Numerical Simulation and Process Optimization of Laser Welding in 6056 Aluminum Alloy T-Joints
<p>Dimensions of the stringer T-joints. (<b>a</b>) Stringer; (<b>b</b>) base plate; (<b>c</b>) joint.</p> "> Figure 2
<p>Model of three stringer T-joints. (<b>a</b>) Base plate; (<b>b</b>) joint.</p> "> Figure 3
<p>Mesh generation. (<b>a</b>) Stringer; (<b>b</b>) base plate; (<b>c</b>) base plate for the three stringer T-joints.</p> "> Figure 4
<p>Schematic of the laser welding heat source model.</p> "> Figure 5
<p>Comparison between experimental and simulated weld seam cross-section.</p> "> Figure 6
<p>Comparison between experimental and simulated melt pool.</p> "> Figure 7
<p>Melt pool at different time instances during double-sided synchronous laser welding. (<b>a</b>) t = 0.1078 s; (<b>b</b>) t = 0.5286 s; (<b>c</b>) t = 0.8451 s; (<b>d</b>) t = 1.266 s.</p> "> Figure 8
<p>Double-sided synchronous laser welding. (<b>a</b>) Schematic of weld penetration, (<b>b</b>) penetration depth variation curve.</p> "> Figure 8 Cont.
<p>Double-sided synchronous laser welding. (<b>a</b>) Schematic of weld penetration, (<b>b</b>) penetration depth variation curve.</p> "> Figure 9
<p>Melt pool at different time instances during double-sided asynchronous laser welding. (<b>a</b>) t = 0.1078 s; (<b>b</b>) t = 0.4243 s; (<b>c</b>) t = 1.266 s; (<b>d</b>) t = 1.475 s.</p> "> Figure 10
<p>Penetration depth variation curve of double-sided asynchronous laser welding.</p> "> Figure 11
<p>Trends of various factors with equivalent stress.</p> "> Figure 12
<p>Trends of various factors with deformation.</p> "> Figure 13
<p>Melt pool morphology of orthogonal test schemes. Figures (<b>a</b>–<b>i</b>) correspond to case 1 to case 9.</p> "> Figure 13 Cont.
<p>Melt pool morphology of orthogonal test schemes. Figures (<b>a</b>–<b>i</b>) correspond to case 1 to case 9.</p> "> Figure 14
<p>Cross-sectional morphology of the molten pool with optimized parameter combinations.</p> "> Figure 15
<p>Variation curves of equivalent force and deformation at welded joints. (<b>a</b>) Equivalent force (<b>b</b>) deformation.</p> "> Figure 16
<p>Simulation model of three stringer T-joints.</p> "> Figure 17
<p>Cloud plot of equivalent stress distribution.</p> "> Figure 18
<p>Cloud plot of total deformation distribution.</p> ">
Abstract
:1. Introduction
2. Experimental Materials and Models
2.1. Material of T-Joints and Dimensions
2.2. Finite Element Meshing of T-Joints
2.3. Finite Element Simulation Welding Heat Source Modeling
2.4. Thermophysical Parameters of Materials
3. Analysis of Results
3.1. Validation of the Heat Source Model for Numerical Simulation
3.2. Bilateral Synchronous and Bilateral Asynchronous Laser Welding
3.3. Orthogonal Experimental Design and Result Analysis of Single Stringer T-Joints
3.4. Study of Welding Sequence of Three Stringer T-Joints
4. Conclusions
- Simulation Validation: The finite element simulation was validated with a maximum error of 6.75% in the molten pool morphology, confirming its accuracy for further analyses.
- Melt Pool Stability: Bilateral synchronous laser welding demonstrated superior molten pool stability compared to bilateral asynchronous welding, making it the preferred welding method for this study.
- Effect of Welding Parameters: Among the parameters tested, laser power significantly influenced post-weld equivalent stress, showing a non-linear relationship. Preheating temperature had a major impact on deformation, with a peak deformation reduction at 333.15 K. The optimal welding parameters identified are a laser power of 1500 W, welding speed of 3.6 m/min, fixture clamping force of 120 N, and preheating temperature of 333.15 K.
