Artificial Intelligence-Based System for Retinal Disease Diagnosis
<p>Structure of eye diseases in the world that can cause visual impairment as of 2020 year (compiled according to [<a href="#B1-algorithms-17-00315" class="html-bibr">1</a>]).</p> "> Figure 2
<p>Conceptual scheme of the approach for design of the AI diagnosis system.</p> "> Figure 3
<p>Functional diagram for the AI diagnosis system.</p> "> Figure 4
<p>Factors for detecting retinal pathology.</p> "> Figure 5
<p>Fuzzy model structure.</p> "> Figure 6
<p>Membership functions for input and output variables: (<b>a</b>) I<sub>5</sub>; (<b>b</b>) I<sub>2</sub>; (<b>c</b>) I<sub>37</sub>; (<b>d</b>) O<sub>3</sub>.</p> "> Figure 6 Cont.
<p>Membership functions for input and output variables: (<b>a</b>) I<sub>5</sub>; (<b>b</b>) I<sub>2</sub>; (<b>c</b>) I<sub>37</sub>; (<b>d</b>) O<sub>3</sub>.</p> "> Figure 7
<p>Surface plots for the diagnoses and its key predictors (hsv colormap is used): (<b>a</b>) I<sub>16</sub>, I<sub>19</sub> and O<sub>1</sub>; (<b>b</b>) I<sub>7</sub>, I<sub>21</sub> and O<sub>2</sub>; (<b>c</b>) I<sub>2</sub>, I<sub>20</sub> and O<sub>3</sub>; (<b>d</b>) I<sub>10</sub>, I<sub>20</sub> and O<sub>4</sub>.</p> "> Figure 7 Cont.
<p>Surface plots for the diagnoses and its key predictors (hsv colormap is used): (<b>a</b>) I<sub>16</sub>, I<sub>19</sub> and O<sub>1</sub>; (<b>b</b>) I<sub>7</sub>, I<sub>21</sub> and O<sub>2</sub>; (<b>c</b>) I<sub>2</sub>, I<sub>20</sub> and O<sub>3</sub>; (<b>d</b>) I<sub>10</sub>, I<sub>20</sub> and O<sub>4</sub>.</p> "> Figure 8
<p>Correlation matrix of simulation data.</p> "> Figure 9
<p>Color distribution scheme of retinal pathology marker factors.</p> ">
Abstract
:1. Introduction
- Ophthalmoscopy is a procedure for examining the fundus of the eye, to assess the retina condition, optic nerve head and blood vessels of the eye using special equipment.
- Optical coherence tomography (OCT) is a diagnostic method that has high resolution and provides highly detailed images of the fundus.
- Electrophysiological diagnostic methods are methods based on recording bioelectrical activity, allowing analysis of the retina functional state based on electrical signals generated by retinal cells.
2. Materials and Methods
2.1. Description of the Proposed Approach
Algorithm 1: Substantiating diagnosis technique for the decision making person (doctor) |
|
2.2. Description of the Decision Support System
- Social and demographic data that affect a person’s predisposition to a particular pathology. Such data include age and gender.
- Anamnesis. The patient’s complaints can indicate symptoms characteristic of a particular pathology, for example, complaints of difficulty reading and deterioration of visual acuity.
- Data measured during an electrophysiological study. It helps to determine the location, nature, and degree of impairment of the functional state of the retina.
2.3. Fuzzy Model and Rule-Based Decision Making
- If (I3 is 1) and (I4 is 5–10) and (I16 is low) and (I34 is below normal) and (I28 is under normal), then (O1 is non-proliferative diabetic retinopathy).
- If (I1 is 21–40) and (I3 is 1) and (I11 is myopia) and (I19 is greater than normal) and (I25 is normal), then (O1 is non-proliferative diabetic retinopathy) and (O4 is dystrophic retinal detachment).
- If (I10 is yes) and (I12 is yes) and (I16 is decreased) and (I18 is under normal) and (I20 is under normal), then (O3 is secondary retinoschisis).
