Impact of Solvent-Mediated Phase Transitions by Artificial Gastrointestinal Buffers on Efavirenz Polymorphs
<p>Characteristics of EFV polymorphs by (<b>A</b>) thermogram DSC and (<b>B</b>) diffractogram of PXRD [<a href="#B22-crystals-15-00048" class="html-bibr">22</a>].</p> "> Figure 2
<p>Solubility of EFV polymorphs in various artificial GIT fluids.</p> "> Figure 3
<p>Changes (arrows indicate peak changes that occur) in the X-ray diffraction patterns of EFV metastable polymorphs (<b>a</b>) Form II, (<b>b</b>) Form III under soak at various artificial GIT fluids; A. Water in 10 h; B. Water in 100 h; C. Buffer pH 6.8 in 10 h; D. Buffer pH 6.8 in 100 h; E. Buffer pH 4.6 in 10 h; F. Buffer pH 4.6 in 100 h; G. Buffer pH 1.2 in 10 h; H. Buffer pH 1.2 in 100 h.</p> "> Figure 4
<p>Predicting the defensive mechanism of the crystal structural lattice of polymorphic modifications of EFV against hydrogen bonds using molecular model analysis (<b>A</b>) is molecule model for Form I, (<b>B</b>) is Form II, and (<b>C</b>) is Form III with different synthon) from CCDC (Cambridge Crystallographic Data Centre).</p> "> Figure 5
<p>Predicting of habit transition between polymorphs by ionic strength in water as solvent.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Development of Polymorphs
2.3. Characterization Methods
2.3.1. Differential Scanning Calorimetry (DSC)
2.3.2. Powder X-Ray Diffraction (PXRD)
2.4. Solution-Mediated Polymorphic Transformation Experiments
2.4.1. Artificial GIT Medium Preparation
2.4.2. Saturation In Vitro Solubility Studies
2.4.3. Study of Crystal Transition Due to the Influence of Artificial GIT Medium Soaked
3. Results and Discussion
3.1. Charaterizations
3.2. Solution-Mediated Polymorphic Transformation Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anwar, J.; Zahn, D. Polymorphic phase transitions: Macroscopic theory and molecular simulation. Adv. Drug Deliv. Rev. 2017, 117, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Rheigh, A.M.; Shakeel, F. Effect of Surfactants on the Crystal Properties and Dissolution Behavior of Aspirin. Asian J. Res. Chem. 2009, 2, 202–206. [Google Scholar]
- Judge, R.A.; Jacobs, R.S.; Frazier, T.; Snell, E.H.; Pusey, M.L. The Effect of Tem-perature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals. Bio-Phys. J. 1999, 77, 1585–1593. [Google Scholar] [CrossRef]
- Kato, F.; Otsuka, M.; Matsuda, Y. Kinetic study of the transformation of mefenamic acid polymorphs in various solvents and under high humidity conditions. Int. J. Pharm. 2006, 321, 18–26. [Google Scholar] [CrossRef]
- Mangin, D.; Puel, F.; Veesler, S. Polymorphism in Processes of Crystallization in Solution: A Practical Review. Org. Proc. Res. Dev. 2009, 13, 1241–1253. [Google Scholar] [CrossRef]
- Mori, Y.; Maruyama, M.; Takahashi, Y.; Yoshikawa, H.Y.; Okada, S.; Adachi, H.; Sugiyama, S.; Takano, K.; Murakami, S.; Matsumura, H.; et al. Meta-stable crystal growth of acetaminophen using solution-mediated phase transformation. Appl. Phys. Express 2017, 10, 015501. [Google Scholar] [CrossRef]
- Raijada, D.K.; Singh, S.; Bansal, A.K. Influence of Microenvironment pH, Humidity, and Temperature on the Stability of Polymorphic and Amorphous Forms of Clopidogrel Bisulfate. AAPS PharmSciTech 2010, 11, 197–203. [Google Scholar] [CrossRef]
- Raut, D.M.; Mahajan, D.T.; Sakharkar, D.M.; Bodke, P.S.; Pavan, K.V.; Allada, R.; Deshpande, G.; Patil, D.; Patil, A. Water and Temperature Induced Polymorphic Transformations of Mannitol. Int. J. Curr. Res. 2011, 3, 169–172. [Google Scholar]
- Schöll, J.; Bonalumi, D.; Vicum, L.; Mazzotti, M. In Situ Monitoring and Modeling of the Solvent-Mediated Polymorphic Transformation of L-Glutamic Acid. Cryst. Growth Des. 2006, 6, 881–891. [Google Scholar] [CrossRef]
- Higashi, K.; Ueda, K.; Moribe, K. Recent progress of structural study of polymorphic pharmaceutical drugs. Adv. Drug Deliv. Rev. 2017, 117, 71–85. [Google Scholar] [CrossRef]
- Hilfiker, R. Polymorphism. In The Pharmaceutical Industry; Wiley-VCH Verlag GmbH & Co.: Weinheim, Switzerland, 2006; pp. 9–14. [Google Scholar]
- Lee, E.H. A practical guide to pharma-ceutical polymorph screening & selection. Asian J. Pharm. Sci. 2014, 9, 163–175. [Google Scholar] [CrossRef]
- Thakuria, R.; Thakur, T.S. Crystal Polymorphism in Pharmaceutical Science. In Comprehensive Supramolecular Chemistry II; Atwood, J.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 5, pp. 283–309. [Google Scholar]