- Influence of Welding Sequence: While welding sequence had a minimal effect on post-weld equivalent stress, it notably influenced deformation. The most effective welding sequence involved starting with the middle stringer, followed by the two side stringers, to minimize deformation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Starke, E.A.; Staley, J.T. Application of Modern Aluminum Alloys to Aircraft. Prog. Aerosp. Sci. 1996, 32, 131–172. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhan, X.; Gao, Z.; Yan, T.; Liu, J. Effect of Welding Direction on Deformation of Ti6Al4V Alloy Coplanar Double Lap-Joint Produced by Dual Laser Beam Bilateral Synchronous Welding. Opt. Laser Technol. 2020, 131, 106447. [Google Scholar] [CrossRef]
- Liu, T.; Zhan, X.; Zhao, Y.; Bai, M.; Gong, X. Study on 2219 Aluminum Alloy T-Joint during Dual Laser-Beam Bilateral Synchronous Welding: Effect of the Welding Speed and Incident Beam Angle on Grain Morphology. Opt. Laser Technol. 2019, 119, 105594. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Chen, Y.; Yang, Z.; Zhu, X. Experimental Investigation on Electric Current-Aided Laser Stake Welding of Aluminum Alloy T-Joints. Metals 2017, 7, 467. [Google Scholar] [CrossRef]
- Bhagatji, J.D.; Morris, C.; Sridhar, Y.; Bhattacharjee, B.; Kaipa, K.N.; Kravchenko, O.G. Effect of Post-Cured through Thickness Reinforcement on Disbonding Behavior in Skin–Stringer Configuration. Materials 2024, 17, 3389. [Google Scholar] [CrossRef]
- Zhao, H.; Xi, J.; Zheng, K.; Shi, Z.; Lin, J.; Nikbin, K.; Duan, S.; Wang, B. A Review on Solid Riveting Techniques in Aircraft Assembling. Manuf. Rev. 2020, 7, 40. [Google Scholar] [CrossRef]
- Zhan, X.; Xia, L.; Wu, Y.; Yu, H.; Feng, X.; Xia, P. Fracture Mechanism on Al-Li Alloy T-Joint Welded by Dual Laser-Beam Bilateral Synchronous Welding. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 2074–2088. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Y.; Tian, S.; Gu, Y.; Zhan, X. Study on Keyhole Coupling and Melt Flow Dynamic Behaviors Simulation of 2219 Aluminum Alloy T-Joint during the Dual Laser Beam Bilateral Synchronous Welding. J. Manuf. Process. 2020, 60, 200–212. [Google Scholar] [CrossRef]
- Han, B.; Tao, W.; Chen, Y.; Li, H. Double-Sided Laser Beam Welded T-Joints for Aluminum-Lithium Alloy Aircraft Fuselage Panels: Effects of Filler Elements on Microstructure and Mechanical Properties. Opt. Laser Technol. 2017, 93, 99–108. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Y.; Fan, X.; Zhao, J.; Yan, B.; Zhang, L. Multi-Objective Optimization of Laser Welding Process Parameters of Steel/Al Based on BO-RF and MOJS. J. Mech. Sci. Technol. 2024, 38, 861–871. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, M. Numerical Simulations of Oscillating Laser Welding: A Review. J. Manuf. Process. 2024, 119, 744–757. [Google Scholar] [CrossRef]
- Jiménez-Xamán, M.; Hernández-Hernández, M.; Tariq, R.; Landa-Damas, S.; Rodríguez-Vázquez, M.; Aranda-Arizmendi, A.; Cruz-Alcantar, P. Numerical Simulations and Mathematical Models in Laser Welding: A Review Based on Physics and Heat Source Models. Front. Mech. Eng. 2024, 10, 1325623. [Google Scholar] [CrossRef]
