Efficient Dye Contaminant Elimination and Simultaneous Electricity Production via a Carbon Quantum Dots/TiO2 Photocatalytic Fuel Cell
"> Figure 1
<p>XRD of R-TiO<sub>2</sub>, A-TiO<sub>2</sub>, and 10% CQDs/A-TiO<sub>2</sub>.</p> "> Figure 2
<p>SEM images of (<b>a</b>) A-TiO<sub>2</sub> and (<b>b</b>) 10% CQDs/A-TiO<sub>2</sub>; TEM images of (<b>c</b>) TiO<sub>2</sub> and (<b>d</b>) 10% CQDs/A-TiO<sub>2</sub>.</p> "> Figure 3
<p>The A-TiO<sub>2</sub> and 10% CQDs/A-TiO<sub>2</sub> XPS spectra: (<b>a</b>) survey spectra, (<b>b</b>) O 1s, (<b>c</b>) C 1s, and (<b>d</b>) Ti 2p.</p> "> Figure 4
<p>(<b>a</b>) Typical UV-VIS absorption spectra and (<b>b</b>) the Tauc plot of R-TiO<sub>2</sub>, A-TiO<sub>2</sub>, and 10% CQDs/A-TiO<sub>2</sub>.</p> "> Figure 5
<p>FTIR spectra of 10% CQDs/A-TiO<sub>2</sub>.</p> "> Figure 6
<p>Photodegradation curves (<b>a</b>) and pseudo-first-order rate kinetics curves of (<b>b</b>) R-TiO<sub>2</sub>, 5 nm A-TiO<sub>2</sub>, 20 nm A-TiO<sub>2</sub>, 100 nm A-TiO<sub>2</sub>, and 10% CQDs/A-TiO<sub>2</sub>.</p> "> Figure 7
<p>Photocurrent density profiles of (<b>a</b>) A-TiO<sub>2</sub> with different particle sizes and R-TiO<sub>2</sub> and (<b>b</b>) different ratios of CQDs/A-TiO<sub>2</sub>.</p> "> Figure 8
<p>PFC: (<b>a</b>) photocurrent density curve; (<b>b</b>) open-circuit voltage curve; (<b>c</b>) polarization curve; (<b>d</b>) power density curve.</p> "> Figure 9
<p>Photodegradation curves of PFC at different voltages.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Preparation
2.2.1. Preparation of CQDs
2.2.2. Preparation of CQDs/A-TiO2
2.2.3. Preparation of FTO/CQDs/A-TiO2 Photoanode
2.3. Characterization
2.4. Measurement of Photodegradation
2.5. Photoelectrochemical (PEC) Measurements of Electrodes
2.6. PFC Measurements
3. Results
3.1. Composition, Structure and Morphology
3.2. Photocatalytic Properties of the Photoanode
3.3. The Performance of PEC
3.4. The Performance of PFC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teichner, S.J. The origins of photocatalysis. J. Porous Mat. 2008, 15, 311–314. [Google Scholar] [CrossRef]
- Som, I.; Roy, M.; Saha, R. Advances in Nanomaterial-based Water Treatment Approaches for Photocatalytic Degradation of Water Pollutants. ChemCatChem 2020, 12, 3409–3433. [Google Scholar] [CrossRef]
- Sanakousar, F.M.; Vidyasagar, C.C.; Jiménez-Pérez, V.M.; Prakash, K. Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Mater. Sci. Semicond. Process. 2022, 140, 106390. [Google Scholar] [CrossRef]
- MohammedSaleh Katubi, K.; Rasheed, A.; Ihsan, A.; Shaheen, B.; Alrowaili, Z.A.; Al-Buriahi, M.S.; Din, M.I.; Shakir, I.; Munir, S. Neodymium-doped nickel cobaltite reinforced with 2D MXene nanocomposite (Nd-NiCo2O4/MXene) for enhanced photocatalytic degradation of the organic pollutants. Opt. Mater. 2024, 152, 115390. [Google Scholar] [CrossRef]
- Bhat, T.S.; Mali, S.S.; Sheikh, A.D.; Korade, S.D.; Pawar, K.K.; Hong, C.K.; Kim, J.H.; Patil, P.S. TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route. Opt. Mater. 2017, 73, 781–792. [Google Scholar] [CrossRef]
