Impact of Dispersion of Nanoscale Particles on the Properties of Nematic Liquid Crystals
<p>Variations of real (ε′) and imaginary (ε″) parts of complex dielectric constant at 20 °C for (<b>a</b>) pristine and (<b>b</b>) diamond nanoparticles (NPs) (2 wt%) dispersed nematic E7 [<a href="#B41-crystals-09-00475" class="html-bibr">41</a>].</p> "> Figure 2
<p>Variations of conductivity with concentration of diamond NPs dispersed (<b>a</b>) pure nematic E7 and (<b>b</b>) impure nematic E7. Curves 1 and 2 refer to the temperature 20 and 80 °C, respectively [<a href="#B41-crystals-09-00475" class="html-bibr">41</a>].</p> "> Figure 3
<p>Curves of (<b>a</b>) close aperture and (<b>b</b>) open aperture of z-scan measurements of various concentrations of Fe<sub>3</sub>O<sub>4</sub> NPs dispersed in nematic E7 at constant intensity [<a href="#B44-crystals-09-00475" class="html-bibr">44</a>].</p> "> Figure 4
<p>Dielectric losses ε″ as a function of frequency (in Hz) for various concentrations of NPs at 30 °C (<b>a</b>) frequency range 100 Hz–100 KHz and (<b>b</b>) frequency range 100 KHz–40 MHz [<a href="#B3-crystals-09-00475" class="html-bibr">3</a>].</p> "> Figure 5
<p>Schematic representations of ions impurities trapping mechanism, (<b>a</b>) in the presence and (<b>b</b>) in the absence of NPs. White circles with black spot represent the positive ions, black spots the negative ions and big red circle the NPs [<a href="#B4-crystals-09-00475" class="html-bibr">4</a>].</p> "> Figure 6
<p>Schematic representation of the quantum dots (QDs) grafted with the surfactants; (<b>a</b>) native surfactant and (<b>b</b>–<b>f</b>) the new surfactants. The dotted lines indicate a possible depth of penetration of 4-cyano-4′-n-pentylbiphenyl (5CB) molecules into the QDs shell [<a href="#B37-crystals-09-00475" class="html-bibr">37</a>].</p> "> Figure 7
<p>Polarized optical microscope (POM) images of a conventional nematic cell and a cell with the doped QD-nematic liquid crystal (NLC) composite. The images (<b>a</b>) off state and (<b>b</b>) on state correspond to pure nematic whereas (<b>c</b>) off state and (<b>d</b>) on state to the QDs doped nematic [<a href="#B13-crystals-09-00475" class="html-bibr">13</a>].</p> "> Figure 8
<p>Variation of dielectric permittivity (<b>a</b>,<b>b</b>) and dielectric loss (<b>c</b>,<b>d</b>) of pristine and QDs (size 8.2 nm) dispersed nematic BBHA at fixed temperature 70 °C as a function of frequency, applied bias, and QDs concentrations for the planar aligned cells [<a href="#B16-crystals-09-00475" class="html-bibr">16</a>].</p> "> Figure 9
<p>Variation of (<b>a</b>) rise time and (<b>b</b>) fall time of pristine and QDs (size 8.2 nm) dispersed nematic BBHA at fixed applied voltage with temperature and QDs concentration [<a href="#B16-crystals-09-00475" class="html-bibr">16</a>].</p> "> Figure 10
<p>Variationof relative permittivity (<b>a</b>,<b>b</b>) and dielectric loss (<b>c</b>,<b>d</b>) at fixed temperature without bias (0 V) and with bias (24 V) of pristine and Cd<sub>1−x</sub>Zn<sub>x</sub>S/ZnS QDs dispersed nematic NLC2020 [<a href="#B14-crystals-09-00475" class="html-bibr">14</a>].</p> ">
Abstract
:1. Introduction
1.1. Scope of Paper
