Properties of Cement-Based Materials Incorporating Ground-Recycled Diatom
<p>Concrete pipes made with diatomite cement [<a href="#B33-crystals-14-01030" class="html-bibr">33</a>].</p> "> Figure 2
<p>Natural diatoms (N) and recycled diatoms from the filtering of beer (B), wine (W), and oil (O). Beer diatoms (B) appear together with some mill balls in the picture.</p> "> Figure 3
<p>Particle size distribution of natural diatomite (N) and recycled diatoms (B, W, and O).</p> "> Figure 4
<p>TGA of diatoms (N, B, W, and O).</p> "> Figure 5
<p>Evolution of Water demand replacing OPK by Natural (N) and Beer (B) diatoms (wt%).</p> "> Figure 6
<p>Evolution of Water demand replacing OPK by Wine (W) and Oil (O) diatoms (wt%).</p> "> Figure 7
<p>Setting time of different formulations according to the origin of the diatom.</p> "> Figure 8
<p>Setting time of different formulations according to the origin of the diatom.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- Natural diatomite (N) was supplied by CEKESA, whose quarries are located in Hellín, Murcia, Spain.
- Recycled diatomite from beer (B) filtration, supplied by Estrella Levante in Murcia, Spain.
- Recycled diatomite from wine (W) filtration, supplied by Bodegas Jumilla in Jumilla, Spain.
- Recycled diatomite from oil (O) filtration, supplied by Almazara Valle Ricote in Murcia, Spain.
3. Results
3.1. Compressive Strength Development
3.2. Water Demand
3.3. Setting Time
4. Discussion
4.1. Compressive Strength Development
4.2. Water Demand
4.3. Setting Time
5. Conclusions
- Samples treated with quicklime failed to achieve strengths comparable to those heat-treated with lime, confirming that heat treatment is essential for improving the reactivity of diatoms in mixtures.
- The incorporation of natural and recycled diatoms in substitution of OPKs has a significant impact on compressive strength, especially depending on the heat treatment applied and the origin of the diatoms. Samples that have not been heat-treated show an increase at 90 days of hydration. Meanwhile, heat treatment at 500 °C and 900 °C significantly improves mechanical properties, especially in diatoms from the brewing industry.
- The demand for water increases as Portland clinker (OPK) is replaced by diatom. In addition, heat-treated samples, especially at 900 °C, increase significantly. This is mainly due to the physical and chemical properties of diatoms, such as their high porosity and smaller particle size.
- The results of this study of the setting time in diatom mixtures show that the setting time increases as diatom replacement increases, both in untreated and heat-treated samples.
- The study of mechanical behavior, water demand, and setting time makes diatoms from wine the most optimal as an addition.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diatomite Production by Country (Thousand Metric Tons). [En línea]. Available online: https://www.indexmundi.com/minerals/?product=diatomite&graph=production (accessed on 19 September 2024).
- Spain: Diatomite Production Volume, Statista. [En línea]. Available online: https://www.statista.com/statistics/1351652/diatomite-production-volume-spain/ (accessed on 19 September 2024).
- Konyukhova, T.P.; Konyukhova, T.P.; Distanov, U.G.; Distanov, U.G.; Mikhailova, O.A.; Mikhailova, O.A.; Senatorova, S.Z.; Senatorova, S.Z.; Chuprina, T.N.; Chuprina, T.N. Method of Production of Diatomite Filter Materials. [En línea]. RU2237510C1, 10 October 2004. Available online: https://patents.google.com/patent/RU2237510C1/en (accessed on 19 September 2024).
