Generation of Achievable Three-Dimensional Trajectories for Autonomous Wheeled Vehicles via Tracking Differentiators
<p>Flowchart of the trajectory planning process.</p> "> Figure 2
<p>Plots of outputs of tracking differentiators <math display="inline"><semantics> <mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mn>1</mn> </msubsup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (32), (43) and <math display="inline"><semantics> <mrow> <msubsup> <mi>z</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (32), (44) tracking primitive trajectories <math display="inline"><semantics> <mrow> <msub> <mi>χ</mi> <mn>1</mn> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>. In (<b>a</b>), for the primitive trajectory (45). In (<b>b</b>), for the primitive trajectory (46).</p> "> Figure 3
<p>Plots of velocities <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mn>21</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mn>22</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> of smoothed trajectory (45). In (<b>a</b>), for the tracking differentiator (32), (43). In (<b>b</b>), for the tracking differentiator (32), (44).</p> "> Figure 4
<p>Plots of velocities <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mn>21</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mn>22</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> of smoothed trajectory (46). In (<b>a</b>), for the tracking differentiator (32), (43). In (<b>b</b>), for the tracking differentiator (32), (44).</p> "> Figure 5
<p>Plots of accelerations <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mn>31</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mn>32</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> of smoothed trajectory (45). In (<b>a</b>), for the tracking differentiator (32), (43). In (<b>b</b>), for the tracking differentiator (32), (44).</p> "> Figure 6
<p>Plots of accelerations <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mn>31</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mn>32</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> of smoothed trajectory (46). In (<b>a</b>), for the tracking differentiator (32), (43). In (<b>b</b>), for the tracking differentiator (32), (44).</p> "> Figure 7
<p>Trajectory considering the dimensions of the wheeled platform.</p> "> Figure 8
<p>In (<b>a</b>), plots of the output variables <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow> <mn>11</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </semantics></math> of the differentiator (32), (44), tracking primitive trajectory (47). In (<b>b</b>), the trajectories of the platform angular points (42).</p> "> Figure A1
<p>Graphical block diagram in the MATLAB Simulink software environment.</p> ">
Abstract
:1. Introduction
- A proof of the criterion of boundedness of the solution of an elementary dynamical system with sigmoidal feedback under the influence of an external uncontrolled disturbance is provided. The radii of the convergence domain of the solution are formalized (Section 2.2), which are further used to adjust the gains of the tracking differentiator.
- It is shown that by designing a single-block tracking differentiator with the minimum possible dynamic order, it is possible to smooth the external signal considering the design constraints on the speed and acceleration of the mobile robot. Design methods and a setting algorithm for an arbitrary-order tracking differentiator with sigmoidal local links are developed. (Section 2.3.3).
- We propose computationally simple algorithms for modeling a safety corridor considering the dimensions of the wheeled platform (Section 2.3.4).
2. Materials and Methods
2.1. Equivalent Transformation of the Equations of Motion of a Wheeled Robot
2.2. Properties of the Sigma Function and Sigmoid Feedback
2.3. Design of Tracking Differentiators
2.3.1. Problem Definition
- The path must be implementable by a mechanical plant, i.e., it must be sufficiently smooth and have continuous curvature, minimum requirements
- 2.
- The path must be safe and not lead to collisions with fixed and dynamic obstacles. It is therefore necessary to consider the dimensions of the vehicle, the configuration of the polygon, etc.
- 3.
- A reference trajectory must satisfy various criteria, which, depending on the robot’s mission and work scenario, are formulated as various terminal and optimization problems. For example, to reach the end point of the route in minimum time, to create the shortest route by avoiding reference points, to perform a task with minimum energy consumption, to solve pursuit or evasion problems, etc.
