Overall Warming with Reduced Seasonality: Temperature Change in New England, USA, 1900–2020
<p>Methodology outline.</p> "> Figure 2
<p>Location map of 44 USHCN stations in New England.</p> "> Figure 3
<p>Decadal temperature anomalies for New England, 1900–2020. (USHCN data for New England temperature anomalies: minimum, average, and maximum. Base period for the production of anomalies = 1951–1980. Error bars based on standard error.).</p> "> Figure 4
<p>Half-decadal (five-year) temperature anomalies for New England, 1900–2020 (USHCN data Figure 1951. Error bars based on standard error.).</p> "> Figure 5
<p>New England amplitude changes for minimum minus maximum anomalies, 1900–2020. (Graph plots the amplitude of New England’s USHCN minimum anomalies minus maximum anomalies by decade, 1900–2020. Base period for the production of anomalies = 1951–1980. Error bars based on standard error. Decreasing lines indicate maximum values increasing faster than minimum values and rising lines indicate minimum values rising faster than maximum values.).</p> "> Figure 6
<p>Decadal temperature anomalies for each state in New England, 1900–2020 (USHCN data for state temperature anomalies: minimum, average, and maximum. Base period for the production of anomalies = 1951–1980. Error bars based on standard error.).</p> "> Figure 7
<p>Decadal temperature anomalies for New England and the World, 1900–2020 (New England data from the USHCN data set. World data from the NASA Goddard Institute for Space Science GISS data set. Both data sets created anomalies from the 1951–1980 base period. Error bars based on standard error. For comparative purposes, starting points for both data sets were calibrated to zero by raising each line by the 1900s anomaly (0.313 for the World and 0.645 for New England)).</p> ">
Abstract
:1. Introduction
- To determine how the annual and seasonal minimum, average, and maximum temperatures have changed during this time period for New England and each of the states;
- To determine if New England, and any of the states, have passed the threshold of average temperature change beyond the 1.5 °C or 2 °C thresholds during the time period of 1900–2020.
2. Materials and Methods
- Annual (January, February, March, April, May, June, July, August, September, October, November, December).
- Spring (March, April, May).
- Summer (June, July, August).
- Fall (September, October, November).
- Winter (December of previous year, January of current year, February of current year).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
State | Annual a | Spring b | Summer c | Fall d | Winter e |
---|---|---|---|---|---|
Connecticut | |||||
(4 USHCN stations) | |||||
Tmax1900–09 (Mean, Stand. Error) | −0.49, 0.17 | −0.20, 0.29 | −0.24, 0.31 | −0.61, 0.22 | 0.84,0.42 |
Tmax2011–20 (Mean, Stand. Error) | 0.59, 0.14 | 0.37, 0.28 | 0.45, 0.10 | 0.39, 0.24 | 1.08, 0.45 |
Tmean1900–09 (Mean, Stand. Error) | −0.70, 0.21 | −0.38, 0.34 | −0.39, 0.37 | −0.69, 0.30 | −1.34, 0.58 |
Tmean2011–20 (Mean, Stand. Error) | 1.21, 0.18 | 0.85, 0.27 | 1.13, 0.15 | 1.06, 0.28 | 1.79, 0.63 |
Tmin1900–09 (Mean, Stand. Error) | −0.76, 0.20 | −0.49, 0.35 | −0.48, 0.35 | −0.50, 0.34 | −1.56, 0.60 |
Tmin2011–20 (Mean, Stand. Error) | 1.68, 0.24 | 1.28, 0.31 | 1.70, 0.20 | 1.58, 0.30 | 2.14, 0.67 |
Maine | |||||
(12 USHCN stations) | |||||
Tmax1900–09 (Mean, Stand. Error) | −0.37, 0.24 | −0.31, 0.40 | −0.44, 0.36 | 0.02, 0.37 | −0.74, 0.60 |
Tmax2011–20 (Mean, Stand. Error) | 0.84, 0.18 | 0.57, 0.36 | 0.55, 0.16 | 1.07, 0.38 | 1.10, 0.51 |
Tmean1900–09 (Mean, Stand. Error) | −0.52, 0.21 | −0.38, 0.38 | −0.42, 0.29 | −0.13, 0.31 | −1.12, 0.64 |
Tmean2011–20 (Mean, Stand. Error) | 1.19, 0.19 | 0.72, 0.33 | 1.04, 0.14 | 1,28, 0.30 | 1.61, 0.57 |
Tmin1900–09 (Mean, Stand. Error) | −0.66, 0.22 | 0.45, 0.41 | −0.38, 0.26 | −0.28, 0.28 | −1.50, 0.69 |
Tmin2011–20 (Mean, Stand. Error) | 1.55, 0.20 | 0.91, 0.33 | 1.53, 0.13 | 1.50, 0.25 | 2.18, 0.66 |
