Identification of Olfactory Receptors Responding to Androstenone and the Key Structure Determinant in Domestic Pig
<p>Transcriptomic change in pigs’ olfactory epithelium upon androstenone treatment. (<b>a</b>) Flowchart of sampling and transcriptome sequencing. (<b>b</b>) tSNE clustering of RNA-seq samples; red and blue represent samples from the control group and the androstenone treatment group, respectively. (<b>c</b>) Volcano plot of DEGs. (<b>d</b>) Top 10 GO terms of the up-DEGs. (<b>e</b>) Top 10 GO terms of the down-DEGs.</p> "> Figure 2
<p>Response of the olfactory receptors to different concentrations of androstenone. (<b>a</b>) Flowchart of the heterologous expression and functional assay of ORs. (<b>b</b>) Response of the control group (not transfected with ORs) to androstenone. (<b>c</b>) Response of OR2D2 to androstenone. (<b>d</b>) Response of OR6X1 to androstenone. (<b>e</b>) Response of OR7D4 to androstenone. (<b>f</b>) Response of OR8D1 to androstenone. (<b>g</b>) Response of OR8D2 to androstenone. (<b>h</b>) Response of OR10V1 to androstenone. (<b>i</b>) Response of OR10Z1 to androstenone. The different colours of columns represent the different concentrations of adrostenone. The error bar represents SEM, * represents <span class="html-italic">p</span> < 0.05 and ** represents <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p>Potential key sites mediating the response to androstenone of pig OR7D4. (<b>a</b>) Molecular docking plot. Simulated docking results of pig OR7D4 with androstenone molecules marked in red. Binding cavity predicted are marked in blue. (<b>b</b>) Alignment of androstenone ORs of pigs. Relatively conserved sites in the binding cavity of pig OR7D4 are marked by arrows. Highly conserved loci are marked in red, with 10 loci between each black dot. Secondary structures are shown above the sequence.</p> "> Figure 4
<p>Evaluation of potential key sites mediating the response to androstenone of pig OR7D4. (<b>a</b>) Response of pig OR7D4-F178A compared to that of pig OR7D4 wild type. (<b>b</b>) Response of pig OR7D4-N195A compared to that of pig OR7D4 wild type. (<b>c</b>) Response of pig OR7D4-L199A compared to that of pig OR7D4 wild type. (<b>d</b>) Response of pig OR7D4-T203A compared to that of pig OR7D4 wild type. (<b>e</b>) Response of pig OR7D4-P210A compared to that of pig OR7D4 wild type. (<b>f</b>) Response of pig OR7D4-Y278A compared to that of pig OR7D4 wild type. (<b>g</b>) Response of pig OR7D4-T279A compared to that of pig OR7D4 wild type. The column height represents the response level of androstenone in the wild type control group (blue) and different mutation groups (red) when simulated with 200 μM androstenone, and the values of each group are presented as the ratio of the values detected relative to the control group. The error bar represents SEM. ** represents <span class="html-italic">p</span> < 0.01.</p> "> Figure 5
<p>The effect of polymorphism sites caused by different non-synonymous SNPs on the response level of pig OR7D4 to androstenone. (<b>a</b>) Response of pig OR7D4-P79L compared to that of pig OR7D4 wild type. (<b>b</b>) Response of pig OR7D4-M105G compared to that of pig OR7D4 wild type. (<b>c</b>) Response of pig OR7D4-V108F compared to that of pig OR7D4 wild type. (<b>d</b>) Response of pig OR7D4-M133V compared to that of pig OR7D4 wild type. (<b>e</b>) Response of pig OR7D4-A202T compared to that of pig OR7D4 wild type. (<b>f</b>) Response of pig OR7D4-A202V compared to that of pig OR7D4 wild type. The column height represents the response level of androstenone in the wild type control group (blue) and different mutation groups (red) when simulated with 200 μM androstenone, and the values of each group are presented as the ratio of the values detected relative to the control group. The error bar represents SEM. ** represents <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiment
