinidhi, N. Low complexity near-ML decoding of large non-orthogonal STBCs using reactive tabu search. In Proceedings of the IEEE International Symposium on Information Theory, Seoul, Korea, 28 June–3 July 2009; pp. 1993–1997. [Google Scholar]
- Chockalingam, A. Low-complexity algorithms for large-MIMO detection. In Proceedings of the 4th International Symposium on Communications, Control and Signal Processing (ISCCSP), Limassol, Cyprus, 3–5 March 2010; pp. 1–6. [Google Scholar]
- Datta, T.; Srinidhi, N.; Chockalingam, A.; Rajan, B.S. Random Restart Reactive Tabu Search Algorithm for Detection in Large-MIMO Systems. IEEE Commun. Lett. 2010, 14, 1107–1109. [Google Scholar] [CrossRef]
- Srinidhi, N.; Datta, T.; Chockalingam, A.; Rajan, B. Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance. IEEE Trans. Commun. 2011, 59, 2955–2963. [Google Scholar] [CrossRef] [Green Version]
- Sah, A.K.; Chaturvedi, A.K. Reduced neighborhood search algorithms for low complexity detection in MIMO systems. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Li, P.; Rodrigo, C.; De, L. Adaptive Decision Feedback Detection with Constellation Constraints for MIMO Systems. IEEE Trans. 2012, 61, 853–859. [Google Scholar] [CrossRef]
- Li, P.; Rodrigo, C.; De, L.; Fa, R. Multiple Feedback Successive Interference Cancellation Detection for Multiuser MIMO Systems. IEEE Trans. 2011, 10, 2434–2439. [Google Scholar]
- Li, P.; Rodrigo, C.; De, L. Distributed Iterative Detection with Reduced Message Passing for Networked MIMO Cellular Systems. IEEE Trans. 2014, 63, 2947–2954. [Google Scholar] [CrossRef]
- Li, P.; Rodrigo, C.; De, L.; Liu, J. Adaptive decision feedback detection with parallel interference cancellation and constellation constraints for multiuser multi-input-multi-output systems. IET Commun. 2013, 7, 538–547. [Google Scholar] [CrossRef]
Modulation Mode | BPSK | QPSK | 16-QAM | 64-QAM |
---|---|---|---|---|
Neighbors | 2 | 4 | 4 |
Input: , , |
Output: |
Initialization: |
the output of MMSE |
corresponding hard decision of |
← Number of iterations |
Best-so-far |
P ← the length of tabulist |
Constellation Constraints: |
for 1 to do |
element of |
if j is unreliable |
else |
end if |
end for |
CC-RTS: |
it = 1 |
while it ≤ |
generate tabulist according to P |
for 1 to do |
if |
the candidates of element of |
end if |
end for |
Using simplified to perform traditional RTS algorithm |
it = it+1 |
end while |
Modulation | Channels | Symbol Vectors | Initial Tabu Length | Iterations |
---|---|---|---|---|
QPSK | Rayleigh Fading Channel | 100,000 | 3 | 20 |
Algorithm | Per-Symbol-Complexity in Number of Real Operations and SNR Required to Achieved BER for QPSK | The Computational Complexity of Each Symbol | |||||||
---|---|---|---|---|---|---|---|---|---|
4 × 4 | 8 × 8 | 16 × 16 | 24 × 24 | ||||||
PSC | SNR | PSC | SNR | PSC | SNR | PSC | SNR | ||
RTS | 1320 | 8.3 | 2600 | 7.1 | 20,520 | 6 | 46120 | 5.8 | O(M) + O() |
CC-RTS | 573 | 8.2 | 1148 | 7.1 | 9168 | 6 | 20662 | 5.8 | O(M) + O() |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Zhang, X.; Li, P.; Hu, D. A Low Complexity Reactive Tabu Search Based Constellation Constraints in Signal Detection. Algorithms 2018, 11, 99. https://doi.org/10.3390/a11070099
Feng J, Zhang X, Li P, Hu D. A Low Complexity Reactive Tabu Search Based Constellation Constraints in Signal Detection. Algorithms. 2018; 11(7):99. https://doi.org/10.3390/a11070099
Chicago/Turabian StyleFeng, Jiao, Xiaofei Zhang, Peng Li, and Dongshun Hu. 2018. "A Low Complexity Reactive Tabu Search Based Constellation Constraints in Signal Detection" Algorithms 11, no. 7: 99. https://doi.org/10.3390/a11070099
APA StyleFeng, J., Zhang, X., Li, P., & Hu, D. (2018). A Low Complexity Reactive Tabu Search Based Constellation Constraints in Signal Detection. Algorithms, 11(7), 99. https://doi.org/10.3390/a11070099