Classification and Regression of Pinhole Corrosions on Pipelines Based on Magnetic Flux Leakage Signals Using Convolutional Neural Networks
<p>Seven corrosion anomaly categories are based on the anomaly length and width. Note: A = max{10 mm, pipe wall thickness}.</p> "> Figure 2
<p>Principle of MFL technique.</p> "> Figure 3
<p>Illustration of CMFL tool.</p> "> Figure 4
<p>Six types of corrosion situations: (<b>a</b>) G<sub>in</sub> and G<sub>ex</sub>; (<b>b</b>) P<sub>in</sub> and P<sub>ex</sub>; (<b>c</b>) PIC<sub>in</sub> and PIC<sub>ex</sub>.</p> "> Figure 4 Cont.
<p>Six types of corrosion situations: (<b>a</b>) G<sub>in</sub> and G<sub>ex</sub>; (<b>b</b>) P<sub>in</sub> and P<sub>ex</sub>; (<b>c</b>) PIC<sub>in</sub> and PIC<sub>ex</sub>.</p> "> Figure 5
<p>Cylindrical coordinate system defining location parameters <span class="html-italic">h</span> and <span class="html-italic">ϕ</span>.</p> "> Figure 6
<p>FEA-obtained <span class="html-italic">B<sub>x</sub></span>, <span class="html-italic">B<sub>y</sub></span>, and <span class="html-italic">B<sub>z</sub></span> corresponding to a PIC defect on the internal pipe surface (<span class="html-italic">w<sub>g</sub></span> = 50 mm, <span class="html-italic">l<sub>g</sub></span> = 50 mm, <span class="html-italic">d<sub>g</sub>/t</span> = 40%, <span class="html-italic">r<sub>p</sub></span> = 4 mm, <span class="html-italic">d<sub>p</sub></span>/<span class="html-italic">t</span> = 80%, <span class="html-italic">h</span> = 0 mm and <span class="html-italic">ϕ</span> = 0 degree).</p> "> Figure 7
<p>Proposed CNN classification model structure.</p> "> Figure 8
<p>Distribution of misclassifications in the training dataset.</p> "> Figure 9
<p>Distribution of misclassified cases in G<sub>in</sub> and G<sub>ex</sub> by <span class="html-italic">w<sub>g</sub></span>/<span class="html-italic">l<sub>g</sub></span>.</p> "> Figure 10
<p>Proposed CNN regression model structure.</p> "> Figure 11
<p>Radar chart for <span class="html-italic">R</span><sup>2</sup> of metrics (<span class="html-italic">r<sub>p</sub></span>, <span class="html-italic">d<sub>p</sub></span>/<span class="html-italic">t</span>, <span class="html-italic">h</span>, and <span class="html-italic">ϕ</span>) for P<sub>in</sub>, P<sub>ex</sub>, PIC<sub>in,</sub> and PIC<sub>ex</sub> corrosions in the test dataset.</p> "> Figure 12
<p>Comparison of true and predicted values of <span class="html-italic">r<sub>p</sub></span>, <span class="html-italic">d<sub>p</sub></span>/<span class="html-italic">t</span>, <span class="html-italic">h</span>, and <span class="html-italic">ϕ</span> for the anomalies in the regression test dataset without noise.</p> "> Figure 13
<p>Comparison of <span class="html-italic">R</span><sup>2</sup> between noise-free and SNR = 20 scenarios for different corrosion types.</p> ">
Abstract
:1. Introduction
2. Principles of MFL Technique
3. Simulating MFL Signals Using FEA
3.1. Simulation Parameters
3.2. FEA Cases
4. Convolutional Neural Network
4.1. Classification CNN
4.1.1. Input Information
4.1.2. Proposed Structure
4.1.3. Results
4.2. Regression CNN
4.2.1. Input Information
4.2.2. Proposed Structure
4.2.3. Results
4.2.4. Influence of Noise
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Q.; Wu, W.; Liu, D.; Li, K.; Qiao, Q. Estimation of corrosion failure likelihood of oil and gas pipeline based on fuzzy logic approach. Eng. Fail. Anal. 2016, 70, 48–55. [Google Scholar] [CrossRef]
- Murphy, J.F. Nightmare pipeline failures, fantasy planning, black swans, and integrity management—A review. Process Saf. Prog. 2015, 34, 207. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, W. A comparison of onshore oil and gas transmission pipeline incident statistics in Canada and the United States. Int. J. Crit. Infrastruct. Prot. 2024, 45, 100679. [Google Scholar] [CrossRef]
- Vanaei, H.R.; Eslami, A.; Egbewande, A. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models. Int. J. Press. Vessels Pip. 2017, 149, 43–54. [Google Scholar] [CrossRef]
- Song, H.; Yang, L.; Liu, G.; Tian, G.; Ona, D.I.; Song, Y.; Li, S. Comparative analysis of in-line inspection equipments and technologies. IOP Conf. Ser. Mater. Sci. Eng. 2018, 382, 032021. [Google Scholar] [CrossRef]
- Pipeline Operators Forum. Specifications and Requirements for In-Line Inspection of Pipelines. Version 2021. Available online: https://pipelineoperators.org/documents (accessed on 18 May 2022).