2.2. RNA-Seq
2.3. Cloning of Olfactory Receptors
2.4. Cell Culture
2.5. Transfection
2.6. Stimulation and Measuring Activity of Olfactory Receptors
2.7. Protein Sequence Analysis
2.8. Statistical Analysis
3. Results
3.1. Transcriptomic Changes in Pigs’ Olfactory Epithelium Treated with Androstenone
3.2. Validation of Olfactory Receptors Responding to Androstenone
3.3. Screening Key Sites of the Pig OR7D4 Response to Androstenone Based on Amino Acid Conservation
3.4. Single-Nucleotide Polymorphisms Affect OR7D4 Responding to Androstenone
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lezama-García, K.; Mariti, C.; Mota-Rojas, D.; Martínez-Burnes, J.; Barrios-García, H.; Gazzano, A. Maternal Behaviour in Domestic Dogs. Int. J. Vet. Sci. Med. 2019, 7, 20–30. [Google Scholar] [CrossRef]
- Orihuela, A.; Alfonso, B.; Adolfo, C. Allonursing in Water Buffalo: Cooperative Maternal Behavior in Domestic Bovidae. J. Anim. Behav. Biometeorol. 2024, 12, 2024023. [Google Scholar] [CrossRef]
- Go, Y.; Niimura, Y. Similar Numbers but Different Repertoires of Olfactory Receptor Genes in Humans and Chimpanzees. Mol. Biol. Evol. 2008, 25, 1897–1907. [Google Scholar] [CrossRef]
- Mori, K.; Nagao, H.; Yoshihara, Y. The Olfactory Bulb: Coding and Processing of Odor Molecule Information. Science 1999, 286, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Lee, K.; Choi, H.; Choi, M.K.; Le, M.T.; Song, N.; Kim, J.H.; Seo, H.G.; Oh, J.W.; Lee, K.; et al. The Complete Swine Olfactory Subgenome: Expansion of the Olfactory Gene Repertoire in the Pig Genome. BMC Genom. 2012, 13, 584–595. [Google Scholar] [CrossRef]
- Durante, M.A.; Kurtenbach, S.; Sargi, Z.B.; Harbour, J.W.; Choi, R.; Kurtenbach, S.; Goss, G.M.; Matsunami, H.; Goldstein, B.J. Single-Cell Analysis of Olfactory Neurogenesis and Differentiation in Adult Humans. Nat. Neurosci. 2020, 23, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Manzini, I.; Schild, D.; Di Natale, C. Principles of Odor Coding in Vertebrates and Artificial Chemosensory Systems. Physiol. Rev. 2022, 102, 61–154. [Google Scholar] [CrossRef] [PubMed]
- Monahan, K.; Lomvardas, S. Monoallelic Expression of Olfactory Receptors. Annu. Rev. Cell Dev. Biol. 2015, 31, 721–740. [Google Scholar] [CrossRef]
- Shykind, B.M. Regulation of Odorant Receptors: One Allele at a Time. Hum. Mol. Genet. 2005, 14, 33–39. [Google Scholar] [CrossRef]
- Serizawa, S.; Miyamichi, K.; Sakano, H. One Neuron—One Receptor Rule in the Mouse Olfactory System. Trends Genet. 2004, 20, 648–653. [Google Scholar] [CrossRef]
- Frumin, I.; Sobel, N.; Gilad, Y. Does a Unique Olfactory Genome Imply a Unique Olfactory World? Nat. Neurosci. 2014, 17, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Malnic, B.; Hirono, J.; Sato, T.; Buck, L.B. Combinatorial Receptor Codes for Odors. Cell 1999, 96, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Xu, M.; Dong, J.; Cui, W.; Yuan, S. The Structure and Function of Olfactory Receptors. Trends Pharmacol. Sci. 2024, 45, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Matsunami, H. Synergism of Accessory Factors in Functional Expression of Mammalian Odorant Receptors. J. Biol. Chem. 2007, 282, 15284–15293. [Google Scholar] [CrossRef]