- Bullock, R.M.; Das, A.K.; Appel, A.M. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. Chem. A Eur. J. 2017, 23, 7626–7641. [Google Scholar] [CrossRef]
- Han, C.; Zhu, X.; Martin, J.S.; Lin, Y.; Spears, S.; Yan, Y. Recent Progress in Engineering Metal Halide Perovskites for Efficient Visible-Light-Driven Photocatalysis. ChemSusChem 2020, 13, 4005–4025. [Google Scholar] [CrossRef]
- Han, S.T.; Xi, H.L.; Shi, R.X.; Fu, X.Z.; Wang, X.X. Prospect and progress in the semiconductor photocatalysis. Chin. J. Chem. Phys. 2003, 16, 339–349. [Google Scholar]
- Zeng, Y.; Xu, Y.; Zhong, D.; Mou, J.; Yao, H.; Zhong, N. Visible-light responsive photocatalytic fuel cell with double Z-scheme heterojunction PTh/Ag3PO4/BiOI/Ti photoanode for efficient rhodamine B degradation and stable electricity generation. Opt. Mater. 2022, 134, 113103. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Zou, L.; Liu, X. Efficient Degradation of Norfloxacin and Simultaneous Electricity Generation in a Persulfate-Photocatalytic Fuel Cell System. Catalysts 2019, 9, 835. [Google Scholar] [CrossRef]
- Tan, X.; Bai, J.; Zheng, J.; Zhang, Y.; Li, J.; Zhou, T.; Xia, L.; Xu, Q.; Zhou, B. Photocatalytic fuel cell based on sulfate radicals converted from sulfates in situ for wastewater treatment and chemical energy utilization. Catal. Today 2019, 335, 485–491. [Google Scholar] [CrossRef]
- Mohammadi, S.; Abdizadeh, H.; Golobostanfard, M.R. Effect of niobium doping on opto-electronic properties of sol–gel based nanostructured indium tin oxide thin films. Ceram. Int. 2013, 39, 4391–4398. [Google Scholar] [CrossRef]
- Shi, Q.; Zhou, K.; Dai, M.; Hou, H.; Lin, S.; Wei, C.; Hu, F. Room temperature preparation of high performance AZO films by MF sputtering. Ceram. Int. 2013, 39, 1135–1141. [Google Scholar] [CrossRef]
- Yates, H.M.; Evans, P.; Sheel, D.W.; Nicolay, S.; Ding, L.; Ballif, C. The development of high performance SnO2:F as TCOs for thin film silicon solar cells. Surf. Coat. Technol. 2012, 213, 167–174. [Google Scholar] [CrossRef]
- Shen, L.; Wang, Z.; Gong, Q.; Zhang, Y.; Wang, J. Photocatalytic Synthesis of Ultrafine Pt Electrocatalysts with High Stability Using TiO2-Decorated N-Doped Carbon as Composite Support. ChemSusChem 2023, 16, e202300393. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.T. Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chim. 2006, 9, 750–760. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Mølhave, K.; Sun, H. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications. Nanomaterials 2017, 7, 382. [Google Scholar] [CrossRef]
- Kwon, C.H.; Shin, H.M.; Kim, J.H.; Choi, W.S.; Yoon, K.H. Degradation of methylene blue via photocatalysis of titanium dioxide. Mater. Chem. Phys. 2004, 86, 78–82. [Google Scholar] [CrossRef]
- Lu, Y.; Deng, H.; Pan, T.; Wang, L.; Zhang, C.; He, H. Interaction between noble metals (Pt, Pd, Rh, Ir, Ag) and defect-enriched TiO2 and its application in toluene and propene catalytic oxidation. Appl. Surf. Sci. 2022, 606, 154834. [Google Scholar] [CrossRef]