- Sutherland, J.; Bluck, M.; Pearce, J.; Quick, E. Validation of latest generation MFL in-line inspection technology leads to improved detection and sizing specification for pinholes, pitting, axial grooving and axial slotting. In Proceedings of the ASME 2010 8th International Pipeline Conference, Calgary, AB, Canada, 27 September–1 October 2010. [Google Scholar]
- Peng, X.; Anyaoha, U.; Liu, Z.; Tsukada, K. Analysis of magnetic-flux leakage (MFL) data for pipeline corrosion assessment. IEEE Trans. Magn. 2020, 56, 1–15. [Google Scholar] [CrossRef]
- Han, W.; Yang, P.; Xia, F.; Xue, Y. Magnetic flux leakage signal inversion of corrosive flaws based on modified genetic local search algorithm. J. Shanghai Jiaotong Univ. (Sci.) 2009, 14, 168–172. [Google Scholar] [CrossRef]
- Priewald, R.H.; Magele, C.; Ledger, P.D.; Pearson, N.R.; Mason, J.S.D. Fast magnetic flux leakage signal inversion for the reconstruction of arbitrary defect profiles in steel using finite elements. IEEE Trans. Magn. 2012, 49, 506–516. [Google Scholar] [CrossRef]
- Hwang, K.; Mandayam, S.; Udpa, S.S. Characterization of gas pipeline inspection signals using wavelet basis function neural networks. NDT E Int. 2000, 33, 531–545. [Google Scholar] [CrossRef]
- Ramuhalli, P.; Udpa, L.; Udpa, S.S. Neural network based inversion algorithms in magnetic flux leakage nondestructive evaluation. J. Appl. Phys. 2003, 93, 82748276. [Google Scholar] [CrossRef]
- Han, W.H.; Que, P.W. 2-D defect reconstruction from MFL signals based on genetic optimization algorithm. In Proceedings of the IEEE 2005 International Conference on Industrial Technology, Hong Kong, China, 14–17 December 2005. [Google Scholar]
- Kandroodi, M.R.; Araabi, B.N.; Bassiri, M.M.; Ahmadabadi, M.N. Estimation of depth and length of defects from magnetic flux leakage measurements: Verification with simulations, experiments, and pigging data. IEEE Trans. Magn. 2016, 53, 1–10. [Google Scholar] [CrossRef]
- Feng, J.; Li, F.; Lu, S.; Liu, J. Fast reconstruction of defect profiles from magnetic flux leakage measurements using a RBFNN based error adjustment methodology. IET Sci. Meas. Technol. 2017, 11, 262–269. [Google Scholar] [CrossRef]
- Yao, G.; Lei, T.; Zhong, J. A review of convolutional-neural-network-based action recognition. Pattern Recognit. Lett. 2019, 118, 14–22. [Google Scholar] [CrossRef]
- Taye, M.M. Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions. Computation 2023, 11, 52. [Google Scholar] [CrossRef]
- Lu, S.; Feng, J.; Zhang, H.; Liu, J.; Wu, Z. An estimation method of defect size from MFL image using visual transformation convolutional neural network. IEEE Trans. Ind. Inform. 2018, 15, 213–224. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, W. Development of a convolutional neural network model to predict the size and location of corrosion defects on pipelines based on magnetic flux leakage signals. Int. J. Press. Vessels Pip. 2023, 207, 105–123. [Google Scholar] [CrossRef]
- Wang, H.A.; Chen, G. Defect size estimation method for magnetic flux leakage signals using convolutional neural networks. Insight 2020, 62, 86–91. [Google Scholar] [CrossRef]
- EGIG. 10th Report of the European Gas Pipeline Incident Data Group (Period 1970–2016); EGIG: Groningen, The Netherlands, 2018; Doc. number VA 17.R.0395. [Google Scholar]