Massachusetts | |||||
(12 USHCN stations) | |||||
Tmax1900–09 (Mean, Stand. Error) | −1.05, 0.22 | −0.81, 0.41 | −1.19, 0.38 | −0.99, 0.27 | −1.12, 0.55 |
Tmax2011–20 (Mean, Stand. Error) | 0.83, 0.20 | 0.52, 0.35 | 0.54, 0.22 | 0.63, 0.35 | 1.51, 0.57 |
Tmean1900–09 (Mean, Stand. Error) | −0.99, 0.19 | −0.79, 0.30 | −1.10, 0.29 | −0.86, 0.25 | −1.22, 0.53 |
Tmean2011–20 (Mean, Stand. Error) | 0.97, 0.20 | 0.54, 0.32 | 0.85, 0.19 | 0.80, 0.28 | 1.59, 0.60 |
Tmin1900–09 (Mean, Stand. Error) | −0.89, 0.17 | −0.61, 0.27 | −0.87, 0.25 | −0.76, 0.25 | −1.35, 0.52 |
Tmin2011–20 (Mean, Stand. Error) | 1.11, 0.24 | 0.60, 0.34 | 1.16, 0.19 | 0.87, 0.25 | 1.68, 0.67 |
New Hampshire | |||||
(5 USHCN stations) | |||||
Tmax1900–09 (Mean, Stand. Error) | −0.62, 0.23 | −0.64, 0.48 | −0.73, 0.41 | −0.32, 0.37 | −0.71, 0.61 |
Tmax2011–20 (Mean, Stand. Error) | 0.94, 0.23 | 0.78, 0.40 | 0.81, 0.19 | 0.88, 0.40 | 1.15, 0.56 |
Tmean1900–09 (Mean, Stand. Error) | −0.55, 0.17 | −0.33, 0.36 | −0.45, 0.24 | −0.47, 0.28 | −0.93, 0.48 |
Tmean2011–20 (Mean, Stand. Error) | 1.20, 0.20 | 0.80, 0.36 | 1.01, 0.16 | 1.16, 0.28 | 1.67, 0.61 |
Tmin1900–09 (Mean, Stand. Error) | −0.55, 0.17 | −0.33, 0.36 | −0.45, 0.24 | −0.47, 0.28 | −0.93, 0.48 |
Tmin2011–20 (Mean, Stand. Error) | 1.48, 0.21 | 0.77, 0.39 | 1.13, 0.16 | 1.45, 0.24 | 2.39, 0.71 |
Rhode Island | |||||
(3 USHCN stations) | |||||
Tmax1900–09 (Mean, Stand. Error) | −0.50, 0.19 | −0.33, 0.33 | −0.49, 0.27 | −0.32, 0.28 | −0.79, 0.52 |
Tmax2011–20 (Mean, Stand. Error) | 1.39, 0.20 | 1.12, 0.29 | 1.43, 0.21 | 1.22, 0.31 | 1.63, 0.54 |
Tmean1900–09 (Mean, Stand. Error) | −0.50, 0.19 | −0.33, 0.33 | −0.49, 0.27 | −0.32, 0.28 | −0.79, 0.52 |
Tmean2011–20 (Mean, Stand. Error) | 1.33, 0.18 | 0.99, 0.27 | 1.34, 0.20 | 1.23, 0.26 | 1.64, 0.59 |
Tmin1900–09 (Mean, Stand. Error) | −0.28, 0.15 | −0.09, 0.28 | −0.33, 0.19 | 0.09, 0.21 | −0.79, 0.38 |
Tmin2011–20 (Mean, Stand. Error) | 1.19, 0.14 | 0.94, 0.26 | 1.18, 0.13 | 1.18, 0.18 | 1.38, 0.41 |
Vermont | |||||
(8 USHCN stations) | |||||
Tmax1900–09 (Mean, Stand. Error) | −1.12, 0.20 | −1.21, 0.47 | −1.26, 0.36 | −0.76, 0.38 | −1.12, 0.60 |
Tmax2011–20 (Mean, Stand. Error) | 0.73, 0.22 | 0.39, 0.41 | 0.23, 0.20 | 0.82, 0.39 | 1.32, 0.55 |
Tmean1900–09 (Mean, Stand. Error) | −0.64, 0.17 | −0.58, 0.45 | −0.57, 0.28 | −0.43, 0.31 | −0.92, 0.59 |
Tmean2011–20 (Mean, Stand. Error) | 1.20, 0.24 | 0.64, 0.41 | 0.81, 0.17 | 1.21, 0.31 | 2.00, 0.69 |
Tmin1900–09 (Mean, Stand. Error) | −0.03, 0.19 | 0.12, 0.40 | 0.22, 0.28 | 0.02, 0.31 | −0.47, 0.62 |
Tmin2011–20 (Mean, Stand. Error) | 1.83, 0.24 | 1.00, 0.43 | 1.51, 0.14 | 1.65, 0.27 | 2.85, 0.76 |
New England | |||||
(44 USHCN stations) | |||||
Tmax1900–09 (Mean, Stand. Error) | −0.73, 0.21 | −0.62, 0.39 | −0.75, 0.34 | −0.57, 0.30 | −0.91, 0.54 |
Tmax2011–20 (Mean, Stand. Error) | 0.89, 0.19 | 0.62, 0.34 | 0.67, 0.17 | 0.84, 0.33 | 1.30, 0.52 |
Tmean1900–09 (Mean, Stand. Error) | −0.65, 0.19 | −0.48, 0.36 | −0.58, 0.30 | −0.44, 0.29 | −1.04, 0.56 |
Tmean2011–20 (Mean, Stand. Error) | 1.19, 0.19 | 0.76, 0.31 | 1.03, 0.16 | 1.12, 0.27 | 1.72, 0.60 |
Tmin1900–09 (Mean, Stand. Error) | −0.53, 0.17 | −0.31, 0.32 | −0.38, 0.25 | −0.32, 0.27 | −1.10, 0.52 |
Tmin2011–20 (Mean, Stand. Error) | 1.48, 0.19 | 0.92, 0.32 | 1.37, 0.14 | 1.37, 0.22 | 2.10, 0.61 |
References
- Keeling, C.D.; Bacastow, R.B.; Bainbridge, A.E.; Ekdahl, C.A., Jr.; Guenther, P.R.; Waterman, L.S.; Chin, J.F. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 1976, 28, 538–551. [Google Scholar]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef]
- Hansen, J.; Nazarenko, L.; Ruedy, R.; Sato, M.; Willis, J.; Del Genio, A.; Koch, D.; Lacis, A.; Lo, K.; Menon, S.; et al. Earth’s energy imbalance: Confirmation and implications. Science 2005, 308, 1431–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Available online: http://www.ipcc.ch/report/ar5/wg1/#.Uq4U93mA2Ul (accessed on 1 May 2021).
