Designing Continuous Crystallization Protocols for Curcumin Using PAT Obtained Batch Kinetics
<p>(<b>a</b>) plot of mass crystallised versus time (<span style="color:#4472C4">●</span>: <span class="html-italic">S</span><sub>o</sub> = 3, <span style="color:#C45911">●</span>: <span class="html-italic">S</span><sub>o</sub> = 3.5, <span style="color:#7F7F7F">●</span>: <span class="html-italic">S</span><sub>o</sub> = 4, <span style="color:#FFC000">●</span>: 4.5, <span style="color:#00B0F0">●</span>: <span class="html-italic">S</span><sub>o</sub> = 5, <span style="color:#00B050">●</span>: <span class="html-italic">S</span><sub>o</sub> = 5.5). (<b>b</b>) shows the different kinetic regimes involved in the crystallisation process (<span style="color:#4472C4">●</span>: <span class="html-italic">S</span><sub>o</sub> = 3), (<b>c</b>) plot of ln (<span class="html-italic">m</span>/<span class="html-italic">m</span><sub>o</sub>) versus <span class="html-italic">t</span> (<span style="color:#4472C4">●</span>: <span class="html-italic">S</span><sub>o</sub> = 3, <span style="color:#C45911">●</span>: <span class="html-italic">S</span><sub>o</sub> = 3.5, <span style="color:#7F7F7F">●</span>: <span class="html-italic">S</span><sub>o</sub> = 4, <span style="color:#FFC000">●</span>: 4.5, <span style="color:#00B0F0">●</span>: <span class="html-italic">S</span><sub>o</sub> = 5, <span style="color:#00B050">●</span>: <span class="html-italic">S</span><sub>o</sub> = 5.5), and (<b>d</b>) plot of the kinetic constant, <span class="html-italic">k</span>, versus initial supersaturation.</p> "> Figure 2
<p>(<b>a</b>) plot of mass crystallised at steady state during the continuous crystallisation of curcumin in isopropanol as a function of the dilution rate (also shown is the mass crystallised when <span class="html-italic">D</span> = <span class="html-italic">D<sub>opt</sub></span>), (<b>b</b>) plot of productivity versus <span class="html-italic">D</span> (also shown is the productivity line when <span class="html-italic">D</span> = <span class="html-italic">D<sub>opt</sub></span>). (<span style="color:#4472C4">●</span>: <span class="html-italic">S</span><sub>o</sub> = 3, <span style="color:#ED7D31">●</span>: <span class="html-italic">S</span><sub>o</sub> = 3.5, <span style="color:gray">●</span>: <span class="html-italic">S</span><sub>o</sub> = 4, <span style="color:#FFC000">●</span>: 4.5, <span style="color:#5B9BD5">●</span>: <span class="html-italic">S</span><sub>o</sub> = 5, <span style="color:#70AD47">●</span>: <span class="html-italic">S</span><sub>o</sub> = 5.5).</p> "> Figure 3
<p>Plot showing the effect of initial supersaturation on the <span class="html-italic">D<sub>zero</sub></span> value.</p> ">
Abstract
:1. Introduction
2. Theory
3. Experimental
3.1. Materials
3.2. Crystal Growth Experiments
3.3. Seed Crystals
4. Results and Discussions
4.1. Batch Crystallisation Kinetics
4.2. Continuous Crystallisation of Curcumin: Theoretical Prediction
4.3. Theoretical Procedure for the Continuous Production of Curcumin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginde, R.M.; Myerson, A.S. Effect of Impurities on Cluster Growth and Nucleation. J. Cryst. Growth 1993, 126, 216–222. [Google Scholar] [CrossRef]
- Chen, J.; Sarma, B.; Evans, J.M.B.; Myerson, A.S. Pharmaceutical Crystallization. Cryst. Growth Des. 2011, 11, 887–895. [Google Scholar] [CrossRef]
- Hsi, K.H.; Kenny, M.; Simi, A.; Myerson, A.S. Purification of Structurally Similar Compounds by the Formation of Impurity Co-Former Complexes in Solution. Cryst. Growth Des. 2013, 13, 1577–1582. [Google Scholar] [CrossRef]
- Kuvadia, Z.B.; Doherty, M.F. Effect of Structurally Similar Additives on Crystal Habit of Organic Molecular Crystals at Low Supersaturation. Cryst. Growth Des. 2013, 13, 1412–1428. [Google Scholar] [CrossRef]
- Mascia, S.; Heider, P.L.; Zhang, H.; Lakerveld, R.; Benyahia, B.; Barton, P.I.; Braatz, R.D.; Cooney, C.L.; Evans, J.M.B.; Jamison, T.F.; et al. End-to-End Continuous Manufacturing of Pharmaceuticals: Integrated Synthesis, Purification, and Final Dosage Formation. Angew. Chem. Int. Ed. 2013, 52, 12359–12363. [Google Scholar] [CrossRef]
- Wood, B.; Girard, K.P.; Polster, C.S.; Croker, D.M. Progress to Date in the Design and Operation of Continuous Crystallization Processes for Pharmaceutical Applications. Org. Process Res. Dev. 2019, 23, 122–144. [Google Scholar] [CrossRef]
- Pfizer & Siemens: Continuous Manufacturing in Pharma—YouTube. Available online: https://www.youtube.com/watch?v=AFSo8qaY5EU&t=48s (accessed on 2 August 2023).