- Zhang, H.; Sha, S.; Willis, C.; Qingshan, F.; Chen, P. Feasibility study of pinhole inspection via magnetic flux leakage and hydrostatic testing in oil & gas pipelines. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1043, 022053. [Google Scholar]
- Feng, Q.; Yan, B.; Chen, P.; Shirazi, S.A. Failure analysis and simulation model of pinhole corrosion of the refined oil pipeline. Eng. Fail. Anal. 2019, 106, 1–28. [Google Scholar] [CrossRef]
- Subramanian, C. Localized pitting corrosion of API 5L grade A pipe used in industrial fire water piping applications. Eng. Fail. Anal. 2018, 92, 405–417. [Google Scholar] [CrossRef]
- Askari, M.; Aliofkhazraei, M.; Afroukhteh, S. A comprehensive review on internal corrosion and cracking of oil and gas pipelines. J. Nat. Gas Sci. Eng. 2019, 71, 102971. [Google Scholar] [CrossRef]
- Kadhim, K.N.; Al-Rufaye, A.H.R. The effects of uniform transverse magnetic field on local flow and velocity profile. Int. J. Civ. Eng. Technol. 2016, 7, 140–151. [Google Scholar]
- Ji, F.; Wang, C.; Sun, S.; Wang, W. Application of 3-D FEM in the simulation analysis for MFL signals. Insight 2009, 51, 32–35. [Google Scholar] [CrossRef]
- Bubenik, T. Electromagnetic Methods for Detecting Corrosion in Underground Pipelines: Magnetic Flux Leakage (MFL); Underground Pipeline Corrosion; Woodhead Publishing: Cambridgeshire, UK, 2014; pp. 215–226. [Google Scholar]
- Shi, Y.; Zhang, C.; Li, R.; Cai, M.; Jia, G. Theory and application of magnetic flux leakage pipeline detection. Sensors 2015, 15, 31036–31055. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, Z.; Wang, C. A fast method for rectangular crack sizes reconstruction in magnetic flux leakage testing. NDT E Int. 2009, 42, 369–375. [Google Scholar] [CrossRef]
- Walker, J. In-Line Inspection of Pipelines: Advanced Technologies for Economic and Safe Operation of Oil and Gas Pipelines; Verlag Moderne Industrie: Landsberg am Lech, Germany, 2010. [Google Scholar]
- Liu, Y.; Gao, X.; Wang, Y.; Yang, X. Sensitive parameters’ optimization of the permanent magnet supporting mechanism. J. Mech. Sci. Technol. 2014, 28, 2707–2714. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, G.; Liu, G.; Gao, S. Effect of lift-off on pipeline magnetic flux leakage inspection. In Proceedings of the 2008 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008. [Google Scholar]
- Ireland, R.C.; Torres, C.R. Finite element modelling of a circumferential magnetizer. Sens. Actuators A Phys. 2006, 129, 197–202. [Google Scholar] [CrossRef]
- Azizzadeh, T.; Safizadeh, M.S. Three-dimensional finite element and experimental simulation of magnetic flux leakage-type NDT for detection of pitting corrosions. In Proceedings of the 2017 4th Iranian International NDT Conference (IRNDT), Tehran, Iran, 21–22 February 2017. [Google Scholar]
- Chen, L.; Li, X.; Qin, G.; Lu, Q. Signal processing of magnetic flux leakage surface flaw inspect in pipeline steel. Russ. J. Nondestruct. Test. 2008, 44, 859–867. [Google Scholar] [CrossRef]
- Piao, G.; Guo, J.; Hu, T.; Leung, H. The effect of motion-induced eddy current on high-speed magnetic flux leakage (MFL) inspection for thick-wall steel pipe. Res. Nondestruct. Eval. 2020, 31, 48–67. [Google Scholar] [CrossRef]
- Li, F.; Feng, J.; Zhang, H.; Liu, J.; Lu, S.; Ma, D. Quick reconstruction of arbitrary pipeline defect profiles from MFL measurements employing modified harmony search algorithm. IEEE Trans. Instrum. Meas. 2018, 67, 9. [Google Scholar] [CrossRef]