- IPCC (Intergovernmental Panel on Climate Change). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; 2018. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 6 November 2021).
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Karl, T.R.; Melillo, J.M.; Peterson, T.C.; Hassol, S.J. (Eds.) Global Climate Change Impacts in the United States; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Zickfeld, K.; Solomon, S.; Gilford, D.M. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases. Proc. Natl. Acad. Sci. USA 2017, 114, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Forster, P.M.; Maycock, A.C.; McKenna, C.M.; Smith, C.J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Chang. 2020, 10, 7–10. [Google Scholar] [CrossRef]
- Lau, L.C.; Lee, K.T.; Mohamed, A.R. Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment. Renew. Sustain. Energy Rev. 2012, 16, 5280–5284. [Google Scholar] [CrossRef]
- King, A.D.; Karoly, D.J.; Henley, B.J. Australian climate extremes at 1.5 C and 2 C of global warming. Nat. Clim. Chang. 2017, 7, 412–416. [Google Scholar] [CrossRef]
- Schleussner, C.F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E.M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 2016, 6, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.; Duan, Q.; Ji, D.; Li, H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Karmalkar, A.V.; Bradley, R.S. Consequences of global warming of 1.5 C and 2 C for regional temperature and precipitation changes in the contiguous United States. PLoS ONE 2017, 12, e0168697. [Google Scholar] [CrossRef] [Green Version]
- New England Foliage–Yankee New England. Available online: https://newengland.com/category/seasons/page/5/ (accessed on 26 July 2021).
- New England Regional Assessment Group (NERA). Preparing for a Changing Climate: The Potential Consequences of Climate Variability and Change: New England Regional Overview. In U.S. Global Change Research Program; University of New Hampshire: Durham, NH, USA, 2001; p. 88. [Google Scholar]
- Dupigny-Giroux, L.A.; Mecray, E.; Lemcke-Stampone, M.; Hodgkins, G.A.; Lentz, E.E.; Mills, K.E.; Lane, E.D.; Miller, R.; Hollinger, D.; Solecki, W.D.; et al. Chapter 18: Northeast. In Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment; US Global Change Research Program: Washington, DC, USA, 2018; Volume 2. [Google Scholar]
- Outdoor Industry Association. The Outdoor Recreation Economy; Outdoor Industry Association: Boulder, CO, USA, 2017; p. 19. [Google Scholar]
- Lopez, R.; Plesha, N.; Campbell, B.; Laughton, C. Northeast Economic Engine: Agriculture, Forest Products and Commercial Fishing; Farm Credit East: Enfield, CT, USA, 2015; p. 25. [Google Scholar]
- Becot, F.; Kolodinsky, J.; Conner, D. The Economic Contribution of the Vermont Maple Industry; Center for Rural Studies at the University of Vermont: Burlington, VT, USA, 2015. [Google Scholar]
- Leff, D.K. Maple Sugaring: Keeping it Real in New England; Wesleyan University Press: Middletown, CT, USA, 2015. [Google Scholar]
- Cooter, E.J.; Leduc, S.K. Recent frost date trends in the north-eastern USA. Int. J. Climatol. 1995, 15, 65–75. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; James, I.C.; Huntington, T.G. Historical changes in lake ice-out dates as indicators of climate change in New England, 1850–2000. Int. J. Climatol. J. R. Meteorol. Soc. 2002, 22, 1819–1827. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; Dudley, R.W.; Huntington, T.G. Changes in the timing of high river flows in New England over the 20th century. J. Hydrol. 2003, 278, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Hodgkins, G.A.; Dudley, R.W.; Huntington, T.G. Changes in the number and timing of ice-affected flow days on New England rivers, 1930–2000. Clim. Chang. 2005, 71, 319–340. [Google Scholar] [CrossRef]