- Andrianainarivelo, M.; Corriu, R.J.P.; Leclercq, D.; Mutin, P.H.; Vioux, A. Nonhydrolytic Sol−Gel Process: Aluminum Titanate Gels. Chem. Mater. 1997, 9, 1098–1102. [Google Scholar] [CrossRef]
- Orel, B.; Lavrenčič-Štangar, U.; Hutchins, M.G.; Kalcher, K. Mixed phosphotungstic acid/titanium oxide gels and thin solid xerogel films with electrochromic-ionic conductive properties. J. Non-Cryst. Solids 1994, 175, 251–262. [Google Scholar] [CrossRef]
- Li, R.; Ma, X.; Li, J.; Cao, J.; Gao, H.; Li, T.; Zhang, X.; Wang, L.; Zhang, Q.; Wang, G.; et al. Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat. Commun. 2021, 12, 1587. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y.; Huang, C.-S.; Ou, S.-L.; Cho, Y.-S.; Huang, J.-J. One-step preparation of TiO2 anti-reflection coating and cover layer by liquid phase deposition for monocrystalline Si PERC solar cell. Sol. Energy Mater. Sol. Cells 2022, 234, 111433. [Google Scholar] [CrossRef]
- Izutsu, H.; Nair, P.K.; Maeda, K.; Kiyozumi, Y.; Mizukami, F. Structure and properties of TiO2 SiO2 prepared by sol-gel method in the presence of tartaric acid. Mater. Res. Bull. 1997, 32, 1303–1311. [Google Scholar] [CrossRef]
- Huang, J.Y.; Wang, Y.; Tao Fei, G.; Xu, S.H.; Zeng, Z.; Wang, B. TiO2/ZnO double-layer broadband antireflective and down-shifting coatings for solar applications. Ceram. Int. 2023, 49, 11091–11100. [Google Scholar] [CrossRef]
- Ge, S.; Sang, D.; Zou, L.; Yao, Y.; Zhou, C.; Fu, H.; Xi, H.; Fan, J.; Meng, L.; Wang, C. A Review on the Progress of Optoelectronic Devices Based on TiO2 Thin Films and Nanomaterials. Nanomaterials 2023, 13, 1141. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Wang, Y.; Yuan, F.; Gao, D.; Guo, Q.; Wang, L.; Hu, X. Enhanced photocatalytic degradation of xanthate over carbon quantum dots embedded on BiOI nanosheets under visible light. Opt. Mater. 2024, 148, 114890. [Google Scholar] [CrossRef]
- Hu, X.; Han, W.; Zhang, M.; Li, D.; Sun, H. Enhanced adsorption and visible-light photocatalysis on TiO2 with in situ formed carbon quantum dots. Environ. Sci. Pollut. Res. 2022, 29, 56379–56392. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Xue, J.; Xue, G.; Sheng, X.; Wang, H.; Huo, P.; Yan, Y. CQDS preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J. Catal. 2019, 369, 450–461. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, W.; Lin, H.; Yao, C.; He, Y.; Ran, X.; Guo, L.; Li, T. Facet-dependent photocatalytic and photoelectric properties of CQDs/TiO2 composites under visible irradiation. J. Alloys Compd. 2022, 920, 165896. [Google Scholar] [CrossRef]
- Jung, D.; Kim, G.; Kim, M.-S.; Kim, B.-W. Evaluation of photocatalytic activity of carbon-doped TiO2 films under solar irradiation. Korean J. Chem. Eng. 2012, 29, 703–706. [Google Scholar] [CrossRef]