- If (I1 is less than 20) and (I2 is f) and (I16 is normal) and (I18 is normal) and (I20 is normal), then (O3 is no pathology).
- If (I5 is normal) and (I10 is no) and (I14 is no) and (I32 is normal) and (I33 is normal), then (O4 is no pathology).
2.4. SGB-Classification in Decision Making
Multi-Class Performance Metrics for Classification Algorithms
3. Experimental Results
3.1. RB-Classifier Testing
- I17 (maximum ERG, peak latency of the b-wave)—“norm”;
- I18 (maximum ERG, a-wave amplitude), I23 (rod ERG, b-wave amplitude), I26 (mf-ERG, retinal density of the P1 component)—“under normal”;
- I30 (PERG, P50 time), I38 (latency of the a-wave of local ERG)—“above normal”.
- I1 (age)—“41–60”; I3 (diabetes mellitus)—“2”;
- I4 (duration of diabetes mellitus, years)—“5–10”;
- I16 (maximum ERG, b-wave amplitude)—“reduced”; I19 (maximum ERG, peak latency of the a-wave), I25 (mf-ERG, latency of the P1 component), I27 (mf-ERG, latency of N1)—“above normal”;
- I26 (mf-ERG, retinal density of the P1 component)—“under normal”.
- I1 (age)—“61–80”; I3 (diabetes mellitus)—“not diagnosed”;
- I16 (maximum ERG, b-wave amplitude)—“normal”;
- I23 (rod ERG, b-wave amplitude),
- I26 (mf-ERG, retinal density of the P1 component),
- I28 (PERG, amplitude)—“under normal”.
- I1 (age)—“61–80”; I2 (gender)—“m”;
- I26 (mf-ERG, retinal density of the P component),
- I36 (mf-ERG, N1 amplitude), I37 (local ERG a-wave amplitude)—“under normal”;
- I38 (local ERG a-wave latency)—“above normal”.
- I1 (age)—“41–60”; I3 (diabetes mellitus)—“2”;
- I13 (cardiovascular pathologies)—“yes”;
- I17 (maximum ERG, peak latency of b-wave),
- I18 (maximum ERG, amplitude of a-wave),
- I25 (mf-ERG, latency of component P1),
- I39 (amplitude of b-wave of local ERG)—“normal”;
- I23 (rod ERG, b-wave amplitude),
- I26 (mf-ERG, retinal density of the P component),
- I36 (mf-ERG, N1 amplitude),
- I37 (local ERG a-wave amplitude)—“under normal”.
- I1 (age)—“41–60”; I3 (diabetes)—“1”;
- I9 (complaints of photopsia)—“no”;
- I7 (difficulty reading),
- I14 (hereditary factor)—“yes”;
- I16 (maximum ERG, b-wave amplitude)—“reduced/not registered”;
- I19 (maximum ERG peak latency of a-wave)—“norm”;
- I20 (cone ERG, a-wave amplitude),
- I26 (mf-ERG, retinal density of the P component),
- I34 (oscillatory potentials), I36 (mf-ERG, N1 amplitude),
- I37 (local ERG a-wave amplitude)—“below normal”.
- I3 (diabetes mellitus)—“2”;
- I4 (duration of diabetes mellitus, years)—“5–10”;
- I16 (maximum ERG, b-wave amplitude)—“reduced”;
- I18 (maximum ERG, a-wave amplitude),
- I26 (mf-ERG, retinal density of the P component),
- I33 (optic nerve lability),
- I36 (mf-ERG, N1 amplitude)—“below normal”.
3.2. Efficiency Results of RB and SGB Classifiers
4. Discussion of Results
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Report on Vision; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/9789241516570 (accessed on 25 May 2024).