- Huntington, T.G.; Hodgkins, G.A.; Keim, B.D.; Dudley, R.W. Changes in the proportion of precipitation occurring as snow in New England (1949–2000). J. Clim. 2004, 17, 2626–2636. [Google Scholar] [CrossRef]
- Wolfe, D.W.; Schwartz, M.D.; Lakso, A.N.; Otsuki, Y.; Pool, R.M.; Shaulis, N.J. Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. Int. J. Biometeorol. 2005, 49, 303–309. [Google Scholar] [CrossRef]
- Trombulak, S.C.; Wolfson, R. Twentieth-century climate change in New England and New York, USA. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Burakowski, E.A.; Wake, C.P.; Braswell, B.; Brown, D.P. Trends in wintertime climate in the northeastern United States: 1965–2005. J. Geophys. Res. Atmos. 2008, 113, D20. [Google Scholar] [CrossRef]
- Hayhoe, K.; Wake, C.P.; Huntington, T.G.; Luo, L.; Schwartz, M.D.; Sheffield, J.; Wood, E.; Anderson, B.; Bradbury, J.; DeGaetano, A.; et al. Past and future changes in climate and hydrological indicators in the US Northeast. Clim. Dyn. 2007, 28, 381–407. [Google Scholar] [CrossRef]
- Brown, P.J.; Bradley, R.; Keimig, F. Changes in extreme climate indices for the northeastern United States, 1870–2005. J. Clim. 2010, 23, 6555–6572. [Google Scholar] [CrossRef]
- Thibeault, J.M.; Seth, A. Changing climate extremes in the Northeast United States: Observations and projections from CMIP5. Clim. Chang. 2014, 127, 273–287. [Google Scholar] [CrossRef]
- Runkle, J.; Kunkel, K.E.; Easterling, D.; Stewart, B.C.; Champion, S.; Stevens, L.; Frankson, R.; Sweet, W. State Climate Summaries: Rhode Island; NOAA Technical Report NESDIS 149-RI; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2017; p. 4.
- Keim, B.D.; Wilson, A.M.; Wake, C.P.; Huntington, T.G. Are there spurious temperature trends in the United States Climate Division database? Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Menne, M.J.; Williams, C.N., Jr.; Palecki, M.A. On the reliability of the US surface temperature record. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975; ISBN 9780852641996. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Tabari, H.; Marofi, S.; Aeini, A.; Talaee, P.H.; Mohammadi, K. Trend analysis of reference evapotranspiration in the western half of Iran. Agric. For. Meteorol. 2011, 151, 128–136. [Google Scholar] [CrossRef]
- Alexandersson, H.A. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Alexandersson, H.; Moberg, A. Homogenization of Swedish Temperature Data Part I: Homogeneity Test for Linear Trends. J. Climatol. 1997, 17, 25–34. [Google Scholar] [CrossRef]
- Elagib, N.A.; Mansell, M.G. Recent trends and anomalies in mean seasonal and annual temperatures over Sudan. J. Arid Environ. 2000, 45, 263–288. [Google Scholar] [CrossRef]
- Hulme, M.; Doherty, R.; Ngara, T.; New, M.; Lister, D. African climate change: 1900–2100. Clim. Res. 2001, 17, 145–168. [Google Scholar] [CrossRef] [Green Version]
- Lynch, C.; Seth, A.; Thibeault, J. Recent and projected annual cycles of temperature and precipitation in the Northeast United States from CMIP5. J. Clim. 2016, 29, 347–365. [Google Scholar] [CrossRef]
- Gille, S.T. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 2008, 21, 4749–4765. [Google Scholar] [CrossRef]
- Ross, R.S.; Krishnamurti, T.N.; Pattnaik, S.; Pai, D.S. Decadal surface temperature trends in India based on a new high-resolution data set. Sci. Rep. 2018, 8, 7452. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Ruedy, R.; Glascoe, J.; Sato, M. GISS analysis of surface temperature change. J. Geophys. Res. Atmos. 1999, 104, 30997–31022. [Google Scholar] [CrossRef]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, M.N.; Ouarda, T.B. On the critical values of the standard normal homogeneity test (SNHT). Int. J. Climatol. A J. R. Meteorol. Soc. 2007, 27, 681–687. [Google Scholar] [CrossRef]