- Bennema, P.; van Eupen, J.; van der Wolf, B.M.A.; Los, J.H.; Meekes, H. Solubility of molecular crystals: Polymorphism in the light of solubility theory. Int. J. Pharm. 2008, 351, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, J.; Li, M.; Qu, H.; Wu, S.; Gong, J. Mechanism of solvent-mediated polymorphic transformation to prepare axitinib form XLI controlled by water activity. CrystEngComm. 2024, 26, 6562–6572. [Google Scholar] [CrossRef]
- Højgaard, I.; Fornander, A.M.; Nilsson, M.A.; Tiselius, H.G. The Effect of pH Changes on Crystallization Of Calcium Salts In Solutions With An Ion-Composition Corresponding To That In The Distal Tubule. Scan. Micros. 1999, 13, 235–245. [Google Scholar] [CrossRef]
- Tang, W.; Sima, A.D.; Gong, J.; Wang, J.; Li, T. Kinetic Difference between Concomitant Polymorphism and Solvent-Mediated Phase Transfor-mation: A Case of Tolfenamic Acid. Cryst. Growth Des. 2020, 20, 1779–1788. [Google Scholar] [CrossRef]
- Tran, T.T.; Tran, P.H.; Park, J.B.; Lee, B.J. Effect of Solvents and Crystallization Conditions on the Polymorphic Behaviors and Dissolution Rates of Valsartan. Arch. Pharm. Res. 2012, 35, 1223–1230. [Google Scholar] [CrossRef]
- Rabel, S.R.; Maurin, M.B.; Rowe, S.M.; Hussain, M. Determination of the pKa and pH-solubility behavior of an ionizable cyclic carbamate, (S)-6-chloro-4-(cyclopropyl-ethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one (DMP 266). Pharm. Dev. Technol. 1996, 1, 91–95. [Google Scholar] [CrossRef]
- Liu, F.; Sommer, F.; Bos, C.; Mittemeijer, E.J. Analysis of solid state phase transformation kinetics: Models and recipes. Int. Mater. Rev. 2007, 52, 193–212. [Google Scholar] [CrossRef]
- Chadha, R.; Saini, A.; Arora, P.; Jain, D.V.S. An insight into thermodynamic relationship between polymorphic forms of efavirenz. J. Pharm. Pharm. Sci. 2012, 15, 234–251. [Google Scholar] [CrossRef]
- Rao, M.R.P.; Karanjkar, P.B. Formulation and development of gastroretentive drug delivery system of efavirenz. Int. J. Pharm. Sci. Drug Res. 2019, 11, 231–240. [Google Scholar] [CrossRef]
- Wardhana, Y.W.; Soewandhi, S.N.; Wikarsa, S.; Suendo, V. Polymorphic properties and dissolution profile of efavirenz due to solvents recrystallization. Pak. J. Pharm. Sci. 2019, 32, 981–986. [Google Scholar] [PubMed]
- Wardhana, Y.W.; Aisyah, E.N.; Sopyan, I.; Rusdiana, T. In Vitro Solubility and Release Profile Correlation with pKa Value of Efavirenz Polymorphs. Dissolution Technol. 2021, 2021, 724–727. [Google Scholar] [CrossRef]
Medium | Solubility (µg/mL) | Improvement (%) | |||
---|---|---|---|---|---|
Form I (Market) | Form II | Form III | I to II | I to III | |
Water | 6.40 ± 0.10 | 7.13 ± 0.13 | 6.87 ± 0.79 | 11.42 | 7.31 |
pH 6.8 | 6.69 ± 0.09 | 7.38 ± 1.23 | 7.13 ± 0.73 | 10.25 | 6.59 |
pH 4.6 | 8.12 ± 0.36 | 9.21 ± 0.14 | 8.86 ± 0.24 | 13.24 | 9.18 |
pH 1.2 | 9.16 ± 0.06 | 10.03 ± 0.02 | 9.39 ± 0.07 | 9.37 | 2.41 |
Medium | The Crystallinity of EFV Polymorphs (%) | ||
---|---|---|---|
Form II | Form III | ||
Baseline | 92.06 | 75 | |
Water | 10 h | 76.85 | 65.42 |
100 h | 77.53 | 61.64 | |
pH 6.8 | 10 h | 72.72 | 63.34 |
100 h | 67.93 | 71.82 | |
pH 4.6 | 10 h | 66.14 | 65.09 |
100 h | 77.78 | 63.10 | |
pH 1.2 | 10 h | 82.70 | 83.04 |
100 h | 72.72 | 88.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardhana, Y.W.; Nuraisyah, E.; Kautsar, A.P.; Husni, P.; Budiman, A.; Chaerunisaa, A.Y. Impact of Solvent-Mediated Phase Transitions by Artificial Gastrointestinal Buffers on Efavirenz Polymorphs. Crystals 2025, 15, 48. https://doi.org/10.3390/cryst15010048
Wardhana YW, Nuraisyah E, Kautsar AP, Husni P, Budiman A, Chaerunisaa AY. Impact of Solvent-Mediated Phase Transitions by Artificial Gastrointestinal Buffers on Efavirenz Polymorphs. Crystals. 2025; 15(1):48. https://doi.org/10.3390/cryst15010048
Chicago/Turabian StyleWardhana, Yoga Windhu, Eli Nuraisyah, Angga Prawira Kautsar, Patihul Husni, Arif Budiman, and Anis Yohana Chaerunisaa. 2025. "Impact of Solvent-Mediated Phase Transitions by Artificial Gastrointestinal Buffers on Efavirenz Polymorphs" Crystals 15, no. 1: 48. https://doi.org/10.3390/cryst15010048
APA StyleWardhana, Y. W., Nuraisyah, E., Kautsar, A. P., Husni, P., Budiman, A., & Chaerunisaa, A. Y. (2025). Impact of Solvent-Mediated Phase Transitions by Artificial Gastrointestinal Buffers on Efavirenz Polymorphs. Crystals, 15(1), 48. https://doi.org/10.3390/cryst15010048