- Zhang, D.; Xu, S.; Du, S.; Wang, J.; Gong, J. Progress of Pharmaceutical Continuous Crystallization. Engineering 2017, 3, 354–364. [Google Scholar] [CrossRef]
- Orehek, J.; Teslić, D.; Likozar, B. Continuous Crystallization Processes in Pharmaceutical Manufacturing: A Review. Org. Process Res. Dev. 2021, 25, 16–42. [Google Scholar] [CrossRef]
- Wang, T.; Lu, H.; Wang, J.; Xiao, Y.; Zhou, Y.; Bao, Y.; Hao, H. Recent Progress of Continuous Crystallization. J. Ind. Eng. Chem. 2017, 54, 14–29. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, S.; Macaringue, E.G.J.; Zhang, T.; Gong, J.; Wang, J. Recent Progress in Continuous Crystallization of Pharmaceutical Products: Precise Preparation and Control. Org. Process Res. Dev. 2020, 24, 1785–1801. [Google Scholar] [CrossRef]
- Çelik, M. Quality by Design, Process Analytical Technology, GMP and Regulatory Affairs. Pharm. Dev. Technol. 2018, 23, 553. [Google Scholar] [CrossRef] [PubMed]
- Sontakke, G.M.; Sakhare, S.S.; Chavan, R.D.; Hamand, V.G.; Hamand, V.G. Quality Control and Quality Assurance in Pharmaceutical Industry. Int. J. Adv. Res. Sci. Commun. Technol. 2023, 2, 501–510. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, R.; Chaurasia, D.K.; Shukla, D.T.P. A Review: Quality Assurance and Quality Control. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 45. [Google Scholar] [CrossRef]
- Pharmaceutical Industry Wastes $50 Billion a Year Due to Inefficient Manufacturing—The Source—Washington University in St. Louis. Available online: https://source.wustl.edu/2006/10/pharmaceutical-industry-wastes-50-billion-a-year-due-to-inefficient-manufacturing/ (accessed on 2 August 2023).
- Center for Drug Evaluation and Research. Q13 Continuous Manufacturing of Drug Substances and Drug Products Guidance for Industry; Center for Drug Evaluation and Research: Silver Spring, MD, USA, 2023.
- Domokos, A.; Nagy, B.; Gyürkés, M.; Farkas, A.; Tacsi, K.; Pataki, H.; Liu, Y.C.; Balogh, A.; Firth, P.; Szilágyi, B.; et al. End-to-End Continuous Manufacturing of Conventional Compressed Tablets: From Flow Synthesis to Tableting through Integrated Crystallization and Filtration. Int. J. Pharm. 2020, 581, 119297. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Nagy, Z.K.; Ni, X.W. Recent Advances in Continuous Crystallization. Chem. Eng. Res. Des. 2022, 186, 610–613. [Google Scholar] [CrossRef]
- Kshirsagar, S.; Szilagyi, B.; Nagy, Z.K. Experimental Design for the Efficient Determination of the Crystallization Kinetics of a Polymorphic System in Combined Cooling and Antisolvent Crystallization. Cryst. Growth Des. 2023, 23, 1486–1499. [Google Scholar] [CrossRef]
- Nagy, Z.K.; Fujiwara, M.; Braatz, R.D. Modelling and Control of Combined Cooling and Antisolvent Crystallization Processes. J. Process Control 2008, 18, 856–864. [Google Scholar] [CrossRef]
- Su, Q.; Nagy, Z.K.; Rielly, C.D. Pharmaceutical Crystallisation Processes from Batch to Continuous Operation Using MSMPR Stages: Modelling, Design, and Control. Chem. Eng. Process. Process Intensif. 2015, 89, 41–53. [Google Scholar] [CrossRef]
- Li, J.; Trout, B.L.; Myerson, A.S. Multistage Continuous Mixed-Suspension, Mixed-Product Removal (MSMPR) Crystallization with Solids Recycle. Org. Process Res. Dev. 2016, 20, 510–516. [Google Scholar] [CrossRef]
- Garslde, J.; Shah, M.B. Crystallization Kinetics from MSMPR Crystallizers. Ind. Eng. Chem. Process Des. Dev. 1980, 19, 509–514. [Google Scholar] [CrossRef]
- Du, X.; Xie, C.; Liu, B.; Yuan, P.; Sun, H. Continuous Crystallization Process of Cefminox Sodium in MSMPR Crystallizer. Cryst. Res. Technol. 2023, 58, 2200256. [Google Scholar] [CrossRef]
- Yazdanpanah, N.; Nagy, Z.K. The Handbook of Continuous Crystallization; Royal Society of Chemistry: London, UK, 2020. [Google Scholar] [CrossRef]