1.2. Nanoscale Nonmesogenic Materials (Nanoparticles and Quantum Dots)
1.3. Citation of Work Done
2. Dispersion of Nanoscale Materials in Nematic Liquid Crystals
3. Influence of Dispersion of Nanoscale Materials into Nematics on Their Properties
3.1. Dispersion of Nanoparticles in Nematics
3.2. Dispersion of Quantum Dots in Nematics
4. Conclusion and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Roohnikan, M.; Toader, V.; Rey, A.; Reven, L. Hydrogen-bonded liquid crystal nanocomposites. Langmuir 2016, 32, 8442–8450. [Google Scholar] [CrossRef]
- Singh, U.B.; Dhar, R.; Dabrowski, R.; Pandey, M.B. Influence of low concentration silver nanoparticles on the electric and electro-optical parameters of nematic liquid crystals. Liq. Cryst. 2013, 40, 774–782. [Google Scholar] [CrossRef]
- Yadav, S.P.; Manohar, R.; Singh, S. Effect of TiO2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal. Liq. Cryst. 2015, 42, 1095–1101. [Google Scholar] [CrossRef]
- Yadav, S.P.; Pande, M.; Manohar, R.; Singh, S. Applicability of TiO2 nanoparticle towards suppression of screening effect in nematic liquid crystal. J. Mol. Liq. 2015, 208, 34–37. [Google Scholar] [CrossRef]
- Pathak, G.; Katiyar, R.; Agrahari, K.; Srivastava, A.; Dabrowski, R.; Garbat, K.; Manohar, R. Analysis of birefringence property of three different nematic liquid crystals dispersed with TiO2 nanoparticles. Opto-Electron. Rev. 2018, 26, 11–18. [Google Scholar] [CrossRef]
- Dziaduszek, J.; Dabrowski, R.; Urban, S.; Garbat, K.; Glushchenko, A.; Czuprynski, K. Selected fluoro substituted phenyl tolane with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications. Liq. Cryst. 2017, 44, 1277–1292. [Google Scholar] [CrossRef]
- Mazur, R.; Piecek, W.; Raszewski, Z.; Morawiak, P.; Garbar, K.; Chojnowska, O.; Mrukiewicz, M.; Olifierczuk, M.; Kedzierski, J.; Dabrowski, R.; et al. Nematic liquid crystal mixtures for 3D active glasses application. Liq. Cryst. 2017, 44, 417–426. [Google Scholar]
- Liu, B.; Ma, Y.; Zhao, D.; Xu, L.; Liu, F.; Zhou, W.; Guo, L. Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. 2017, 10, 618–625. [Google Scholar] [CrossRef]
- Al-Zangana, S.; Turner, M.; Dierking, I. A comparison between size dependent paraelectric and ferroelectric BaTiO3 nanoparticle doped nematic and ferroelectric liquid crystals. J. Appl. Phys. 2017, 121, 085105–08510512. [Google Scholar] [CrossRef]
- Mouhli, A.; Ayeb, H.; Othman, T.; Fresnais, J.; Dupuis, V.; Nemitz, I.R.; Pandery, J.S.; Rosenblatt, C.; Sandre, O.; Lacaze, E. Influence of a dispersion of magnetic and nonmagnetic nanoparticles on the magnetic Fredericksz transition of the liquid crystal 5CB. Phys. Rev. E 2017, 96, 0127061–0127069. [Google Scholar] [CrossRef]
- Hsu, C.J.; Lin, L.J.; Huang, M.K.; Huang, C.Y. Electro-optical Effect of Gold Nanoparticle Dispersed in Nematic Liquid Crystals. Crystals 2017, 7, 287. [Google Scholar] [CrossRef]
- Lee, W.K.; Hwang, H.J.; Chao, M.J.; Park, H.G.; Han, J.W.; Song, S.; Jang, J.H.; Seo, D.S. CIS–ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale 2013, 5, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.J.; Park, H.G.; Jeong, H.C.; Lee, J.W.; Jung, Y.H.; Kim, D.H.; Kim, J.W.; Lee, J.W.; Seo, D.S. Superior fast switching of liquid crystal devices using graphene quantum dots. Liq. Cryst. 2014, 41, 761–767. [Google Scholar] [CrossRef]