- Li, C.; Li, G.; Chen, D.; Gao, K.; Cao, Y.; Zhou, Y.; Mao, Y.; Fan, S.; Tang, L.; Jia, H. The Effects of Diatomite as an Additive on the Macroscopic Properties and Microstructure of Concrete. Materials 2023, 16, 1833. [Google Scholar] [CrossRef] [PubMed]
- Degirmenci, N.; Yilmaz, A. Use of diatomite as partial replacement for Portland cement in cement mortars. Constr. Build. Mater. 2009, 23, 284–288. [Google Scholar] [CrossRef]
- Loganina, V.I.; Simonov, E.E.; Jezierski, W.; Małaszkiewicz, D. Application of activated diatomite for dry lime mixes. Constr. Build. Mater. 2014, 65, 29–37. [Google Scholar] [CrossRef]
- Costafreda, J.L.; Martín, D.A.; Astudillo, B.; Presa, L.; Parra, J.L.; Sanjuán, M.A. Diatomites from the Iberian Peninsula as Pozzolans. Materials 2023, 16, 3883. [Google Scholar] [CrossRef] [PubMed]
- Krajči, Ľ.; Kuliffayová, M.; Janotka, I. Ternary Cement Composites with Metakaolin Sand and Calcined Clayey Diatomite. Procedia Eng. 2013, 65, 7–13. [Google Scholar] [CrossRef]
- Sun, M.; Zou, C.; Xin, D. Pore structure evolution mechanism of cement mortar containing diatomite subjected to freeze-thaw cycles by multifractal analysis. Cem. Concr. Compos. 2020, 114, 103731. [Google Scholar] [CrossRef]
- Yilmaz, B. A study on the effects of diatomite blend in natural pozzolan-blended cements. Adv. Cem. Res. 2008, 20, 13–21. [Google Scholar] [CrossRef]
- Staněk, T. Waste Diatomaceous Earth as Cementitious Binder Constituent. Mater. Sci. Forum 2016, 865, 1–5. [Google Scholar] [CrossRef]
- Kastis, D.; Kakali, G.; Tsivilis, S.; Stamatakis, M.G. Properties and hydration of blended cements with calcareous diatomite. Cem. Concr. Res. 2006, 36, 1821–1826. [Google Scholar] [CrossRef]
- Stamatakis, M.G.; Fragoulis, D.; Csirik, G.; Bedelean, I.; Pedersen, S. The influence of biogenic micro-silica-rich rocks on the properties of blended cements. Cem. Concr. Compos. 2003, 25, 177–184. [Google Scholar] [CrossRef]
- Kocak, B.; Pınarcı, İ.; Güvenç, U.; Kocak, Y. Prediction of compressive strengths of pumice-and diatomite-containing cement mortars with artificial intelligence-based applications. Constr. Build. Mater. 2023, 385, 131516. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Li, C.; Monteiro, P.J.M. Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment. J. Clean. Prod. 2019, 223, 662–679. [Google Scholar] [CrossRef]
- Sierra, E.J.; Miller, S.A.; Sakulich, A.R.; MacKenzie, K.; Barsoum, M.W. Pozzolanic Activity of Diatomaceous Earth. J. Am. Ceram. Soc. 2010, 93, 3406–3410. [Google Scholar] [CrossRef]
- Lv, Z.; Jiang, A.; Liang, B. Development of eco-efficiency concrete containing diatomite and iron ore tailings: Mechanical properties and strength prediction using deep learning. Constr. Build. Mater. 2022, 327, 126930. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, M.; Shi, J.; Weng, Y.; Yalçınkaya, Ç.; Šavija, B. Improving mechanical properties and sustainability of high-strength engineered cementitious composites (ECC) using diatomite. Mater. Struct. 2024, 57, 11. [Google Scholar] [CrossRef]
- Zhang, H.; He, B.; Zhao, B.; Monteiro, P.J. Using diatomite as a partial replacement of cement for improving the performance of recycled aggregate concrete (RAC)-Effects and mechanism. Constr. Build. Mater. 2023, 385, 131518. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Esmaeili, J.; Kasaei, J.; Hajialioghli, R. Properties of sustainable cement mortars containing high volume of raw diatomite. Sustain. Mater. Technol. 2018, 16, 47–53. [Google Scholar] [CrossRef]
- Fragoulis, D.; Stamatakis, M.G.; Papageorgiou, D.; Chaniotakis, E. The physical and mechanical properties of composite cements manufactured with calcareous and clayey Greek diatomite mixtures. Cem. Concr. Compos. 2005, 27, 205–209. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Ma, Q.; Zhao, X.; Zhang, T. Study on the lightweight hydraulic mortars designed by the use of diatomite as partial replacement of natural hydraulic lime and masonry waste as aggregate. Constr. Build. Mater. 2014, 73, 33–40. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Jiang, Q.; Zhang, S. Study of natural hydraulic lime-based mortars prepared with masonry waste powder as aggregate and diatomite/fly ash as mineral admixtures. J. Clean. Prod. 2016, 119, 118–127. [Google Scholar] [CrossRef]