- Sendao, R.; de Yuso, M.D.M.; Algarra, M.; Silva, J.; da Silva, L.P. Comparative life cycle assessment of bottom-up synthesis routes for carbon dots derived from citric acid and urea. J. Clean Prod. 2020, 254, 10. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, M.; Liu, L. TiO2 nanorod array@carbon cloth photocatalyst for CO2 reduction. Ceram. Int. 2016, 42, 15081–15086. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, Y.X.; Chen, R.; Zhu, X.; Ye, D.D.; Yang, Y.; Liao, Q. Gas diffusion TiO2 photoanode for photocatalytic fuel cell towards simultaneous VOCs degradation and electricity generation. J. Hazard. Mater. 2023, 447, 130769. [Google Scholar] [CrossRef] [PubMed]
- Sambandam, S.; Valluri, V.; Chanmanee, W.; de Tacconi, N.R.; Wampler, W.A.; Lin, W.Y.; Carlson, T.F.; Ramani, V.; Rajeshwar, K. Platinum-carbon black-titanium dioxide nanocomposite electrocatalysts for fuel cell applications. J. Chem. Sci. 2009, 121, 655–664. [Google Scholar] [CrossRef]
- Wan, H.L.; Xu, B.Q.; Dai, Y.N.; Yang, B.; Liu, D.C.; Sen, W. Preparation of titanium powders by calciothermic reduction of titanium dioxide. J. Cent. South Univ. 2012, 19, 2434–2439. [Google Scholar] [CrossRef]
- Xu, L.; Yang, L.; Bai, X.; Du, X.; Wang, Y.; Jin, P. Persulfate activation towards organic decomposition and Cr(VI) reduction achieved by a novel CQDs-TiO2−x/rGO nanocomposite. Chem. Eng. J. 2019, 373, 238–250. [Google Scholar] [CrossRef]
- Qian, X.; Yue, D.; Tian, Z.; Reng, M.; Zhu, Y.; Kan, M.; Zhang, T.; Zhao, Y. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Appl. Catal. B Environ. 2016, 193, 16–21. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, S.; Li, L.; Wang, J.; Zhang, Y.; Li, J.; Bai, J.; Xia, L.; Xu, Q.; Rahim, M.; et al. Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance. Appl. Catal. B Environ. 2020, 269, 118776. [Google Scholar] [CrossRef]
- Patrocínio, A.O.T.; Paniago, E.B.; Paniago, R.M.; Iha, N.Y.M. XPS characterization of sensitized n-TiO2 thin films for dye-sensitized solar cell applications. Appl. Surf. Sci. 2008, 254, 1874–1879. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Liu, A.; Gu, X.; Ge, C.; Gao, F.; Dong, L. Engineering the TiO2–Graphene Interface to Enhance Photocatalytic H2 Production. ChemSusChem 2014, 7, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Zang, H.M.; Yao, S.; Li, Z.C.; Song, H. Photodegradation of benzothiazole ionic liquids catalyzed by titanium dioxide and silver-loaded titanium dioxide. Chin. J. Chem. Eng. 2020, 28, 1397–1404. [Google Scholar] [CrossRef]
- Li, Y.; Lv, K.; Ho, W.; Dong, F.; Wu, X.; Xia, Y. Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): An efficient visible-light-driven Z-scheme hybridized photocatalyst. Appl. Catal. B Environ. 2017, 202, 611–619. [Google Scholar] [CrossRef]
- Liu, R.; Li, H.; Duan, L.; Shen, H.; Zhang, Y.; Zhao, X. In situ synthesis and enhanced visible light photocatalytic activity of C-TiO2 microspheres/carbon quantum dots. Ceram. Int. 2017, 43, 8648–8654. [Google Scholar] [CrossRef]
- Martins, N.C.T.; Ângelo, J.; Girão, A.V.; Trindade, T.; Andrade, L.; Mendes, A. N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl. Catal. B Environ. 2016, 193, 67–74. [Google Scholar] [CrossRef]