- Rastogi, A.; Pathak, G.; Herman, J.; Srivastava, A.; Manohar, R. Cd1−XZnXS/ZnS core/shell quantum dots in nematic liquid crystals to improve material parameter for better performance of liquid crystal based devices. J. Mol. Liq. 2018, 255, 93–101. [Google Scholar] [CrossRef]
- Singh, U.B.; Pandey, M.B.; Dhar, R.; Verma, R.; Kumar, S. Effect of dispersion of CdSe quantum dots on phase transition, electrical and electro-optical properties of 4PP4BO. Liq. Cryst. 2016, 43, 1075–1082. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Joshi, B.; Singh, S. Pristine and quantum dots dispersed nematic liquid crystal: Impact of dispersion and applied voltage on dielectric and electro-optical properties. Opt. Mater. 2017, 69, 61–68. [Google Scholar] [CrossRef]
- Rastogi, A.; Agrahari, K.; Pathak, G.; Srivastava, A.; Herman, J.; Manohar, R. Study of an interesting physical mechanism of memory effect in nematic liquid crystal dispersed with quantum dots. Liq. Cryst. 2019, 46, 725–736. [Google Scholar] [CrossRef]
- Gdovonova, V.; Tomasovicova, N.; Ebner, N.; Toth-katona, T.; Zavisova, V.; Timko, M.; Kopcansky, P. Influence of the anisometry of magnetic particles on the isotropic–nematic phase transition. Liq. Cryst. 2014, 41, 1773–1777. [Google Scholar] [CrossRef]
- Maleki, A.; MajlesAra, M.H.; Saboohi, F. Dielectric properties of nematic liquid crystal doped with Fe3O4 nanoparticles. Ph. Transit. 2017, 90, 371–379. [Google Scholar] [CrossRef]
- Jamwal, G.; Prakash, J.; Chandran, A.; Gangwar, J.; Srivastava, A.K.; Biradar, A.M. Effect of nickel oxide nanoparticles on dielectric and optical properties of nematic liquid crystal. AIP Conf. Proc. 2015, 1675, 03006517. [Google Scholar]
- Garbovskiy, Y.; Glushckenko, A. Ferroelectric nanoparticles in liquid crystals: Recent progress and current challenges. Nanomaterials 2017, 7, 361. [Google Scholar] [CrossRef] [PubMed]
- Herrington, M.R.; Buchnev, O.; Kaczmarek, M.; Nandhakumar, I. The Effect of the Size of BaTiO3 Nanoparticles on the Electro-Optic Properties of Nematic Liquid Crystals. Mol. Cryst. Liq. Cryst. 2010, 527, 72–79. [Google Scholar] [CrossRef]
- Klein, S.; Richardson, R.M.; Greasty, R.; Jenkins, R.; Stone, J.; Thomas, M.R.; Sarua, A. New frontiers in anisotropic fluid–particle composites. Philos. Trans. R. Soc. A 2013, 371, 20120253. [Google Scholar] [CrossRef] [PubMed]
- Mertelj, A.; Lisjak, D.; Drofenik, D.; Copic, M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature 2013, 504, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Kmita, A.; Pribulova, A.; Holtzer, M.; Futas, P.; Roczniak, A. Use of specific properties of zinc ferrite in innovative technologies. Arch. Metall. Mater. 2016, 61, 2141–2146. [Google Scholar] [CrossRef]
- Thirupathi, G.; Singh, R. Magnetic properties of zinc ferrite nanoparticles. IEEE Trans. Magn. 2012, 48, 3630. [Google Scholar] [CrossRef]
- Srivastava, M.; Ojha, A.K.; Chaube, S.; Materny, A. Synthesis and optical characterization of non-crystalline NiFe2O4 structures. J. Alloys Compd. 2009, 481, 515–519. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.Y.; Lim, I.I.S.; Bao, K.; Mott, D.; Park, H.Y.; Luo, J.; Hao, S.L.; Zhong, C.L. Synthesis and characterization and potential application of MnZn ferrite and MnZn ferrite @ Au nanoparticles. J. Nanosci. Nanotech. 2009, 9, 3005–3012. [Google Scholar] [CrossRef] [PubMed]