- Wilcox, L.J.; Highwood, E.J.; Dunstone, N.J. The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett. 2013, 8, 024033. [Google Scholar] [CrossRef]
- Matzarakis, A.; Amelung, B. Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In Seasonal Forecasts, Climatic Change and Human Health; Springer: Dordrecht, The Netherlands, 2008; pp. 161–172. [Google Scholar]
- Poppick, L. Why is the Gulf of Maine warming faster than 99% of the ocean? EOS 2018, 99. [Google Scholar] [CrossRef]
- Thiebault, K.; Young, S. Snow cover change and its relationship with land surface temperature and vegetation in northeastern North America from 2000 to 2017. Int. J. Remote Sens. 2020, 41, 8453–8474. [Google Scholar] [CrossRef]
- Swanston, C.; Brandt, L.A.; Janowiak, M.K.; Handler, S.D.; Butler-Leopold, P.; Iverson, L.; Thompson, F.R., III; Ontl, T.A.; Shannon, P.D. Vulnerability of forests of the Midwest and Northeast United States to climate change. Clim. Chang. 2018, 146, 103–116. [Google Scholar] [CrossRef]
- Beaudin, L.; Huang, J.C. Weather conditions and outdoor recreation: A study of New England ski areas. Ecol. Econ. 2014, 106, 56–68. [Google Scholar] [CrossRef]
- Paradis, A.; Elkinton, J.; Hayhoe, K.; Buonaccorsi, J. Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America. Mitig. Adapt. Strateg. Glob. Chang. 2008, 13, 541–554. [Google Scholar] [CrossRef]
- DeSantis, R.D.; Moser, W.K.; Gormanson, D.D.; Bartlett, M.G.; Vermunt, B. Effects of climate on emerald ash borer mortality and the potential for ash survival in North America. Agric. For. Meteorol. 2013, 178, 120–128. [Google Scholar] [CrossRef]
- Union of Concerned Scientists (UCS). The Changing Northeast Climate; UCS Publications: Cambridge, MA, USA, 2006. [Google Scholar]
- MacKenzie, C.M.; Johnston, J.; Miller-Rushing, A.J.; Sheehan, W.; Pinette, R.; Primack, R. Advancing Leaf-Out and Flowering Phenology is Not Matched by Migratory Bird Arrivals Recorded in Hunting Guide’s Journal in Aroostook County, Maine. Northeast. Nat. 2019, 26, 561–579. [Google Scholar] [CrossRef]
- Skinner, C.B.; DeGaetano, A.T.; Chabot, B.F. Implications of twenty-first century climate change on Northeastern United States maple syrup production: Impacts and adaptations. Clim. Chang. 2010, 100, 685–702. [Google Scholar] [CrossRef]
- Hayhoe, K.; Wake, C.; Anderson, B.; Liang, X.Z.; Maurer, E.; Zhu, J.; Bradbury, J.; DeGaetano, A.; Stoner, A.M.; Wuebbles, D. Regional climate change projections for the Northeast USA. Mitig. Adapt. Strateg. Glob. Chang. 2008, 13, 425–436. [Google Scholar] [CrossRef]
- Betts, A.K. Vermont climate change indicators. Weather Clim. Soc. 2011, 3, 106–115. [Google Scholar] [CrossRef]
- Huntington, T.G.; Richardson, A.D.; McGuire, K.J.; Hayhoe, K. Climate and hydrological changes in the northeastern United States: Recent trends and implications for forested and aquatic ecosystems. Can. J. For. Res. 2009, 39, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Hausfather, Z.; Cowtan, K.; Menne, M.J.; Williams, C.N., Jr. Evaluating the impact of US historical climatology network homogenization using the US climate reference network. Geophys. Res. Lett. 2016, 43, 1695–1701. [Google Scholar] [CrossRef] [Green Version]
- Leeper, R.D.; Kochendorfer, J.; Henderson, T.A.; Palecki, M.A. Impacts of small-scale urban encroachment on air temperature observations. J. Appl. Meteorol. Climatol. 2019, 58, 1369–1380. [Google Scholar] [CrossRef]
State | Annual a | Spring b | Summer c | Fall d | Winter e | Over 1.5 °C f |
---|---|---|---|---|---|---|
Connecticut | ||||||
(4 USHCN stations) | ||||||
Maximum | 1.08 ** | 0.57 | 0.69 * | 1.00 ** | 1.92 ** | 10/15 |
Average | 1.91 ** | 1.23 ** | 1.52 ** | 1.68 ** | 3.13 ** | |
Minimum | 2.44 ** | 1.77 ** | 2.18 ** | 2.08 ** | 3.70 ** | |