- Zhen, W.; Li, H.; Wang, Q. Simulation of Residual Stress in Aluminum Alloy Welding Seam Based on Computer Numerical Simulation. Optik 2022, 258, 168785. [Google Scholar] [CrossRef]
- Efa, D.A. Enhancing the Efficiency of Laser Beam Welding: Multi-Objective Parametric Optimization of Dissimilar Materials Using Finite Element Analysis. Int. J. Adv. Manuf. Technol. 2024, 133, 4525–4541. [Google Scholar] [CrossRef]
- Zain-ul-abdein, M.; Nélias, D.; Jullien, J.-F.; Deloison, D. Experimental Investigation and Finite Element Simulation of Laser Beam Welding Induced Residual Stresses and Distortions in Thin Sheets of AA 6056-T4. Mater. Sci. Eng. A 2010, 527, 3025–3039. [Google Scholar] [CrossRef]
- Vrtiel, Š.; Behúlová, M. Analysis of Laser Beam Welding of the S650MC High Strength Steel Using Numerical Simulation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 465, 012010. [Google Scholar] [CrossRef]
- Khoshroyan, A.; Darvazi, A.R. Effects of Welding Parameters and Welding Sequence on Residual Stress and Distortion in Al6061-T6 Aluminum Alloy for T-Shaped Welded Joint. Trans. Nonferrous Met. Soc. China 2020, 30, 76–89. [Google Scholar] [CrossRef]
- Duggirala, A.; Kalvettukaran, P.; Acherjee, B.; Mitra, S. Numerical Simulation of the Temperature Field, Weld Profile, and Weld Pool Dynamics in Laser Welding of Aluminium Alloy. Optik 2021, 247, 167990. [Google Scholar] [CrossRef]
- Alghamdi, A.; Alharthi, H.A. Finite Element Simulation of the Effect of Phase Transformation on Residual Stress in a Thick Section T-Joint. Crystals 2022, 12, 1422. [Google Scholar] [CrossRef]
- Lu, Y.; Deng, Y.; Shi, L.; Jiang, L.; Gao, M. Numerical Simulation of Thermal Flow Dynamics in Oscillating Laser Welding of Aluminum Alloy. Opt. Laser Technol. 2023, 159, 109003. [Google Scholar] [CrossRef]
- Sudnik, W.; Radaj, D.; Breitschwerdt, S.; Erofeew, W. Numerical Simulation of Weld Pool Geometry in Laser Beam Welding. J. Phys. D Appl. Phys. 2000, 33, 662–671. [Google Scholar] [CrossRef]
- Lu, S.P.; Dong, W.C.; Li, D.Z.; Li, Y.Y. Numerical Simulation for Welding Pool and Welding Arc with Variable Active Element and Welding Parameters. Sci. Technol. Weld. Join. 2009, 14, 509–516. [Google Scholar] [CrossRef]
- Kazemi, K.; Goldak, J.A. Numerical Simulation of Laser Full Penetration Welding. Comput. Mater. Sci. 2009, 44, 841–849. [Google Scholar] [CrossRef]
- Tsirkas, S.A.; Papanikos, P.; Kermanidis, T. Numerical Simulation of the Laser Welding Process in Butt-Joint Specimens. J. Mater. Process. Technol. 2003, 134, 59–69. [Google Scholar] [CrossRef]
- Xia, P.; Wang, C.; Mi, G.; Zhang, M.; Xiong, L.; Zhang, X.; Zhai, C.; Feng, X.; Hu, Y. Numerical Simulation of Molten Pool Flow Behavior and Keyhole Evolution Behavior in Dual-Laser Beam Oscillating Bilateral Synchronous Welding of T-Joints. Int. J. Heat Mass Transf. 2023, 209, 124114. [Google Scholar] [CrossRef]