- Mouli, K.C.; Joseph, T.; Ramam, K. Synthesis and magnetic studies of Co-Ni-Zn ferrite nanocrystals. J. Nanosci. Nanotech. 2009, 9, 5596–5599. [Google Scholar] [CrossRef]
- Lebourgeois, R.; Coillot, C. Mn-Zn ferrites for magnetic sensor in space application. J. Appl. Phys. 2008, 103, 07E510–07E513. [Google Scholar] [CrossRef]
- Hossain, A.K.M.A.; Biswas, T.S.; Yanagida, T.; Tanaka, H.; Tabata, H.; Kawai, T. Investigation of structural and magnetic properties of polycrystalline NiO50Zno.50-xMgxFe2O4 spinel ferrite. Mater. Chem. Phys. 2010, 120, 461–467. [Google Scholar] [CrossRef]
- Yaghmour, S.J.; Hafez, M.; Ali, K.; Elshirbeeny, W. The influence of zinc ferrites nanoparticles on the thermal, mechanical and magnetic properties of rubber nanocomposites. Polym. Compos. 2012, 4, 1672–1677. [Google Scholar] [CrossRef]
- Basu, R.; Iannacchione, G.S. Evidence of directed self-assembly of quantum dots in a nematic liquid crystal. Phys. Rev. E 2009, 80, 010701. [Google Scholar] [CrossRef] [PubMed]
- Hirst, L.S.; Kirchhoff, J.; Inman, R.; Ghosh, S. Quantum dot self-assembly in liquid crystal media. Proc. SPIE 2010, 7618, 76180F. [Google Scholar]
- Kinkead, B.; Hegmann, T. Effect of size, capping agent and concentration of CdSe and CdTe quantum dots doped into nematic liquid crystal on the optical and electro-optical properties of the final colloidal liquid crystal mixture. J. Mater Chem. 2010, 20, 448–458. [Google Scholar] [CrossRef]
- Mirzaei, J.; Urbanski, M.; Yu, K.; Kitzerow, S.H.; Hegmann, T. Nanocomposites of a nematic liquid crystal doped with magic sized CdSe quantum dots. J. Mater. Chem. 2011, 21, 12710–12716. [Google Scholar] [CrossRef]
- Prodanov, M.F.; Pogorelova, N.V.; Kryshtal, A.P.; Klymchenko, A.S.; Mely, Y.; Semynozhenko, V.P.; Krivoshey, A.I.; Reznikov, Y.A.; Yarmolenko, S.N.; Goodby, J.W.; et al. Thermodynamically stable dispersions of quantum dots in a nematic liquid crystal. Langmuir 2013, 29, 9301–9309. [Google Scholar] [CrossRef]
- Petrescu, E.; Cirtoaje, C.; Danila, O. Dynamic behaviour of nematic liquid crystalline mixture with quantum dots in electric field. Beilstein J. Nanotechnol. 2018, 9, 399–406. [Google Scholar] [CrossRef]
- Bae, W.K.; Char, K.; Hur, H.; Lee, S. Single step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 2008, 20, 531–539. [Google Scholar] [CrossRef]
- Son, D.I.; Kwon, B.W.; Park, D.H.; Seo, W.S.; Yi, Y.; Angadi, B.; Lee, C.L.; Choi, W.K. Emissive ZnO-graphene quantum dots for white light emitting diods. Nat. Nanotechnol. 2012, 7, 465–471. [Google Scholar] [CrossRef]
- Tomylko, S.; Yaroshchuk, O.; Kovalchuk, O.; Maschke, U.; Yamaguchi, R. Dielectric properties of nematic liquid crystal modified with diamond nanoparticles. Ukr. J. Phys. 2012, 57, 239–243. [Google Scholar]
- Liao, S.W.; Hsieh, C.T.; Kuo, C.C.; Huang, C.Y. Voltageassisted ion reduction in liquid crystal-silica nanoparticles dispersions. Appl. Phys. Lett. 2012, 101, 161906–1619064. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Mishra, A.K.; Pandey, K.K.; Manohar, R. Study on dielectric and optical properties of ZnO doped nematic liquid crystal in low frequency region. Chem. Rap. Commun. 2013, 1, 20–26. [Google Scholar]