Maine | ||||||
(12 USHCN stations) | ||||||
Maximum | 1.21 ** | 0.87 | 0.98 * | 1.05 * | 1.83 * | 7/15 |
Average | 1.70 ** | 1.10 * | 0.46 ** | 1.41 ** | 2.73 ** | |
Minimum | 2.21 ** | 1.36 ** | 1.91 ** | 1.78 ** | 3.67 ** | |
Massachusetts | ||||||
(12 USHCN stations) | ||||||
Maximum | 1.88 ** | 1.33 * | 1.73 ** | 1.63 ** | 2.63 ** | 12/15 |
Average | 1.97 ** | 1.33 ** | 1.94 ** | 1.66 ** | 2.81 ** | |
Minimum | 2.00 ** | 1.22 ** | 2.03 ** | 1.64 ** | 3.02 ** | |
New Hampshire | ||||||
(5 USHCN stations) | ||||||
Maximum | 1.57 ** | 1.42 * | 1.54 ** | 1.21 * | 1.87 * | 10/15 |
Average | 1.73 ** | 1.20 * | 1.53 ** | 1.47 ** | 2.50 ** | |
Minimum | 2.04 ** | 1.10 * | 1.58 ** | 1.92 ** | 3.32 ** | |
Rhode Island | ||||||
(3 USHCN stations) | ||||||
Maximum | 2.13 ** | 1.71 ** | 2.07 ** | 1.96 ** | 2.54 ** | 11/15 |
Average | 1.83 ** | 1.33 ** | 1.83 ** | 1.55 ** | 2.44 ** | |
Minimum | 1.47 ** | 1.03 ** | 1.50 ** | 1.09 ** | 2.17 ** | |
Vermont | ||||||
(8 USHCN stations) | ||||||
Maximum | 1.85 ** | 1.60 ** | 1.49 ** | 1.58 ** | 2.44 ** | 10/15 |
Average | 1.84 ** | 1.22 * | 1.37 ** | 1.64 ** | 2.92 ** | |
Minimum | 1.87 ** | 0.88 | 1.30 ** | 1.64 ** | 3.33 ** | |
New England | ||||||
(44 USHCN stations) | ||||||
Maximum | 1.62 ** | 1.25 * | 1.42 ** | 1.40 ** | 2.21 ** | 10/15 |
Average | 1.83 ** | 1.23 ** | 1.61 ** | 1.57 ** | 2.75 ** | |
Minimum | 2.01 ** | 1.23 * | 1.75 ** | 1.69 ** | 3.20 ** |
State | Annual a | Spring b | Summer c | Fall d | Winter e | Over 1.5 °C f |
---|---|---|---|---|---|---|
Connecticut | ||||||
(4 USHCN stations) | ||||||
Maximum | 1.25 ** | 0.21 | 0.73 | 1.08 * | 3.04** | 10/15 |
Average | 2.32 ** | 0.97 | 1.73 * | 1.89 * | 4.73 ** | |
Minimum | 2.98 ** | 1.66 ** | 2.50 ** | 2.40 ** | 5.38 ** | |
Maine | ||||||
(12 USHCN stations) | ||||||
Maximum | 1.41 ** | 0.04 | 1.59 * | 1.04 | 2.71 * | 9/15 |
Average | 1.89 ** | 0.36 | 1.82 ** | 1.48 * | 3.54 ** | |
Minimum | 2.37 ** | 0.69 | 1.99 ** | 1.94 ** | 4.50 ** | |
Massachusetts | ||||||
(12 USHCN stations) | ||||||
Maximum | 2.05 ** | 0.52 | 2.39 ** | 1.56 * | 3.61 ** | 12/15 |
Average | 2.16 ** | 0.7 | 2.39 ** | 1.70 * | 3.83 ** | |
Minimum | 2.29 ** | 0.91 | 2.28 ** | 1.74 ** | 4.26 ** | |
New Hampshire | ||||||
(5 USHCN stations) | ||||||
Maximum | 1.53 ** | 0.25 | 2.09 * | 0.91 | 2.72 * | 10/15 |
Average | 1.68 ** | 0.3 | 1.70 * | 1.24 | 3.29 ** | |
Minimum | 2.15 ** | 0.57 | 1.64 ** | 1.91 * | 4.31 ** | |
Rhode Island | ||||||
(3 USHCN stations) | ||||||
Maximum | 2.40 ** | 1.06 | 2.26 ** | 2.17 ** | 3.72 ** | 10/15 |
Average | 2.06 ** | 0.8 | 2.01 ** | 1.79 * | 3.70 ** | |
Minimum | 1.48 ** | 0.38 | 1.51 ** | 1.25 ** | 2.73 ** | |
Vermont | ||||||
(8 USHCN stations) | ||||||
Maximum | 1.89 ** | 0.49 | 2.15 ** | 1.41 | 3.27 ** | 8/15 |
Average | 1.81 ** | 0.23 | 1.67 * | 1.47 * | 3.70 ** | |
Minimum | 1.62 ** | −0.15 | 1.17 * | 1.36 | 3.77 ** | |
New England | ||||||
(44 USHCN stations) | ||||||
Maximum | 1.76 ** | 0.43 | 1.87 * | 1.36 | 3.18 ** | 12/15 |
Average | 1.99 ** | 0.56 | 1.89 ** | 1.60 * | 3.80 ** | |
Minimum | 2.15 ** | 0.68 | 1.85 ** | 1.77 ** | 4.16** |
Level | Annual a | Spring b | Summer c | Fall d | Winter e |
---|---|---|---|---|---|
Complete Period (2011–2020) minus (1900–1909) | |||||
Maximum | 1.62 ** | 1.25 * | 1.42 ** | 1.24 ** | 2.01 ** |
Average | 1.83 ** | 1.23 ** | 1.61 ** | 1.57 * | 2.75 ** |
Minimum | 2.01 ** | 1.23 * | 1.75 ** | 1.70 * | 3.20** |
First Warming Period (1950–1959) minus (1900–1909) | |||||
Maximum | 1.00 ** | 0.56 | 0.74 | 0.88 * | 1.76 ** |
Average | 0.97 ** | 0.53 | 0.56 | 0.71 * | 2.00 ** |
Minimum | 0.89 ** | 0.48 | 0.31 | 0.51 | 2.19** |
Second Warming Period (2011–2020) minus (1960–1969) | |||||
Maximum | 1.13 ** | 0.87 * | 0.69 ** | 0.9 | 1.64 ** |