- Heydel, J.M.; Coelho, A.; Thiebaud, N.; Legendre, A.; Bon, A.M.L.; Faure, P.; Neiers, F.; Artur, Y.; Golebiowski, J.; Briand, L. Odorant-Binding Proteins and Xenobiotic Metabolizing Enzymes: Implications in Olfactory Perireceptor Events. Anat. Rec. 2013, 296, 1333–1345. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Gong, N.N.; Hu, X.S.; Ni, M.J.; Pasi, R.; Matsunami, H. Molecular Profiling of Activated Olfactory Neurons Identifies Odorant Receptors for Odors in Vivo. Nat. Neurosci. 2015, 18, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Von Der Weid, B.; Rossier, D.; Lindup, M.; Tuberosa, J.; Widmer, A.; Col, J.D.; Kan, C.; Carleton, A.; Rodriguez, I. Large-Scale Transcriptional Profiling of Chemosensory Neurons Identifies Receptor-Ligand Pairs in Vivo. Nat. Neurosci. 2015, 18, 1455–1463. [Google Scholar] [CrossRef]
- Archer, C.; Garcia, A.; Henderson, M.; McGlone, J.J. Olfactory Enrichment Using a Maternal Pheromone Improved Post-Weaning Pig Performance and Behavior. Front. Vet. Sci. 2022, 9, 965370. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.L.S. 5α-Androst-16-Ene-3-One:—Compound Responsible for Taint in Boar Fat. J. Sci. Food Agric. 1968, 19, 31–38. [Google Scholar] [CrossRef]
- Sankarganesh, D.; Kirkwood, R.N.; Nagnan-Le Meillour, P.; Angayarkanni, J.; Achiraman, S.; Archunan, G. Pheromones, Binding Proteins, and Olfactory Systems in the Pig (Sus Scrofa): An Updated Review. Front. Vet. Sci. 2022, 9, 989409. [Google Scholar] [CrossRef]
- Wysocki, C.J.; Preti, G. Facts, Fallacies, Fears, and Frustrations with Human Pheromones. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 2004, 281, 1201–1211. [Google Scholar] [CrossRef]
- McGlone, J.J.; Garcia, A.; Rakhshandeh, A. Multi-Farm Analyses Indicate a Novel Boar Pheromone Improves Sow Reproductive Performance. Animal 2019, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-Optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Y.; Matsunami, H.; Zhuang, H. Live-Cell Measurement of Odorant Receptor Activation Using a Real-Time CAMP Assay. J. Vis. Exp. 2017, 128, e55831. [Google Scholar] [CrossRef]
- Zhuang, H.; Matsunami, H. Evaluating Cell-Surface Expression and Measuring Activation of Mammalian Odorant Receptors in Heterologous Cells. Nat. Protoc. 2008, 3, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Nicoli, A.; Haag, F.; Marcinek, P.; He, R.; Kreißl, J.; Stein, J.; Marchetto, A.; Dunkel, A.; Hofmann, T.; Krautwurst, D.; et al. Modeling the Orthosteric Binding Site of the G Protein-Coupled Odorant Receptor OR5K1. J. Chem. Inf. Model. 2023, 63, 2014–2029. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Schöning-Stierand, K.; Diedrich, K.; Ehrt, C.; Flachsenberg, F.; Graef, J.; Sieg, J.; Penner, P.; Poppinga, M.; Ungethüm, A.; Rarey, M. ProteinsPlus: A Comprehensive Collection of Web-Based Molecular Modeling Tools. Nucleic Acids Res. 2022, 50, W611–W615. [Google Scholar] [CrossRef] [PubMed]
- Schöning-Stierand, K.; Diedrich, K.; Fährrolfes, R.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Steinegger, R.; Rarey, M. ProteinsPlus: Interactive Analysis of Protein–Ligand Binding Interfaces. Nucleic Acids Res. 2020, 48, W48–W53. [Google Scholar] [CrossRef]
- Fährrolfes, R.; Bietz, S.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Otto, T.; Volkamer, A.; Rarey, M. Proteins Plus: A Web Portal for Structure Analysis of Macromolecules. Nucleic Acids Res. 2017, 45, W337–W343. [Google Scholar] [CrossRef]