- Iranizad, E.S.; Dehghani, Z.; Nadafan, M. Nonlinear optical properties of nematic liquid crystal doped with different compositional percentage of synthesis of Fe3O4 nanoparticles. J. Mol. Liq. 2014, 190, 6–9. [Google Scholar] [CrossRef]
- Blinov, L.M.; Chigrinov, V.G. Electrooptics Effects in Liquid Crystal Materials; Springer: New York, NY, USA, 1996. [Google Scholar]
- Zhang, Y.; Liu, Q.; Mundoor, H.; Yuan, Y.; Smalyukh, I.I. Metal nanoparticle dispersion, alignment and assembly in nematic liquid crystals for applications in switchable plasmoniccolor filters and E- polarizers. ACS Nano 2015, 9, 3097–3108. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Lin, R.J.; Tien, C.L.; Yeh, S.M. Enhanced photoluminescence in gold nanoparticles doped homogeneous planar nematic liquid crystals. Adv. Cond. Met. Phys. 2018, 2018. [Google Scholar] [CrossRef]
- Mishra, M.; Dabrowski, R.S.; Dhar, R. Thermodynamic, optical, electrical and electro-optic studies of a room temperature nematic liquid crystal 4-pentyl-4′-cyanobiphenyl dispersed with barium titanate nanoparticles. J. Mol. Liq. 2016, 213, 247–254. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, H.; Han, Y.; Liu, P.; Zhang, S.; Wang, P.; Cheng, Y.; Zhao, H. Rutile TiO2 microspheres with exposed nano acicular single crystal for dye sensitized solar cells. Nano Res. 2011, 4, 938–947. [Google Scholar] [CrossRef]
- Uemura, S. Low frequency dielectric behaviour of polyvinylidene fluoride. J. Polym. Sci. 1972, 10, 1177–1188. [Google Scholar]
- Choudhary, A.; George, T.F.; Li, G. Conjugation of nanomaterials and nematic liquid crystals for futuristic applications and biosensors. Biosensors 2018, 8, 69. [Google Scholar] [CrossRef]
- Urbanski, M. On the impact of nanoparticl doping on the electro-optical response of nematic hosts. Liq. Cryst. Today 2014, 24, 102–115. [Google Scholar] [CrossRef]
- Qi, H.; Hegmann, T. Liquid crystal-gold nanoparticle composites. Liq. Cryst. Today 2011, 20, 102–114. [Google Scholar] [CrossRef]
- Choudhary, A.; Singh, G.; Biradar, A.M. Advances in gold nanoparticle- liquid crystal composites. Nanoscale 2014, 6, 7743–7756. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.P.; Singh, S. Carbon nanotube dispersion in nematic liquid crystals: An overview. Prog. Mater. Sci. 2016, 80, 38–76. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S. Impact of Dispersion of Nanoscale Particles on the Properties of Nematic Liquid Crystals. Crystals 2019, 9, 475. https://doi.org/10.3390/cryst9090475
Singh S. Impact of Dispersion of Nanoscale Particles on the Properties of Nematic Liquid Crystals. Crystals. 2019; 9(9):475. https://doi.org/10.3390/cryst9090475
Chicago/Turabian StyleSingh, Shri. 2019. "Impact of Dispersion of Nanoscale Particles on the Properties of Nematic Liquid Crystals" Crystals 9, no. 9: 475. https://doi.org/10.3390/cryst9090475
APA StyleSingh, S. (2019). Impact of Dispersion of Nanoscale Particles on the Properties of Nematic Liquid Crystals. Crystals, 9(9), 475. https://doi.org/10.3390/cryst9090475