Average | 1.51 ** | 1.08 ** | 1.15 ** | 1.31 ** | 2.10 ** |
Minimum | 1.88 ** | 1.31 ** | 1.56 ** | 1.63 ** | 2.26** |
Second Warming Period as a Percent of Complete Period f | |||||
Maximum | 70% | 70% | 49% | 73% | 82% |
Average | 83% | 88% | 71% | 83% | 76% |
Minimum | 94% | 107% | 89% | 96% | 71% |
State | Station | Tmin | Tmean | Tmax |
---|---|---|---|---|
CT | USH00062658 | x | x | |
MA | USH00190120 | x | ||
MA | USH00193213 | x | x | |
MA | USH00196486 | x | ||
MA | USH00196681 | x | ||
MA | USH00199316 | x | ||
ME | USH00170100 | x | ||
ME | USH00170814 | x | x | x |
ME | USH00172765 | x | x | |
ME | USH00173944 | x | ||
ME | USH00176905 | x | ||
ME | USH00179891 | x | ||
NH | USH00270706 | x | ||
NH | USH00272999 | x | x | x |
RI | USH00370896 | x | ||
VT | USH00431243 | x | ||
VT | USH00431360 | x | x | x |
VT | USH00431580 | x | ||
VT | USH00432769 | x | ||
VT | USH00437607 | x | ||
VT | USH00437612 | x |
10 Year Data | Five Year Data | |||
---|---|---|---|---|
State | Full Set a | Selected b | Full Set a | Selected b |
Connecticut | ||||
(4 USHCN stations) | ||||
Maximum | 1.36 | 1.33 | 1.67 | 1.67 |
Average | 1.91 | 1.91 | 2.32 | 2.32 |
Minimum | 2.44 | 2.51 | 2.98 | 2.98 |
Maine | ||||
(12 USHCN stations) | ||||
Maximum | 1.21 | 1.91 | 1.41 | 2.15 |
Average | 1.7 | 1.86 | 1.89 | 2.11 |
Minimum | 2.21 | 2.63 | 2.37 | 2.88 |
Massachusetts | ||||
(12 USHCN stations) | ||||
Maximum | 1.88 | 1.88 | 2.05 | 2.05 |
Average | 1.97 | 1.97 | 2.16 | 2.16 |
Minimum | 2 | 2.5 | 2.29 | 2.66 |
New Hampshire | ||||
(5 USHCN stations) | ||||
Maximum | 1.57 | 1.48 | 1.53 | 1.42 |
Average | 1.73 | 1.64 | 1.68 | 1.57 |
Minimum | 2.04 | 2.26 | 2.15 | 2.33 |
Rhode Island | ||||
(3 USHCN stations) | ||||
Maximum | 2.13 | 2.13 | 2.4 | 2.4 |
Average | 1.83 | 1.83 | 2.06 | 2.06 |
Minimum | 1.47 | 1.37 | 1.48 | 1.2 |
Vermont | ||||
(8 USHCN stations) | ||||
Maximum | 1.85 | 2.03 | 1.89 | 2.15 |
Average | 1.84 | 1.81 | 2.06 | 2.06 |
Minimum | 1.87 | 2.18 | 1.62 | 1.97 |
New England | ||||
(44 USHCN stations) | ||||
Maximum | 1.67 | 1.76 | 1.83 | 1.9 |
Average | 1.83 | 1.84 | 1.99 | 2 |
Minimum | 2.01 | 2.24 | 2.15 | 2.34 |
Region | Annual | Spring | Summer | Fall | Winter |
---|---|---|---|---|---|
CT | |||||
Maximum | p < 0.0001 | p < 0.003 | p < 0.012 | p < 0.0001 | p < 0.0001 |
Average | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Minimum | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
ME | |||||
Maximum | p < 0.0001 | p < 0.014 | p < 0.0001 | p < 0.041 | p < 0.003 |
Average | p < 0.0001 | p < 0.002 | p < 0.001 | p < 0.0001 | p < 0.0001 |
Minimum | p < 0.0001 | p < 0.001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
MA | |||||
Maximum | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Average | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Minimum | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
NH | |||||
Maximum | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.028 | p < 0.004 |
Average | p < 0.0001 | p < 0.001 | p < 0.0001 | p < 0.001 | p < 0.001 |
Minimum | p < 0.0001 | p < 0.002 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
RI | |||||
Maximum | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Average | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Minimum | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.1450 | p < 0.0001 |
VT | |||||
Maximum | p < 0.0001 | p < 0.005 | p < 0.021 | p < 0.036 | p < 0.002 |
Average | p < 0.0001 | p < 0.007 | p < 0.0001 | p < 0.002 | p < 0.0001 |
Minimum | p < 0.0001 | p < 0.022 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
New England | |||||
Maximum | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.001 | p < 0.0001 |
Average | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Minimum | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Breaking Points | Temperature | ||