- Yang, Z.; Tao, W.; Li, L.; Chen, Y.; Shi, C. Numerical Simulation of Heat Transfer and Fluid Flow during Double-Sided Laser Beam Welding of T-Joints for Aluminum Aircraft Fuselage Panels. Opt. Laser Technol. 2017, 91, 120–129. [Google Scholar] [CrossRef]
- Zaeh, M.F.; Langhorst, M. A Modelling Approach for the Manufacturing Process Chain of Composite Lightweight Structures. Adv. Mater. Res. 2008, 43, 157–166. [Google Scholar] [CrossRef]
- Wang, L.; Miao, Y.; Hu, G.; Zhao, Y.; Deng, Q. Numerical Simulations and Experimental Verification of T-Structure Welding Deformation Using the Step-by-Step Loading Inherent Strain Method. Metals 2023, 13, 1312. [Google Scholar] [CrossRef]
- Pyo, C.; Kim, J.; Kim, Y.; Kim, M. A Study on a Representative Heat Source Model for Simulating Laser Welding for Liquid Hydrogen Storage Containers. Mar. Struct. 2022, 86, 103260. [Google Scholar] [CrossRef]
- Goldak, J.; Chakravarti, A.; Bibby, M. A New Finite Element Model for Welding Heat Sources. Metall. Trans. B 1984, 15, 299–305. [Google Scholar] [CrossRef]
- Kik, T. Heat Source Models in Numerical Simulations of Laser Welding. Materials 2020, 13, 2653. [Google Scholar] [CrossRef] [PubMed]
- Unni, A.K.; Vasudevan, M. Determination of Heat Source Model for Simulating Full Penetration Laser Welding of 316 LN Stainless Steel by Computational Fluid Dynamics. Mater. Today Proc. 2021, 45, 4465–4471. [Google Scholar] [CrossRef]
- Altay, M.; Aydin, H. Parameter Optimization, Microstructural and Mechanical Properties of Fiber Laser Lap Welds of DP1200 Steel Sheets. Measurement 2024, 235, 114822. [Google Scholar] [CrossRef]
- Peng, J.; Wang, X.; Xu, H.; Yang, J.; Zhang, F. Effect of Droplet Filling Position on Dynamic Behavior of Molten Pool in Laser Welding. Infrared Laser Eng. 2020, 49, 20200025. [Google Scholar] [CrossRef]
- Yang, Z. Study on the Characteristics and Molten Pool Behavior of Double-Sided Laser Welding for Aluminum Alloy Aircraft Fuselage Panels. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2013. [Google Scholar]
- Du, Y.; Wang, D.; Liu, X.; Gong, B.; Deng, C. Crack Propagation Angle at the Root of Fillet Welds in T-Joints under Load. Weld. J. 2021, 42, 21–27+98. [Google Scholar]
Alloying Element | Mg | Si | Cu | Mn | Zn | Al |
---|---|---|---|---|---|---|
Content (wt%) | 0.9 | 1.0 | 0.8 | 0.6 | 0.4 | balance |
Physical Quantity | Expressed Symbol | Unit | Numerical Value |
---|---|---|---|
Solid phase density | ρs | kg·m−3 | 2720 |
Solid phase line temperature | TS | K | 860 |
Liquid phase line temperature | TL | K | 917 |
Latent heat of vaporization | Lv | J·kg−1 | 1.08 × 107 |
Coefficient of thermal expansion | βk | K−1 | 1.92 × 10−5 |
Welding Depth/mm | Melt Pool Length/mm | Pool Width/mm | |
---|---|---|---|
analog value | 1.034 | 4.331 | 1.921 |
experimental value | 0.980 | 4.400 | 2.060 |
relative error | 5.51% | 1.57% | 6.75% |
Level | A. Laser Power/W | B. Welding Speed/(m·min)−1 | C. Fixture Clamping Force/N | D. Preheating Temperature/K |
---|---|---|---|---|
1 | 1300 | 3.6 | 80 | 333.15 |
2 | 1400 | 3.8 | 100 | 353.15 |