2.3.2. Designing a Three-Block Tracking Differentiator
2.3.3. Reasons for Designing Tracking Differentiators with Different Block Numbers
- Methods used to design control in a tracking system of a mobile robot;
- The considered dynamic order of the control plant;
- Noisiness/noiselessness of the external signal
2.3.4. Some Aspects of Designing Paths and Polygons
- Designing a base set of 3D points (38) for a specific workspace considering obstacles, robot velocity and turning radius constraints, route length, etc.;
- Computing a primitive non-smooth trajectory (39) over a reference set of 3D points (38);
- Smoothing of the primitive trajectory using a tracking differentiator. This process is a numerical solution of differential Equation (32), i.e., calculation of the sigmoid and integration operations;
- Dimension trajectory simulation and safe corridor visualization (42).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chu, X.; Peng, Z.; Wen, G.; Rahmani, A. Distributed Fixed-Time Formation Tracking of Multi-Robot Systems with Nonholonomic Constraints. Neurocomputing 2018, 313, 167–174. [Google Scholar] [CrossRef]
- Trojnacki, M.; Dąbek, P. Mechanical Properties of Modern Wheeled Mobile Robots. JAMRIS 2019, 13, 3–13. [Google Scholar] [CrossRef]
- Pesterev, A.V.; Rapoport, L.B.; Tkachev, S.B. Canonical Representation of a Nonstationary Path Following Problem. J. Comput. Syst. Sci. Int. 2015, 54, 656–670. [Google Scholar] [CrossRef]
- Kochetkov, S.A. Mobile Robot Trajectory Control under Influence of Unknown Perturbation. MESA 2019, 10, 725–732. [Google Scholar]
- Tzafestas, S.G. Mobile robot control and navigation: A global overview. J. Intell. Robot. Syst. 2018, 91, 35–58. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, B.; Fränti, P. A Review of Motion Planning Algorithms for Intelligent Robots. J. Intell. Manuf. 2022, 33, 387–424. [Google Scholar] [CrossRef]
- Debnath, S.K.; Omar, R.; Latip, N.B.A.; Shelyna, S.; Nadira, E.; Melor, C.; Chakraborty, T.K.; Natarajan, E. A Review on Graph Search Algorithms for Optimal Energy Efficient Path Planning for an Unmanned Air Vehicle. Indones. J. Electr. Eng. Comput. Sci. 2019, 15, 743–749. [Google Scholar] [CrossRef]
- Kang, J.G.; Lim, D.W.; Choi, Y.S.; Jang, W.J.; Jung, J.W. Improved RRT-connect Algorithm Based on Triangular Inequality for Robot Path Planning. Sensors 2021, 21, 333. [Google Scholar] [CrossRef]
- Lin, Z.; Yue, M.; Chen, G.; Sun, J. Path Planning of Mobile Robot with PSO-based APF and Fuzzy-based DWA Subject to Moving Obstacles. Trans. Inst. Meas. Control 2022, 44, 121–132. [Google Scholar] [CrossRef]
- Xiang, D.; Lin, H.; Ouyang, J.; Huang, D. Combined improved A* and greedy algorithm for path planning of multi-objective mobile robot. Sci. Rep. 2022, 12, 13273. [Google Scholar] [CrossRef]
- González, D.; Perez, J.; Milanés, V.; Nashashibi, F. A review of motion planning techniques for automated vehicles. IEEE Trans. Intell. Transpor. Syst. 2015, 17, 1135–1145. [Google Scholar] [CrossRef]
- Mercy, T.; Van Parys, R.; Pipeleers, G. Spline-Based Motion Planning for Autonomous Guided Vehicles in a Dynamic Environment. IEEE Trans. Control Syst. Technol. 2017, 26, 2182–2189. [Google Scholar] [CrossRef]
- Lambert, E.; Romano, R.; Watling, D. Optimal Path Planning with Clothoid Curves for Passenger Comfort. In Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems, Heraklion, Crete, Greece, 3–5 May 2019; pp. 609–615. [Google Scholar] [CrossRef]
- Rosu, H.C.; Mancas, S.C.; Hsieh, C.-C. Generalized Cornu-type spirals and their Darboux parametric deformations. Phys. Lett. A 2019, 383, 2692–2697. [Google Scholar] [CrossRef]
- Cong, D.; Liang, C.; Gong, Q.; Yang, X.; Liu, J. Path planning and following of omnidirectional mobile robot based on B-spline. In Proceedings of the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4931–4936. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, J.; Zhao, D.; Shu, Y.; Zhang, Z.; Wang, S. A Global Trajectory Planning Framework Based on Minimizing the Risk Index. Actuators 2023, 12, 270. [Google Scholar] [CrossRef]