- Ouyang, X.; Yu, L.; Chen, J.; Wu, K.; Ma, Y.; Fu, J. Roles of diatomite in hydration, microstructure and strength development of cement paste, Mater. Today Commun. 2023, 37, 107555. [Google Scholar] [CrossRef]
- Hassan, H.S.; Shi, C.; Hashem, F.S.; Israde-Alcantara, I.; Pfeiffer, H. Exploring diatomite as a novel natural resource for ecofriendly-sustainable hybrid cements. Resour. Conserv. Recycl. 2024, 202, 107402. [Google Scholar] [CrossRef]
- Hassan, H.S.; Abdel-Gawwad, H.; Vásquez-García, S.; Israde-Alcántara, I.; Flores-Ramirez, N.; Rico, J.; Mohammed, M.S. Cleaner production of one-part white geopolymer cement using pre-treated wood biomass ash and diatomite. J. Clean. Prod. 2019, 209, 1420–1428. [Google Scholar] [CrossRef]
- Mejía, J.M.; De Gutiérrez, R.M.; Montes, C. Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. J. Clean. Prod. 2016, 118, 133–139. [Google Scholar] [CrossRef]
- Sinsiri, T.; Phoo-ngernkham, T.; Sata, V.; Chindaprasirt, P. The effects of replacement fly ash with diatomite in geopolymer mortar. Comput. Concr. 2012, 9, 427–437. [Google Scholar] [CrossRef]
- Ünal, O.; Uygunoğlu, T.; Yildiz, A. Investigation of properties of low-strength lightweight concrete for thermal insulation. Build. Environ. 2007, 42, 584–590. [Google Scholar] [CrossRef]
- Posi, P.; Lertnimoolchai, S.; Sata, V.; Chindaprasirt, P. Pressed lightweight concrete containing calcined diatomite aggregate. Constr. Build. Mater. 2013, 47, 896–901. [Google Scholar] [CrossRef]
- Pérez García, M.A. Universitat Politècnica De València, Universitat Politècnica de València. Ing. Agua 2014, 18, ix. [Google Scholar] [CrossRef]
- Font, A.; Soriano, L.; Reig, L.; Tashima, M.; Borrachero, M.; Monzó, J.; Payá, J. Use of residual diatomaceous earth as a silica source in geopolymer production. Mater. Lett. 2018, 223, 10–13. [Google Scholar] [CrossRef]
- Rodriguez, C.; Miñano, I.; Parra, C.; Pujante, P.; Benito, F. Properties of Precast Concrete Using Food Industry-Filtered Recycled Diatoms. Sustainability 2021, 13, 3137. [Google Scholar] [CrossRef]
- Domínguez-Santos, D.; Letelier, V.; Muñoz, P. Seismic capacity of 2- and 3-storey RC buildings with eco-concrete made by using residues for replacing natural aggregates. J. Build. Eng. 2020, 28, 101086. [Google Scholar] [CrossRef]
- Lee, M.-G.; Huang, Y.; Shih, Y.-F.; Wang, W.-C.; Wang, Y.-C.; Wang, Y.-X.; Chang, H.-W. Mechanical and thermal insulation performance of waste diatomite cement mortar. J. Mater. Res. Technol. 2023, 25, 4739–4748. [Google Scholar] [CrossRef]
- Letelier, V.; Tarela, E.; Muñoz, P.; Moriconi, G. Assessment of the mechanical properties of a concrete made by reusing both: Brewery spent diatomite and recycled aggregates. Constr. Build. Mater. 2016, 114, 492–498. [Google Scholar] [CrossRef]
- Shih, Y.F.; Hou, W.C.; Kotharangannagari, V.K. Study on Reuse of Wasted Diatomite from Brewing Industry for Building Materials. Key Eng. Mater. 2020, 845, 73–78. [Google Scholar] [CrossRef]
- Liu, Z.; Ciais, P.; Deng, Z.; Davis, S.J.; Zheng, B.; Wang, Y.; Cui, D.; Zhu, B.; Dou, X.; Ke, P.; et al. Carbon Monitor, a near-Real Time Daily Dataset of Global CO2 Emission from Fossil Fuel and Cement Production. Sci. Data 2020, 7, 392. [Google Scholar] [CrossRef]
- Gerengi, H.; Kocak, Y.; Jazdzewska, A.; Kurtay, M.; Durgun, H. Electrochemical Investigations on the Corrosion Behaviour of Reinforcing Steel in Diatomite- and Zeolite-Containing Concrete Exposed to Sulphuric Acid. Constr. Build. Mater. 2013, 49, 471–477. [Google Scholar] [CrossRef]
- UNE-EN 196-1:2018; Métodos de Ensayo de Cementos. Parte 1: Dete… [En línea]. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0060675 (accessed on 2 October 2024).
- UNE-EN 1097-6:2014; Ensayos Para Determinar Las Propiedades Mec… [En línea]. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0052839 (accessed on 10 October 2024).