3 | 1500 | 4.0 | 120 | 373.15 |
Experiment Number | A Laser Power/W | B Welding Speed/(m min)−1 | C Fixture Clamping Force/N | D Preheating Temperature/K | Equivalent Stress/MPa | Deformation /mm |
---|---|---|---|---|---|---|
Case 1 | 1300 | 3.6 | 80 | 333.15 | 143.680 | 0.123 |
Case 2 | 1300 | 3.8 | 100 | 353.15 | 156.170 | 0.145 |
Case 3 | 1300 | 4.0 | 120 | 373.15 | 146.470 | 0.120 |
Case 4 | 1400 | 3.6 | 100 | 373.15 | 144.102 | 0.176 |
Case 5 | 1400 | 3.8 | 120 | 333.15 | 159.737 | 0.105 |
Case 6 | 1400 | 4.0 | 80 | 353.15 | 144.952 | 0.146 |
Case 7 | 1500 | 3.6 | 120 | 353.15 | 121.700 | 0.152 |
Case 8 | 1500 | 3.8 | 80 | 373.15 | 129.319 | 0.175 |
Case 9 | 1500 | 4.0 | 100 | 333.15 | 139.310 | 0.135 |
Norm | A | B | C | D | |
---|---|---|---|---|---|
Equivalent stress/MPa | K1 | 446.32 | 409.482 | 417.951 | 442.727 |
K2 | 448.791 | 445.226 | 439.582 | 422.822 | |
K3 | 390.329 | 430.732 | 427.907 | 419.891 | |
k1 | 148.773 | 136.494 | 139.317 | 147.576 | |
k2 | 149.597 | 148.407 | 146.527 | 140.941 | |
k3 | 130.110 | 143.577 | 142.636 | 139.964 | |
R | 19.487 | 11.913 | 7.21 | 7.612 | |
prioritize factors | A B D C | ||||
preferred option | A3B1C1D3 | ||||
Deformation/mm | K1 | 0.388 | 0.451 | 0.444 | 0.363 |
K2 | 0.427 | 0.425 | 0.456 | 0.443 | |
K3 | 0.462 | 0.401 | 0.377 | 0.471 | |
k1 | 0.129 | 0.150 | 0.148 | 0.121 | |
k2 | 0.142 | 0.142 | 0.152 | 0.148 | |
k3 | 0.154 | 0.134 | 0.126 | 0.157 | |
R | 0.025 | 0.016 | 0.026 | 0.036 | |
prioritize factors | D C A B | ||||
preferred option | A1B3C3D1 |
Factor | A Laser Power/W | B Welding Speed/(m min)−1 | C Clamping Force/N | D Preheating Temperature/K |
---|---|---|---|---|
value | 1500 | 3.6 | 120 | 333.15 K |
Welding Sequence | 1 | 2 | 3 |
---|---|---|---|
Case 1 | stringer 2 | stringer 1 | stringer 3 |
Case2 | stringer 1 | stringer 3 | stringer 2 |
Case3 | stringer 1 | stringer 2 | stringer 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Xie, S.; Chen, T.; Wang, X.; Yu, X.; Yang, L.; Ni, Z.; Ling, Z.; Yuan, Z.; Shi, J.; et al. Numerical Simulation and Process Optimization of Laser Welding in 6056 Aluminum Alloy T-Joints. Crystals 2025, 15, 35. https://doi.org/10.3390/cryst15010035
Peng J, Xie S, Chen T, Wang X, Yu X, Yang L, Ni Z, Ling Z, Yuan Z, Shi J, et al. Numerical Simulation and Process Optimization of Laser Welding in 6056 Aluminum Alloy T-Joints. Crystals. 2025; 15(1):35. https://doi.org/10.3390/cryst15010035
Chicago/Turabian StylePeng, Jin, Shihua Xie, Tiejun Chen, Xingxing Wang, Xiaokai Yu, Luqiang Yang, Zenglei Ni, Zicheng Ling, Zhipeng Yuan, Jianjun Shi, and et al. 2025. "Numerical Simulation and Process Optimization of Laser Welding in 6056 Aluminum Alloy T-Joints" Crystals 15, no. 1: 35. https://doi.org/10.3390/cryst15010035
APA StylePeng, J., Xie, S., Chen, T., Wang, X., Yu, X., Yang, L., Ni, Z., Ling, Z., Yuan, Z., Shi, J., & Yang, Z. (2025). Numerical Simulation and Process Optimization of Laser Welding in 6056 Aluminum Alloy T-Joints. Crystals, 15(1), 35. https://doi.org/10.3390/cryst15010035