- Han, J. Mobile robot path planning with surrounding point set and path improvement. Appl. Soft Comput. 2017, 57, 35–47. [Google Scholar] [CrossRef]
- Busurin, V.I.; Kazaryan, A.V.; Shtek, S.G.; Zheglov, M.A.; Vasetskiy, S.O.; Kyi, P.L. Frame Micro-Optoelectromechanical Angular Velocity Transducer with Optical Readout Units Based on the Optical Tunneling Effect. Meas. Technol. 2022, 65, 360–365. [Google Scholar] [CrossRef]
- Bu, X.W.; Wu, X.Y.; Zhang, R.; Ma, Z.; Huang, J. Tracking Differentiator Design for the Robust Backstepping Control of Flexible Air-breathing Hypersonic Vehicle. J. Frankl. Inst. 2015, 352, 1739–1765. [Google Scholar] [CrossRef]
- Ibraheem, I.K.; Abdul-Adheem, W.R. On the Improved Nonlinear Tracking Differentiator based Nonlinear PID Controller Design. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 234–241. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, H.; She, L.; Xiao, G.; Zhai, C.; Pan, T. Design and Implementation of an Efficient Tracking Differentiator. IEEE Access 2019, 7, 101941–101949. [Google Scholar] [CrossRef]
- Lv, Z.; Jin, S.; Xiong, X.; Yu, J. A New Quick-Response Sliding Mode Tracking Differentiator With its Chattering-Free Discrete-Time Implementation. IEEE Access 2019, 7, 130236–130245. [Google Scholar] [CrossRef]
- Gao, Y.; Tian, D.; Wang, Y. Fuzzy Self-Tuning Tracking Differentiator for Motion Measurement Sensors and Application in Wide-Bandwidth High-Accuracy Servo Control. Sensors 2020, 20, 948. [Google Scholar] [CrossRef] [PubMed]
- Antipov, A.S.; Krasnova, S.A.; Utkin, V.A. Synthesis of Invariant Nonlinear Single-Channel Sigmoid Feedback Tracking Systems Ensuring Given Tracking Accuracy. Autom. Remote Control 2022, 83, 32–53. [Google Scholar] [CrossRef]
- Krasnova, S.A.; Kokunko, Y.G.; Utkin, V.A. Dynamic Models with Sigmoid Corrections to Generation of an Achievable 4D-Trajectory for a UAV and Estimating Wind Disturbances. Electronics 2023, 12, 2280. [Google Scholar] [CrossRef]
- Belinskaya, Y.S.; Chetverikov, V.N. Covering method for point-to-point control of constrained flat system. IFAC-Pap. OnLine 2015, 48, 924–929. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Tang, X.; Zhao, Z.; Yan, Y. Continuous output feedback sliding mode control for underactuated flexible-joint robot. J. Frankl. Inst. 2022, 359, 7847–7865. [Google Scholar] [CrossRef]
- Zubova, S.P.; Raetskaya, E.V. Construction of controls providing the desired output of the linear stationary dynamic system. Autom. Remote Control 2018, 79, 775–792. [Google Scholar] [CrossRef]
- Astolfi, D.; Zaccarian, L.; Jungers, M. On the use of low-pass filters in high-gain observers. Syst. Control Lett. 2021, 148, 104856. [Google Scholar] [CrossRef]
- Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process. Mag. 2017, 34, 26–38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasnova, S.A.; Kokunko, J.G.; Kochetkov, S.A.; Utkin, V.A. Generation of Achievable Three-Dimensional Trajectories for Autonomous Wheeled Vehicles via Tracking Differentiators. Algorithms 2023, 16, 405. https://doi.org/10.3390/a16090405
Krasnova SA, Kokunko JG, Kochetkov SA, Utkin VA. Generation of Achievable Three-Dimensional Trajectories for Autonomous Wheeled Vehicles via Tracking Differentiators. Algorithms. 2023; 16(9):405. https://doi.org/10.3390/a16090405
Chicago/Turabian StyleKrasnova, Svetlana A., Julia G. Kokunko, Sergey A. Kochetkov, and Victor A. Utkin. 2023. "Generation of Achievable Three-Dimensional Trajectories for Autonomous Wheeled Vehicles via Tracking Differentiators" Algorithms 16, no. 9: 405. https://doi.org/10.3390/a16090405
APA StyleKrasnova, S. A., Kokunko, J. G., Kochetkov, S. A., & Utkin, V. A. (2023). Generation of Achievable Three-Dimensional Trajectories for Autonomous Wheeled Vehicles via Tracking Differentiators. Algorithms, 16(9), 405. https://doi.org/10.3390/a16090405