---|---|---|---|
Stations | Minimum | Maximum | Equipment Change |
CT | |||
USH00062658 | 1982 | 1918 | |
USH00063207 | 2000 | 1907 | |
USH00067970 | 1951 | 1972 | |
USH00068138 | 1982 | 1982 | New equipment 1982–01–01 |
ME | |||
USH00170100 | 2004 | p = 0.557 | |
USH00170814 | 1997 | p = 0.062 | New equipment 1997–01–01 |
USH00171628 | 1943 | 1929 | |
USH00172426 | 2005 | 1948 | No data available |
USH00172765 | 1997 | p = 0.068 | |
USH00173046 | 1985 | 1924 | |
USH00173944 | 1929 | 1997 | |
USH00174566 | 1926 | 1978 | |
USH00175304 | 1936 | 1997 | |
USH00176905 | 1939 | 1940 | |
USH00176937 | 1997 | 1997 | New equipment 1997–01–01 |
USH00179891 | 2014 | 1997 | |
MA | |||
USH00190120 | 1960 | 1989 | |
USH00190535 | 1948 | 1928 | |
USH00190736 | 1989 | 1940 | |
USH00193213 | 1997 | 1981 | |
USH00194105 | 1997 | 1940 | |
USH00195246 | 1927 | 1948 | New equipment 1948–06–01 |
USH00196486 | 1989 | 1924 | No data available |
USH00196681 | 1931 | 1929 | No data available |
USH00196783 | 1926 | 1940 | |
USH00198367 | 1987 | 1926 | |
USH00198757 | 1987 | 1940 | |
USH00199316 | 1961 | 1985 | No data available |
NH | |||
USH00270706 | p = 0.237 | No data available | |
USH00272174 | 1979 | 1926 | |
USH00272999 | 2004 | 2009 | |
USH00273850 | 1989 | 1978 | New equipment 1989–02–08 (89–12–01) |
USH00274399 | 1940 | 1940 | |
RI | |||
USH00370896 | 1907 | 1928 | No data available |
USH00374266 | 1998 | 1972 | |
USH00376698 | 1997 | 1940 | |
VT | |||
USH00431081 | 1997 | 1986 | |
USH00431243 | 1997 | 1997 | No data available |
USH00431360 | 1903 | 1909 | No data available |
USH00431580 | 2005 | 1935 | New equipment 2005–07–28 |
USH00432769 | 1997 | 1926 | |
USH00437054 | 1997 | 1943 | |
USH00437607 | 1994 | 1997 | |
USH00437612 | 1997 | 1926 |
10 Year Data | Five Year Data | |||
---|---|---|---|---|
State | Full Set a | Selected b | Full Set a | Selected b |
Connecticut | ||||
(4 USHCN stations) | ||||
Maximum | 1.36 | 1.48 | 1.64 | 1.61 |
Average | 1.91 | 1.98 | 2.32 | 2.35 |
Minimum | 2.44 | 2.48 | 2.98 | 3.1 |
Maine | ||||
(12 USHCN stations) | ||||
Maximum | 1.21 | 1.18 | 1.41 | 1.4 |
Average | 1.7 | 1.77 | 1.89 | 2.05 |
Minimum | 2.21 | 2.35 | 2.37 | 2.66 |
Massachusetts | ||||
(12 USHCN stations) | ||||
Maximum | 1.88 | 1.81 | 2.05 | 2.02 |
Average | 1.97 | 1.97 | 2.16 | 2.16 |
Minimum | 2 | 2 | 2.29 | 2.29 |
New Hampshire | ||||
(5 USHCN stations) | ||||
Maximum | 1.57 | 1.57 | 1.53 | 1.53 |
Average | 1.73 | 1.51 | 1.68 | 1.4 |
Minimum | 2.04 | 1.55 | 2.15 | 1.58 |
Rhode Island | ||||
(3 USHCN stations) | ||||
Maximum | 2.13 | 2.13 | 2.4 | 2.4 |
Average | 1.83 | 1.83 | 2.06 | 2.06 |
Minimum | 1.47 | 1.47 | 1.48 | 1.48 |
Vermont | ||||
(8 USHCN stations) | ||||
Maximum | 1.85 | 1.85 | 1.89 | 1.89 |
Average | 1.84 | 1.93 | 2.06 | 2.12 |
Minimum | 1.87 | 1.99 | 1.62 | 1.74 |
New England | ||||
(44 USHCN stations) | ||||
Maximum | 1.67 | 1.67 | 1.82 | 1.81 |
Average | 1.83 | 1.83 | 1.99 | 2.02 |
Minimum | 2.01 | 1.97 | 2.15 | 2.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, S.S.; Young, J.S. Overall Warming with Reduced Seasonality: Temperature Change in New England, USA, 1900–2020. Climate 2021, 9, 176. https://doi.org/10.3390/cli9120176
Young SS, Young JS. Overall Warming with Reduced Seasonality: Temperature Change in New England, USA, 1900–2020. Climate. 2021; 9(12):176. https://doi.org/10.3390/cli9120176
Chicago/Turabian StyleYoung, Stephen S., and Joshua S. Young. 2021. "Overall Warming with Reduced Seasonality: Temperature Change in New England, USA, 1900–2020" Climate 9, no. 12: 176. https://doi.org/10.3390/cli9120176
APA StyleYoung, S. S., & Young, J. S. (2021). Overall Warming with Reduced Seasonality: Temperature Change in New England, USA, 1900–2020. Climate, 9(12), 176. https://doi.org/10.3390/cli9120176