- Jain, P.; Zameer, F.; Khan, K.; Alva, V.; Huchegowda, R.; Akki, A.J.; Venkataramanaiah, R.A.; Krishnasamy, M.; Apturkar, D.; Laxmanashetty, R.H. Artificial intelligence in diagnosis and monitoring of atopic dermatitis: From pixels to predictions. Artif. Intell. Health 2024, 1, 48–65. [Google Scholar] [CrossRef]
- Briganti, G.; Le Moine, O. Artificial intelligence in medicine: Today and tomorrow. Front. Med. 2020, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Benet, D.; Pellicer-Valero, O.J. Artificial intelligence: The unstoppable revolution in ophthalmology. Surv. Ophthalmol. 2022, 67, 252–270. [Google Scholar] [CrossRef] [PubMed]
- Hogarty, D.T.; Mackey, D.A.; Hewitt, A.W. Current state and future prospects of artificial intelligence in ophthalmology: A review. Clin. Exp. Ophthalmol. 2019, 47, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Chaliha, D.R.; Vaccarezza, M.; Charng, J.; Chen, F.K.; Lim, A.; Drummond, P.; Takechi, R.; Lam, V.; Dhaliwal, S.S.; Mamo, J.C.L. Using optical coherence tomography and optical coherence tomography angiography to delineate neurovascular homeostasis in migraine: A review. Front. Neurosci. 2024, 18, 1376282. [Google Scholar] [CrossRef] [PubMed]
- Sabuncu, M.; Özdemir, H. Identifying leather type and authenticity by optical coherence tomography. Int. J. Cloth. Sci. Technol. 2023, 36, 1–16. [Google Scholar] [CrossRef]
- Jolly, J.; Rodda, B.; Edwards, T.; Ayton, L.; Ruddle, J. Optical coherence tomography in children with inherited retinal disease. Clin. Exp. Optom. 2024, 107, 255–266. [Google Scholar] [CrossRef]
- Katalevskaya, E.A.; Katalevsky DYu Tyurikov, M.I.; Velieva, I.A.; Bolshunov, A.V. Prospects for the use of artificial intelligence in the diagnosis and treatment of retinal diseases. RMJ Clin. Ophthalmol. 2022, 22, 36–43. [Google Scholar]
- Bikbov, M.M.; Fayzrakhmanov, R.R. Program for the diagnosis of diseases of the fundus. Cataract. Refract. Surg. 2012, 2, 63–65. [Google Scholar]
- Neroev, V.; Bragin, A.; Zaytseva, O. Development of a prototype service for the diagnosis of diabetic retinopathy based on fundus photos using artificial intelligence methods. Natl. Health Care 2021, 2, 64–72. [Google Scholar] [CrossRef]
- Urina, M.; Piñeres-Melo, M.; Mantilla-Morrón, M.; Butt, S.; Galeano, M.; Naz, S.; Ariza, P. Machine Learning and AI Approaches for Analyzing Diabetic and Hypertensive Retinopathy in Ocular Images: A Literature Review. IEEE Access 2024, 12, 54590–54607. [Google Scholar] [CrossRef]
- Porta, M.; Kohner, E. Screening for Diabetic Retinopathy in Europe. Diabet. Med. J. Br. Diabet. Assoc. 1991, 8, 197–198. [Google Scholar] [CrossRef]
- Garry, D.D.; Saakyan, S.V.; Khoroshilova-Maslova, I.P.; Yu, A. Tarasov Machine learning methods in ophthalmology. Ophthalmology 2020, 17, 20–31. [Google Scholar]
- Tanaeva, E.G.; Khafizov, R.G. Automated system of information support for an ophthalmologist for morphological description of the state of the optic nerve head. Ophthalmology 2020, 17, 817–823. [Google Scholar]
- Eremeev, A.P.; Tcapenko, A.P. The use of cognitive graphics in the diagnosis of complex vision pathologies. Int. J. Inf. Theor. Appl. 2019, 26, 83–99. [Google Scholar]