- UNE-EN 1015-3:2000; Métodos de Ensayo Para Morteros de Albañile… [En línea]. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0023381 (accessed on 10 October 2024).
- UNE-EN 196-3:2017; Métodos de Ensayo de Cementos. Parte 3: Dete…. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0058078 (accessed on 2 October 2024).
- Ergün, A. Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Constr. Build. Mater. 2011, 25, 806–812. [Google Scholar] [CrossRef]
- Taoukil, D.; El Meski, Y.; Lahlaouti, M.L.; Djedjig, R.; El Bouardi, A. Effect of the use of diatomite as partial replacement of sand on thermal and mechanical properties of mortars. J. Build. Eng. 2021, 42, 103038. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Li, C.; Monteiro, P.J.M. Eco-friendly mortar with high-volume diatomite and fly ash: Performance and life-cycle assessment with regional variability. J. Clean. Prod. 2020, 261, 121224. [Google Scholar] [CrossRef]
- Aziz, A.; Driouich, A.; Felaous, K.; Bellil, A. Box-Behnken design based optimization and characterization of new eco-friendly building materials based on slag activated by diatomaceous earth. Constr. Build. Mater. 2023, 375, 131027. [Google Scholar] [CrossRef]
Oxides | Clinker | Gypsum | QL | N | W | B | O |
---|---|---|---|---|---|---|---|
Na2O | 0.48 | 0.03 | - | 0.20 | 2.07 | 1.11 | 1.28 |
MgO | 1.89 | 0.18 | 0.42 | 0.68 | 0.15 | 0.64 | 0.14 |
Al2O3 | 5.23 | 0.01 | 1.2 | 1.77 | 2.37 | 4.18 | 1.29 |
SiO2 | 19.89 | 0.41 | 3.03 | 54.82 | 90.67 | 85.21 | 41.85 |
K2O | 0.51 | 0.01 | 0.74 | 0.33 | 0.19 | 1.01 | 1.22 |
CaO | 64.10 | 31.47 | 92.1 | 19.98 | 0.80 | 0.89 | 0.55 |
TiO2 | 0.05 | - | - | 0.09 | 0.50 | 0.34 | 0.39 |
Fe2O3 | 3.78 | 0.06 | 0.34 | 0.78 | 2.14 | 2.40 | 1.53 |
P2O5 | 0.18 | 0.01 | - | 0.14 | 0.09 | 0.32 | 0.27 |
SO3 | 2.05 | 48.34 | 0.39 | 0.22 | 0.03 | 0.14 | 0.14 |
LOI * | 0.91 | 19.87 | 0.15 | 20.65 | 0.85 | 3.54 | 51.15 |
Mineral | N | B | O | W |
---|---|---|---|---|
Quartz | MJ | MJ | MJ | MJ |
Calcite | - | TR | - | TR |
Aragonite | TR | - | - | - |
Silicon Oxide | MD | - | MD | MD |
Anorthite | - | TR | - | TR |
Cristobalite | MJ | MJ | MJ | MJ |
Clinker + Gypsum | Quicklime (QL) | Diatoms (wt%) | Temperature Treatment (°C) | ||||
---|---|---|---|---|---|---|---|
Natural (N) | Beer Filtering (B) | Wine Filtering (W) | Oil Filtering (O) | ||||
REF | 100 | 0 | 0 | 0 | |||
REF-QL | 85 | 15 | 0 | 0 | |||
X-5 | 95 | 0 | 5 | 0 | |||
X-15 | 85 | 0 | 15 | 0 | |||
X-20 | 80 | 0 | 20 | 0 | |||
X-5-QL | 80 | 15 | 5 | 0 | |||
X-15-QL | 70 | 15 | 15 | 0 | |||
X-20-QL | 65 | 15 | 20 | 0 | |||
X-5-500 | 95 | 0 | 5 | 500 | |||
X-15-500 | 85 | 0 | 15 | 500 | |||
X-20-500 | 80 | 0 | 20 | 500 | |||
X-5-900 | 95 | 0 | 5 | 900 | |||
X-15-900 | 85 | 0 | 15 | 900 | |||
X-20-900 | 80 | 0 | 20 | 900 |
Compressive Strength (MPa) | |||||||
---|---|---|---|---|---|---|---|
Samples | 7 d | 28 d | 90 d | Samples | 7 d | 28 d | 90 d |
REF | 41.03 | 50.22 | 56.72 | W5 | 31.95 | 41.50 | 46.55 |