- Fan, X.; Dai, M.; Liu, C.; Wu, F.; Yan, X.; Feng, Y.; Feng, Y.; Su, B. Effect of image noise on the classification of skin lesions using deep convolutional neural networks. Tsinghua Sci. Technol. 2019, 25, 425–434. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; San Tan, R. A deep convolutional neural network model to classify heartbeats. Comput. Boil. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Tesfai, H.; Saleh, H.; Al-Qutayri, M.; Mohammad, M.B.; Tekeste, T.; Khandoker, A.; Mohammad, B. Lightweight shufflenet based cnn for arrhythmia classification. IEEE Access. 2022, 10, 111842–111854. [Google Scholar] [CrossRef]
- West, N.E.; O’shea, T. Deep architectures for modulation recognition. In Proceedings of the 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA, 6–9 March 2017. [Google Scholar]
- Baranwal, S.; Khandelwal, S.; Arora, A. Deep learning convolutional neural network for apple leaves disease detection. In Proceedings of the 2019 International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur, India, 26–28 February 2019. [Google Scholar]
- Virupakshappa, K.; Marino, M.; Oruklu, E. A multi-resolution convolutional neural network architecture for ultrasonic flaw detection. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018. [Google Scholar]
- Bilmes, J. Underfitting and Overfitting in Machine Learning. UW ECE Course Notes. 2020. Available online: https://people.ece.uw.edu/bilmes/classes/ee511/ee511_spring_2020/overfitting_underfitting.pdf (accessed on 20 March 2023).
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 2015 International Conference on Machine Learning, Lille, France, 6–11 July 2015. [Google Scholar]
- Thakkar, V.; Tewary, S.; Chakraborty, C. Batch normalization in convolutional neural networks—A comparative study with CIFAR-10 data. In Proceedings of the IEEE 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), IIEST Shibpur, West Bengal, India, 12–13 January 2018. [Google Scholar]
- Bjorck, N.; Gomes, C.P.; Selman, B.; Weinberger, K.Q. Understanding batch normalization. Adv. Neural Inf. Process. Syst. 2018, 31, 1–12. [Google Scholar]
Elements | Pipe Section | Magnets | Brushes | Yoke |
---|---|---|---|---|
geometry (mm) | 600 × 610 × 10 a | 300 × 81 × 105 b | 300 × 81 × 20 b | 300 × 300 × 40 a |
Part | Layer No. | Layer Name | Parameters |
---|---|---|---|
Feature extraction | 1 | Convolution | 64 filters with size equals to (5 × 5) |
2 | Maxpooling | Pooling size equals to (2 × 2) | |
3 | Dropout | Rate = 0.2 | |
4 | Convolution | 128 filters with size equals to (5 × 5) | |
5 | Maxpooling | Pooling size equals to (2 × 2) | |
6 | Dropout | Rate = 0.2 | |
7 | Convolution | 256 filters with size equals to (5 × 5) | |
8 | Maxpooling | Pooling size equals to (2 × 2) | |
9 | Dropout | Rate = 0.2 | |
10 | Convolution | 512 filters with size equals to (5 × 5) | |
11 | Maxpooling | Pooling size equals to (2 × 2) | |
12 | Dropout | Rate = 0.2 | |
Classification | 13 | Flatten layer | Unit number equals to 51,200 |
14 | Fully connected layer | Unit number equals to 128 | |
15 | Dropout | Rate = 0.2 | |
16 | Fully connected layer | Unit number equals to 64 | |
17 | Dropout | Rate = 0.2 | |
18 | Fully connected layer | Unit number equals to 32 | |
19 | Dropout | Rate = 0.2 | |
20 | Output 1 | Unit number equals to 1 | |