- Barrac, R. A Comparison Among Different Techniques for Human ERG Signals Processing and Classification. Phys. Medica Eur. J. Med. Phys. 2014, 30, 86–95. [Google Scholar] [CrossRef]
- Maureen, A.; Ashie, J.; Edje, A. An Intelligent Fuzzy Logic Automobile Fault Diagnostic System. Int. J. Innov. Sci. Res. Technol. (IJISRT) 2024, 9, 1779–1787. [Google Scholar] [CrossRef]
- Basheer, A. Early Detection of Diabetic Retinopathy Utilizing Advanced Fuzzy Logic Techniques. Math. Model. Eng. Probl. 2023, 10, 2086–2094. [Google Scholar] [CrossRef]
- Jabiyeva, A.; Khudaverdiyeva, M. Application of Fuzzy Logic in Computer Systems of Medical Diagnosis. Socio World Soc. Res. Behav. Sci. 2023, 12, 17–25. [Google Scholar] [CrossRef]
- Bekollari, M.; Dettoraki, M.; Stavrou, V.; Glotsos, D.; Liaparinos, P. Computer-Aided Discrimination of Glaucoma Patients from Healthy Subjects Using the RETeval Portable Device. Diagnostics 2024, 14, 349. [Google Scholar] [CrossRef]
- Ophthalmology. In National Guidelines; GEOTAR-Media: Moscow, Russia, 2019; 752p.
- Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-inspired Heuristic Paradigm. Knowledge-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Xia, J.; Cai, Z.-N.; Heidari, A.A.; Ye, Y.; Chen, H.; Pan, Z. Enhanced Moth-Flame Optimizer with Quasi-Reflection and Refraction Learning with Application to Image Segmentation and Medical Diagnosis. Curr. Bioinform. 2023, 18, 109–142. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, H.; Li, R.; Chen, H.; Turabieh, H.; Mafarja, M.; Pan, Z. Generalized Oppositional Moth Flame Optimization with Crossover Strategy: An Approach for Medical Diagnosis. J. Bionic Eng. 2021, 18, 991–1010. [Google Scholar] [CrossRef]
- Liu, J.; Wei, J.; Heidari, A.A.; Kuang, F.; Zhang, S.; Gui, W.; Chen, H.; Pan, Z. Chaotic simulated annealing multi-verse optimization enhanced kernel extreme learning machine for medical diagnosis. Comput. Biol. Med. 2022, 144, 105356. [Google Scholar] [CrossRef] [PubMed]
- Orlova, E.V. Design Technology and AI-Based Decision Making Model for Digital Twin Engineering. Future Internet 2022, 14, 248. [Google Scholar] [CrossRef]
- Orlova, E.V. Methodology and Statistical Modeling of Social Capital Influence on Employees’ Individual Innovativeness in a Company. Mathematics 2022, 10, 1809. [Google Scholar] [CrossRef]
- Orlova, E.V. Design of Personal Trajectories for Employees’ Professional Development in the Knowledge Society under Industry 5.0. Soc. Sci. 2021, 10, 427. [Google Scholar] [CrossRef]
- Orlova, E.V. Dynamic Regimes for Corporate Human Capital Development Used Reinforcement Learning Methods. Mathematics 2023, 11, 3916. [Google Scholar] [CrossRef]
- Orlova, E.V. Innovation in Company Labor Productivity Management: Data Science Methods Application. Appl. Syst. Innov. 2021, 4, 68. [Google Scholar] [CrossRef]
- Pescosolido, N.; Barbato, A.; Stefanucci, A.; Buomprisco, G. Role of Electrophysiology in the Early Diagnosis and Follow-Up of Diabetic Retinopathy. J. Diabetes Res. 2015, 2015, 319692. [Google Scholar] [CrossRef]