- Seeliger, D.; De Groot, B.L. Ligand Docking and Binding Site Analysis with PyMOL and Autodock/Vina. J. Comput. Aided. Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Maya, C. Using PyMOL to Understand Why COVID-19 Vaccines Save Lives. J. Chem. Educ. 2023, 100, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- Grantham, R. Amino Acid Difference Formula to Help Explain Protein Evolution. Science 1974, 185, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Zhuang, H.; Chi, Q.; Vosshall, L.B.; Matsunami, H. Genetic Variation in a Human Odorant Receptor Alters Odour Perception. Nature 2007, 449, 468–472. [Google Scholar] [CrossRef]
- Yang, M.; Geng, G.J.; Zhang, W.; Cui, L.; Zhang, H.X.; Zheng, J.L. SNP Genotypes of Olfactory Receptor Genes Associated with Olfactory Ability in German Shepherd Dogs. Anim. Genet. 2016, 47, 240–244. [Google Scholar] [CrossRef] [PubMed]
- de March, C.A.; Topin, J.; Bruguera, E.; Novikov, G.; Ikegami, K.; Matsunami, H.; Golebiowski, J. Odorant Receptor 7D4 Activation Dynamics. Angew. Chem. 2018, 130, 4644–4648. [Google Scholar] [CrossRef]
- Man, O.; Gilad, Y.; Lancet, D. Prediction of the Odorant Binding Site of Olfactory Receptor Proteins by Human–Mouse Comparisons. Protein Sci. 2004, 13, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Nishizumi, H.; Naritsuka, H.; Kiyonari, H.; Sakano, H. Sema7A/PlxnCl Signaling Triggers Activity-Dependent Olfactory Synapse Formation. Nat. Commun. 2018, 9, 1842. [Google Scholar] [CrossRef] [PubMed]
- Koerte, S.; Keesey, I.W.; Khallaf, M.A.; Cortés Llorca, L.; Grosse-Wilde, E.; Hansson, B.S.; Knaden, M. Evaluation of the DREAM Technique for a High-Throughput Deorphanization of Chemosensory Receptors in Drosophila. Front. Mol. Neurosci. 2018, 11, 413419. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Knoll, W. Odorant-Binding Proteins of Mammals. Biol. Rev. 2022, 97, 20–44. [Google Scholar] [CrossRef] [PubMed]
- Fischl, A.M.; Heron, P.M.; Stromberg, A.J.; McClintock, T.S. Activity-Dependent Genes in Mouse Olfactory Sensory Neurons. Chem. Senses 2014, 39, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Touhara, K. Mammalian Olfactory Receptors: Pharmacology, G Protein Coupling and Desensitization. Cell. Mol. Life Sci. 2009, 66, 3743–3753. [Google Scholar] [CrossRef]
- Horgue, L.F.; Assens, A.; Fodoulian, L.; Marconi, L.; Tuberosa, J.; Haider, A.; Boillat, M.; Carleton, A.; Rodriguez, I. Transcriptional Adaptation of Olfactory Sensory Neurons to GPCR Identity and Activity. Nat. Commun. 2022, 13, 2929. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Luo, M. Loss of CO2 Sensing by the Olfactory System of CNGA3 Knockout Mice. Curr. Zool. 2010, 56, 793–799. [Google Scholar] [CrossRef]
- Nagashima, A.; Touhara, K. Enzymatic Conversion of Odorants in Nasal Mucus Affects Olfactory Glomerular Activation Patterns and Odor Perception. J. Neurosci. 2010, 30, 16391–16398. [Google Scholar] [CrossRef]
- Kida, H.; Fukutani, Y.; Mainland, J.D.; de March, C.A.; Vihani, A.; Li, Y.R.; Chi, Q.; Toyama, A.; Liu, L.; Kameda, M.; et al. Vapor Detection and Discrimination with a Panel of Odorant Receptors. Nat. Commun. 2018, 9, 4556. [Google Scholar] [CrossRef] [PubMed]
- McClintock, T.S.; Wang, Q.; Sengoku, T.; Titlow, W.B.; Breheny, P. Mixture and Concentration Effects on Odorant Receptor Response Patterns in Vivo. Chem. Senses 2020, 45, 429–438. [Google Scholar] [CrossRef]