Output 2 | Unit number equals to 1 | ||
Output 3 | Unit number equals to 1 | ||
Output 4 | Unit number equals to 1 | ||
Output 5 | Unit number equals to 1 | ||
Output 6 | Unit number equals to 1 |
Category No. | Category | Total | Train | Test | Misprediction in Train | Misprediction in Test | Train Accuracy | Test Accuracy |
---|---|---|---|---|---|---|---|---|
0 | Gin | 1600 | 1280 | 320 | 7 | 0 | 0.978 | 1.000 |
1 | Gex | 1600 | 1280 | 320 | 21 | 0 | 0.934 | 1.000 |
2 | Pin | 1600 | 1280 | 320 | 0 | 0 | 1.000 | 1.000 |
3 | Pex | 1600 | 1280 | 320 | 2 | 0 | 0.994 | 1.000 |
4 | PICin | 1600 | 1280 | 320 | 1 | 0 | 0.997 | 1.000 |
5 | PICex | 1600 | 1280 | 320 | 1 | 1 | 0.997 | 0.997 |
Part | Layer No. | Layer Name | Parameters |
---|---|---|---|
Feature extraction | 1 | Convolution | 64 filters with size equals to (5 × 5) |
2 | Batch normalization | ||
3 | Maxpooling | Pooling size equals to (2 × 2) | |
4 | Dropout | Rate = 0.2 | |
5 | Convolution | 128 filters with size equals to (5 × 5) | |
6 | Batch normalization | ||
7 | Maxpooling | Pooling size equals to (2 × 2) | |
8 | Dropout | Rate = 0.2 | |
9 | Convolution | 256 filters with size equals to (5 × 5) | |
10 | Batch normalization | ||
11 | Maxpooling | Pooling size equals to (2 × 2) | |
12 | Dropout | Rate = 0.2 | |
13 | Convolution | 512 filters with size equals to (5 × 5) | |
14 | Batch normalization | ||
15 | Maxpooling | Pooling size equals to (2 × 2) | |
16 | Dropout | Rate = 0.2 | |
Regression | 17 | Flatten layer | Unit number equals to 51,200 |
18 | Dropout | Rate = 0.5 | |
19 | Fully connected layer | Unit number equals to 64 | |
20 | Fully connected layer | Unit number equals to 128 | |
21 | Fully connected layer | Unit number equals to 256 | |
22 | Fully connected layer | Unit number equals to 512 | |
23 | Output 1 | Unit number equals to 1 | |
Output 2 | Unit number equals to 1 | ||
Output 3 | Unit number equals to 1 | ||
Output 4 | Unit number equals to 1 |
Category No. | Category | Cases | Test R2 | |||||
---|---|---|---|---|---|---|---|---|
Total | Train | Test | rp | dp/t | h | ϕ | ||
0 | Pin | 1600 | 1280 | 320 | 0.91 | 0.95 | 1.00 | 1.00 |
1 | Pex | 1598 | 1277 | 321 | 0.88 | 0.92 | 1.00 | 1.00 |
2 | PICin | 1599 | 1280 | 319 | 0.89 | 0.85 | 1.00 | 1.00 |
3 | PICex | 1598 | 1279 | 319 | 0.86 | 0.77 | 1.00 | 1.00 |
Overall | 6395 | 5116 | 1279 | 0.89 | 0.91 | 1.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Zhou, W. Classification and Regression of Pinhole Corrosions on Pipelines Based on Magnetic Flux Leakage Signals Using Convolutional Neural Networks. Algorithms 2024, 17, 347. https://doi.org/10.3390/a17080347
Shen Y, Zhou W. Classification and Regression of Pinhole Corrosions on Pipelines Based on Magnetic Flux Leakage Signals Using Convolutional Neural Networks. Algorithms. 2024; 17(8):347. https://doi.org/10.3390/a17080347
Chicago/Turabian StyleShen, Yufei, and Wenxing Zhou. 2024. "Classification and Regression of Pinhole Corrosions on Pipelines Based on Magnetic Flux Leakage Signals Using Convolutional Neural Networks" Algorithms 17, no. 8: 347. https://doi.org/10.3390/a17080347
APA StyleShen, Y., & Zhou, W. (2024). Classification and Regression of Pinhole Corrosions on Pipelines Based on Magnetic Flux Leakage Signals Using Convolutional Neural Networks. Algorithms, 17(8), 347. https://doi.org/10.3390/a17080347