- Frolov, M.A.; Lantukh, E.P.; Zueva, M.V.; Tsapenko, I.V. Gonchar Bioelectrical activity of the retina in patients with the initial stage of non-exudative age-related macular degeneration. Health Educ. XXI Century 2012, 14, 99–101. [Google Scholar]
- Zolnikova, I.V.; Egorova, I.V.; Viadro, E.V. Dynamics of progression of age-related macular degeneration according to electrophysiological research methods. Bull. New Med. Technol. 2011, 2, 399–402. [Google Scholar]
- Dravitsa, L.V.; Bobr, T.V. Oscillatory biopotentials of the retina in diabetic retinopathy. Probl. Health Ecol. 2006, 7, 126–128. [Google Scholar] [CrossRef]
- Japkowicz, N. Learning from imbalanced data sets: A comparison of various strategies. In AAAI Workshop on Learning from Imbalanced Data Sets; AAAI Press: Menlo Park, CA, USA, 2000; Volume 68, pp. 10–15. [Google Scholar]
- Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Friedman, J. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 1999, 38, 367–378. [Google Scholar] [CrossRef]
- Friedman, J. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar]
- Mason, L.; Baxter, J.; Barlett, R.; Frean, M. Boosting Algorithm as Gradient Descent. In Advances in Neural Information Processing Systems Computational Statistics and Data Analysis; MIT Press: Cambridge, MA, USA, 2000; Volume 12, pp. 512–518. [Google Scholar]
- Hastie, T.; Tibshriani, R.; Friedman, J. The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2014; Volume 739. [Google Scholar]
- Orlova, E.V. Methodology and Models for Individuals’ Creditworthiness Management Using Digital Footprint Data and Machine Learning Methods. Mathematics 2021, 9, 15. [Google Scholar] [CrossRef]
- Tanha, J.; Abdi, Y.; Samadi, N.; Razzaghi, N.; Asadpour, M. Boosting methods for multi-class imbalanced data classification: An experimental review. J. Big Data 2020, 7, 70. [Google Scholar] [CrossRef]
- Halimu, C.; Kasem, A.; Newaz, S.S. Empirical Comparison of Area under ROC curve (AUC) and Mathew Correlation Coefficient (MCC) for evaluating machine learning algorithms on imbalanced datasets for binary classification. In Proceedings of the 3rd International Conference on Machine Learning and Soft Computing, Da Lat, Vietnam, 25–28 January 2019; pp. 1–6. [Google Scholar]
- Jurman, G.; Riccadonna, S.; Furlanello, C. A comparison of MCC and CEN error measures in multi-class prediction. PLoS ONE 2012, 7, e41882. [Google Scholar] [CrossRef]
Variable | Description | Value | Range of Value |
---|---|---|---|
Input Variables | |||
I1 | Age | <20, 21–40, 41–60, 61–80, >81 | (0; 0.1; 0.2), (0.125; 0.25; 0.375), (0.325; 0.45; 0.575), (0.525; 0.65; 0.775), (0.725; 0.85; 1) |
I2 | Gender | woman, man | (0; 0.3; 0.6), (0.4; 0.7; 1) |
I3 | Diabetes | 1, 2, not diagnosed | (0; 0.2; 0.4), (0.3; 0.5; 0.7), (0.6; 0.8; 1) |
I4 | Duration of diabetes, years | <5.5–10, 10–15, >15 | (0; 0.15; 0.3), (0.2; 0.35; 0.5), (0.4; 0.55; 0.7), (0.6; 0.8; 1) |
I5 | Vision acuity | normal, under normal | (0; 0.3; 0.6), (0.4; 0.7; 1) |
I6–I10, I12, I13, I15 | Floaters in the eye, difficulty reading, surgical interventions, complaints of photopsia, detachment in the fellow eye, eye trauma, cardiovascular pathologies, night blindness | yes, no | (0; 0.3; 0.6), (0.4; 0.7; 1) |