N5 | 37.12 | 45.72 | 52.72 | W15 | 33.20 | 42.40 | 46.55 |
N15 | 37.18 | 48.10 | 56.88 | W20 | 30.88 | 39.01 | 42.36 |
N20 | 33.07 | 45.07 | 52.40 | O5 | 2.70 | 16.90 | 21.77 |
B5 | - | - | - | O15 | 2.60 | 15.80 | 21.77 |
B15 | - | - | - | O20 | 2.36 | 14.52 | 18.10 |
B20 | - | - | - |
Compressive Strength (MPa) | |||||||
---|---|---|---|---|---|---|---|
Samples | 7 d | 28 d | 90 d | Samples | 7 d | 28 d | 90 d |
N5-500 | 40.63 | 51.90 | 59.53 | W5-500 | 39.10 | 52.20 | 53.50 |
N15-500 | 37.80 | 50.08 | 57.90 | W15-500 | 37.50 | 50.20 | 53.70 |
N20-500 | 34.95 | 48.65 | 55.53 | W20-500 | 36.70 | 51.60 | 53.50 |
B5-500 | 39.20 | 48.60 | 59.60 | O5-500 | 39.10 | 50.10 | 56.45 |
B15-500 | 35.10 | 47.00 | 56.10 | O15-500 | 36.80 | 48.20 | 53.90 |
B20-500 | 30.20 | 42.70 | 51.60 | O20-500 | 33.87 | 47.83 | 51.69 |
Compressive Strength (MPa) | |||||||
---|---|---|---|---|---|---|---|
Samples | 7 d | 28 d | 90 d | Samples | 7 d | 28 d | 90 d |
N5-900 | 39.23 | 48.53 | 60.63 | W5-900 | 40.10 | 50.30 | 54.50 |
N15-900 | 30.83 | 41.33 | 50.50 | W15-900 | 37.00 | 48.00 | 54.30 |
N20-900 | 25.83 | 42.45 | 53.08 | W20-900 | 31.70 | 43.40 | 51.70 |
B5-900 | 35.40 | 43.80 | 59.80 | O5-900 | 37.10 | 47.20 | 57.52 |
B15-900 | 21.70 | 31.70 | 40.70 | O15-900 | 29.35 | 39.85 | 47.70 |
B20-900 | 17.00 | 38.50 | 51.50 | O20-900 | 24.90 | 40.87 | 51.60 |
Compressive Strength (MPa) | |||
---|---|---|---|
Samples | 7 d | 28 d | 90 d |
REF-QL | 38.85 | 45.30 | 45.70 |
N15-QL | 29.85 | 38.40 | 43.15 |
B5-QL | 17.26 | 21.81 | 23.93 |
B15-QL | 16.20 | 20.85 | 23.45 |
B20-QL | 14.97 | 18.10 | 20.74 |
W15-QL | 27.25 | 34.35 | 39.05 |
O5-QL | 25.95 | 31.20 | 35.05 |
O15-QL | 21.75 | 25.45 | 26.60 |
O20-QL | 19.74 | 22.17 | 24.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, C.; Fernandez, F.; Rodriguez, R.; Sanchez, M.; Gómez, P.; Martí, F.; Hernández, M.; Miñano, I.; Parra, C.; Benito, F.; et al. Properties of Cement-Based Materials Incorporating Ground-Recycled Diatom. Crystals 2024, 14, 1030. https://doi.org/10.3390/cryst14121030
Rodriguez C, Fernandez F, Rodriguez R, Sanchez M, Gómez P, Martí F, Hernández M, Miñano I, Parra C, Benito F, et al. Properties of Cement-Based Materials Incorporating Ground-Recycled Diatom. Crystals. 2024; 14(12):1030. https://doi.org/10.3390/cryst14121030
Chicago/Turabian StyleRodriguez, Carlos, Fernando Fernandez, Roberto Rodriguez, Marina Sanchez, Pablo Gómez, Felipe Martí, Miriam Hernández, Isabel Miñano, Carlos Parra, Francisco Benito, and et al. 2024. "Properties of Cement-Based Materials Incorporating Ground-Recycled Diatom" Crystals 14, no. 12: 1030. https://doi.org/10.3390/cryst14121030
APA StyleRodriguez, C., Fernandez, F., Rodriguez, R., Sanchez, M., Gómez, P., Martí, F., Hernández, M., Miñano, I., Parra, C., Benito, F., & Beleña, I. (2024). Properties of Cement-Based Materials Incorporating Ground-Recycled Diatom. Crystals, 14(12), 1030. https://doi.org/10.3390/cryst14121030