- Rando, G.; Sfameni, S.; Milone, M.; Mezzi, A.; Brucale, M.; Notti, A.; Plutino, M.R.L. Smart pillar[5]arene-based PDMAEMA/PES beads for selective dye pollutants removal: Design, synthesis, chemical-physical characterization, and adsorption kinetic studies. ChemSusChem 2023, 17, e202301502. [Google Scholar] [CrossRef]
- Jang, H.D.; Kim, S.-K.; Kim, S.-J. Effect of Particle Size and Phase Composition of Titanium Dioxide Nanoparticles on the Photocatalytic Properties. J. Nanoparticle Res. 2001, 3, 141–147. [Google Scholar] [CrossRef]
- Shen, S.; Chen, J.; Wang, M.; Sheng, X.; Chen, X.; Feng, X.; Mao, S.S. Titanium dioxide nanostructures for photoelectrochemical applications. Prog. Mater. Sci. 2018, 98, 299–385. [Google Scholar] [CrossRef]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile?—Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, S.; Wang, G.; Cui, J.; Lu, Y.; Rong, X.; Gao, C. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis. Ceram. Int. 2022, 48, 35986–35999. [Google Scholar] [CrossRef]
- Wang, J.; Tang, L.; Zeng, G.; Deng, Y.; Dong, H.; Liu, Y.; Wang, L.; Peng, B.; Zhang, C.; Chen, F. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight. Appl. Catal. B Environ. 2018, 222, 115–123. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Wan, M.; Mao, Y.L. Enhanced photovoltaic effect of TiO2-based composite ZnFe2O4/TiO2. J. Photochem. Photobiol. A Chem. 2012, 233, 15–19. [Google Scholar] [CrossRef]
- Pan, H.; Liao, W.; Sun, N.; Murugananthan, M.; Zhang, Y. Highly Efficient and Visible Light Responsive Heterojunction Composites as Dual Photoelectrodes for Photocatalytic Fuel Cell. Catalysts 2018, 8, 30. [Google Scholar] [CrossRef]
- Zare, Z.; Tavakoli, O.; Parnian, M.J. Dual visible light photocatalytic fuel cell for efficient degradation of model organic pollutants using CdS/TiO2 photoanode and TiO2/CuS photocathode. Chem. Pap. 2024, 78, 3939–3957. [Google Scholar] [CrossRef]
- Han, Z.; Zhong, D.; Xu, Y.; Chang, H.; Dong, L.; Liu, Y. Ag nanofilm enhanced S-type Ag@AgCl/tubular g-C3N4/Ti photoanode visible light response photocatalytic fuel cell. Colloids Surf. A Physicochem. Eng. Asp. 2024, 691, 133858. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Li, X.; Lv, Y.; He, J. Efficient Dye Contaminant Elimination and Simultaneous Electricity Production via a Carbon Quantum Dots/TiO2 Photocatalytic Fuel Cell. Crystals 2024, 14, 1083. https://doi.org/10.3390/cryst14121083
Feng Z, Li X, Lv Y, He J. Efficient Dye Contaminant Elimination and Simultaneous Electricity Production via a Carbon Quantum Dots/TiO2 Photocatalytic Fuel Cell. Crystals. 2024; 14(12):1083. https://doi.org/10.3390/cryst14121083
Chicago/Turabian StyleFeng, Zixuan, Xuechen Li, Yueying Lv, and Jie He. 2024. "Efficient Dye Contaminant Elimination and Simultaneous Electricity Production via a Carbon Quantum Dots/TiO2 Photocatalytic Fuel Cell" Crystals 14, no. 12: 1083. https://doi.org/10.3390/cryst14121083
APA StyleFeng, Z., Li, X., Lv, Y., & He, J. (2024). Efficient Dye Contaminant Elimination and Simultaneous Electricity Production via a Carbon Quantum Dots/TiO2 Photocatalytic Fuel Cell. Crystals, 14(12), 1083. https://doi.org/10.3390/cryst14121083