I11 | Refraction | normal, myopia | (0; 0.3; 0.6), (0.4; 0.7; 1) |
I14 | Hereditary factor | yes, no, not defined | (0; 0.2; 0.4), (0.3; 0.5; 0.7), (0.6; 0.8; 1) |
I16 | Maximum ERG, b-wave amplitude | normal, slightly decreased, increased, not registered | (0; 0.15; 0,3), (0.2; 0.35; 0.5), (0.4; 0.55; 0.7), (0.6; 0.8; 1) |
I17, I19, I21, I25, I27, I29–I31, I38 | Peak latency of b-wave, peak latency of a-wave of maximal ERG, peak latency of a-wave of cone ERG, latency of P1 and latency of N1 of mf-ERG, time of N35, P50, N95 of PERG, latency of a-wave of local ERG | normal, above normal | (0; 0.3; 0.6), (0.4; 0.7; 1) |
I18, I20, I22, I24, I28, I33, I34, I35, I39 | Maximum ERG, a-wave amplitude, a-wave amplitude of cone ERG, b-wave amplitude of cone ERG, a-wave amplitude of rod ERG, PERG amplitude, optic nerve lability, oscillatory potentials, rhythmic ERG amplitude at 30 Hz, b-wave amplitude of local ERG | normal, under normal | (0; 0.3; 0.6), (0.4; 0.7; 1) |
I23, I26, I36, I37 | Rod ERG, b-wave amplitude, retinal density P1 mf-ERG, N1 mf-ERG amplitude, a-wave amplitude of local ERG | normal, under normal, not registered | (0; 0.2; 0.4), (0.3; 0.5; 0.7), (0.6; 0.8; 1) |
I32 | Electrical sensitivity threshold | normal, above normal | (0; 0.3; 0.6), (0.4; 0.7; 1) |
Output Variables | |||
O1 | Diabetic retinopathy | proliferative diabetic retinopathy, non-proliferative diabetic retinopathy, no pathology | (0; 0.2; 0.4), (0.3; 0.5; 0.7), (0.6; 0.8; 1) |
O2 | Age-related macular degeneration | dry age-related macular degeneration, wet age-related macular degeneration, no pathology | (0; 0.2; 0.4), (0.3; 0.5; 0.7), (0.6; 0.8; 1) |
O3 | Retinoschisis | hereditary retinoschisis (X-chromosomal), primary retinoschisis, secondary retinoschisis, no pathology | (0; 0.15; 0.3), (0.2; 0.35; 0.5), (0.4; 0.55; 0.7), (0.6; 0.8; 1) |
O4 | Retinal detachment | dystrophic retinal detachment, traumatic retinal detachment, secondary retinal detachment, pathology absent | (0; 0.15; 0.3), (0.2; 0.35; 0.5), (0.4; 0.55; 0.7), (0.6; 0.8; 1) |
Indicator/ Classification Algorithm | RB | SGB |
---|---|---|
MAUC | ||
Average | 0.8788 | 0.9122 |
Standard deviation | 0.0700 | 0.0370 |
MMCC | ||
Average | 0.6693 | 0.7640 |
Standard deviation | 0.0661 | 0.0821 |
Compared Classifiers | t-Test Value | Wilcoxon Test Value |
---|---|---|
RB & SGB (MAUC) | 1.03 | 1.36 |
RB & SGB (MMCC) | 2.2 | 1.99 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlova, E.V. Artificial Intelligence-Based System for Retinal Disease Diagnosis. Algorithms 2024, 17, 315. https://doi.org/10.3390/a17070315
Orlova EV. Artificial Intelligence-Based System for Retinal Disease Diagnosis. Algorithms. 2024; 17(7):315. https://doi.org/10.3390/a17070315
Chicago/Turabian StyleOrlova, Ekaterina V. 2024. "Artificial Intelligence-Based System for Retinal Disease Diagnosis" Algorithms 17, no. 7: 315. https://doi.org/10.3390/a17070315
APA StyleOrlova, E. V. (2024). Artificial Intelligence-Based System for Retinal Disease Diagnosis. Algorithms, 17(7), 315. https://doi.org/10.3390/a17070315