- Bolding, K.A.; Franks, K.M. Recurrent Cortical Circuits Implement Concentration-Invariant Odor Coding. Science 2018, 361, eaat6904. [Google Scholar] [CrossRef] [PubMed]
- Storace, D.A.; Cohen, L.B. Measuring the Olfactory Bulb Input-Output Transformation Reveals a Contribution to the Perception of Odorant Concentration Invariance. Nat. Commun. 2017, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- Bozza, T.; McGann, J.P.; Mombaerts, P.; Wachowiak, M. In Vivo Imaging of Neuronal Activity by Targeted Expression of a Genetically Encoded Probe in the Mouse. Neuron 2004, 42, 9–21. [Google Scholar] [CrossRef]
- Stank, A.; Kokh, D.B.; Fuller, J.C.; Wade, R.C. Protein Binding Pocket Dynamics. Acc. Chem. Res. 2016, 49, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Katada, S.; Hirokawa, T.; Oka, Y.; Suwa, M.; Touhara, K. Structural Basis for a Broad but Selective Ligand Spectrum of a Mouse Olfactory Receptor: Mapping the Odorant-Binding Site. J. Neurosci. 2005, 25, 1806–1815. [Google Scholar] [CrossRef]
- Baud, O.; Etter, S.; Spreafico, M.; Bordoli, L.; Schwede, T.; Vogel, H.; Pick, H. The Mouse Eugenol Odorant Receptor: Structural and Functional Plasticity of a Broadly Tuned Odorant Binding Pocket. Biochemistry 2011, 50, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, M.; Wootten, D.; Conner, M.T.; Simms, J.; Kendrick, R.; Logan, R.T.; Poyner, D.R.; Barwell, J. Lifting the Lid on GPCRs: The Role of Extracellular Loops. Br. J. Pharmacol. 2012, 165, 1688–1703. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ma, Z.; Pacalon, J.; Xu, L.; Li, W.; Belloir, C.; Topin, J.; Briand, L.; Golebiowski, J.; Cong, X. Extracellular Loop 2 of G Protein–Coupled Olfactory Receptors Is Critical for Odorant Recognition. J. Biol. Chem. 2022, 298, 102331. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.E.; Shim, T.; Yi, J.Y.; Kim, S.Y.; Park, S.H.; Kim, S.W.; Ronnett, G.V.; Moon, C. Odorant Receptors Containing Conserved Amino Acid Sequences in Transmembrane Domain 7 Display Distinct Expression Patterns in Mammalian Tissues. Mol. Cells 2017, 40, 954–965. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Luo, T.; Yang, S.; Zhang, A.; Tang, Y.; Chen, L.; Wang, J.; Zhao, Y.; Zhong, Z.; Li, X.; et al. Identification of Olfactory Receptors Responding to Androstenone and the Key Structure Determinant in Domestic Pig. Curr. Issues Mol. Biol. 2025, 47, 13. https://doi.org/10.3390/cimb47010013
Yang P, Luo T, Yang S, Zhang A, Tang Y, Chen L, Wang J, Zhao Y, Zhong Z, Li X, et al. Identification of Olfactory Receptors Responding to Androstenone and the Key Structure Determinant in Domestic Pig. Current Issues in Molecular Biology. 2025; 47(1):13. https://doi.org/10.3390/cimb47010013
Chicago/Turabian StyleYang, Peidong, Tingting Luo, Shuqi Yang, Anjing Zhang, Yuan Tang, Li Chen, Jinyong Wang, Yongju Zhao, Zhining Zhong, Xuemin Li, and et al. 2025. "Identification of Olfactory Receptors Responding to Androstenone and the Key Structure Determinant in Domestic Pig" Current Issues in Molecular Biology 47, no. 1: 13. https://doi.org/10.3390/cimb47010013
APA StyleYang, P., Luo, T., Yang, S., Zhang, A., Tang, Y., Chen, L., Wang, J., Zhao, Y., Zhong, Z., Li, X., Han, Z., Zhang, Y., Tang, Y., Ma, J., Jin, L., Long, K., Li, M., & Lu, L. (2025). Identification of Olfactory Receptors Responding to Androstenone and the Key Structure Determinant in Domestic Pig. Current Issues in Molecular Biology, 47(1), 13. https://doi.org/10.3390/cimb47010013