- Mullin, J.W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2001; ISBN 9780750648332. [Google Scholar]
- Som, S.; Singh, S.K.; Khatik, G.L.; Kapoor, B.; Gulati, M.; Kuppusamy, G.; Anandhakrishnan, N.K.; Kumar, B.; Yadav, A.K.; Kumar, R.; et al. Quality by Design-Based Crystallization of Curcumin Using Liquid Antisolvent Precipitation: Micromeritic, Biopharmaceutical, and Stability Aspects. Assay Drug Dev. Technol. 2020, 18, 11–33. [Google Scholar] [CrossRef] [PubMed]
- Ukrainczyk, M.; Hodnett, B.K.; Rasmuson, Å.C. Process Parameters in the Purification of Curcumin by Cooling Crystallization. Org. Process Res. Dev. 2016, 20, 1593–1602. [Google Scholar] [CrossRef]
- Heffernan, C.; Ukrainczyk, M.; Gamidi, R.K.; Hodnett, B.K.; Rasmuson, Å.C. Extraction and Purification of Curcuminoids from Crude Curcumin by a Combination of Crystallization and Chromatography. Org. Process Res. Dev. 2017, 21, 821–826. [Google Scholar] [CrossRef]
- Vashistha, M.; Cliffe, C.; Murphy, E.; Palanisamy, P.; Stewart, A.; Gadipelli, S.; Howard, C.A.; Brett, D.J.L.; Kumar, K.V. Dotted Crystallisation: Nucleation Accelerated, Regulated, and Guided by Carbon Dots. CrystEngComm 2023, 25, 4729–4744. [Google Scholar] [CrossRef]
- Kumar, K.V.; Ramisetty, K.A.; Devi, K.R.; Krishna, G.R.; Heffernan, C.; Stewart, A.A.; Guo, J.; Gadipelli, S.; Brett, D.J.L.; Favvas, E.P.; et al. Pure Curcumin Spherulites from Impure Solutions via Nonclassical Crystallization. ACS Omega 2021, 6, 23884–23900. [Google Scholar] [CrossRef]
- Thorat, A.A.; Dalvi, S.V. Particle Formation Pathways and Polymorphism of Curcumin Induced by Ultrasound and Additives during Liquid Antisolvent Precipitation. CrystEngComm 2014, 16, 11102–11114. [Google Scholar] [CrossRef]
- Yang, Y.; Song, L.; Gao, T.; Nagy, Z.K. Integrated Upstream and Downstream Application of Wet Milling with Continuous Mixed Suspension Mixed Product Removal Crystallization. Cryst. Growth Des. 2015, 15, 5879–5885. [Google Scholar] [CrossRef]
- Novick, A.; Szilard, L. Description of the Chemostat. Science 1950, 112, 715–716. [Google Scholar] [CrossRef]
So, g·L−1 | Dopt, min−1 | F = V × D, mL·min−1 | V, mL | Mopt, g·L−1 | Pmax, mg·L−1min−1 | s,/g·L−1 |
---|---|---|---|---|---|---|
5.5 | 0.064 | 6.411 | 100 | 1.133 | 72.63 | 3.603 |
5 | 0.050 | 4.957 | 100 | 1.031 | 51.10 | 3.325 |
4.5 | 0.037 | 3.732 | 100 | 0.929 | 34.66 | 3.047 |
4 | 0.027 | 2.718 | 100 | 0.827 | 22.47 | 2.769 |
3.5 | 0.019 | 1.898 | 100 | 0.725 | 13.76 | 2.491 |
3 | 0.013 | 1.256 | 100 | 0.623 | 7.82 | 2.213 |
2.5 | 0.008 | 0.771 | 100 | 0.521 | 4.02 | 1.935 |
2 | 0.004 | 0.426 | 100 | 0.419 | 1.79 | 1.657 |
1.5 | 0.002 | 0.199 | 100 | 0.317 | 0.632 | 1.379 |
1 | 0.001 | 0.069 | 100 | 0.215 | 0.149 | 1.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vashishtha, M.; Ranjbar, M.; Walker, G.; Kumar, K.V. Designing Continuous Crystallization Protocols for Curcumin Using PAT Obtained Batch Kinetics. Crystals 2024, 14, 1069. https://doi.org/10.3390/cryst14121069
Vashishtha M, Ranjbar M, Walker G, Kumar KV. Designing Continuous Crystallization Protocols for Curcumin Using PAT Obtained Batch Kinetics. Crystals. 2024; 14(12):1069. https://doi.org/10.3390/cryst14121069
Chicago/Turabian StyleVashishtha, Mayank, Mahmoud Ranjbar, Gavin Walker, and K. Vasanth Kumar. 2024. "Designing Continuous Crystallization Protocols for Curcumin Using PAT Obtained Batch Kinetics" Crystals 14, no. 12: 1069. https://doi.org/10.3390/cryst14121069
APA StyleVashishtha, M., Ranjbar, M., Walker, G., & Kumar, K. V. (2024). Designing Continuous Crystallization Protocols for Curcumin Using PAT Obtained Batch Kinetics. Crystals, 14(12), 1069. https://doi.org/10.3390/cryst14121069