Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1—A Many-Sided Element of Cell Physiology and Pathology
<p>Schematic representation of the MINK1 protein structure, highlighting its major domains. The protein consists of an N-terminal domain (purple), a conserved kinase domain (blue) responsible for enzymatic activity, a coiled-coil region (residues 394–495; red) involved in actin regulation, a proline-rich region (yellow), and a GCK C-terminal domain (residues 953–1295; orange), containing WD-40 motifs crucial for substrate binding and protein–protein interactions. The GCK domain also includes a Citron-NIK-Homology (CNH) domain (green), implicated in additional regulatory functions.</p> "> Figure 2
<p>The signaling interactions between the Wnt/Frizzled pathway, MINK1, Prickle1, and their downstream effects on cellular processes. Fz—Frizzled; Dsh—Dishevelled; MINK1—Misshapen-like kinase 1; mTORC2—mammalian target of rapamycin complex 2; AKT—protein Kinase B; Vangl—Van Gogh-like protein; Prickle1—Prickle-like protein 1; Rab5—Ras-related protein Rab-5; CE—convergent extension; CLASP2—cytoplasmic linker associated protein 2; PHLDB2—pleckstrin homology-like domain Family B Member 2; and A/P axis—anterior–posterior axis, *—the possible inhibitors of the relevant components in the presented signaling pathways.</p> "> Figure 3
<p>MINK1 and RAS signaling interactions. ERK—extracellular signal-regulated kinase; MEK—mitogen-activated protein kinase kinase; RAS-GTP—Ras guanosine triphosphate; Raf—rapidly accelerated fibrosarcoma kinase; pERK—phosphorylated extracellular signal-regulated kinase; MINK1—Misshapen-like kinase 1; ROS—reactive oxygen species; MAP3K5—mitogen-activated protein kinase kinase kinase 5; MMK3/6—mitogen-activated protein kinase kinase 3/6; p38 MAPK—p38 mitogen-activated protein kinase; p21 WAF1/CIP1—p21 wild-type p53-activated fragment 1/cyclin-dependent kinase-interacting protein 1; Rap2—Ras-related protein Rap2; and TANC1—tetratricopeptide repeat, ankyrin repeat, and coiled-coil containing 1.</p> "> Figure 4
<p>MINK1 and JNK signaling pathway interaction. MAP4K4—mitogen-activated protein kinase kinase kinase kinase 4; MINK1—Misshapen-like kinase 1; TNIK—Traf2- and Nck-interacting kinase; DLK—dual leucine zipper kinase; JNK—c-Jun N-terminal kinase; c-JUN—c-Jun proto-oncogene; and SNHG14—small nucleolar RNA host gene 14.</p> "> Figure 5
<p>MINK1 and Hippo pathway regulation. ECM—extracellular matrix; Rap2—Ras-related protein 2; MINK1—Misshapen-like kinase 1; LATS1/2—large tumor suppressor kinase 1/2; and YAP/TAZ—Yes-associated protein/WW domain-containing transcription regulator 1.</p> "> Figure 6
<p>MINK1 and STRIPAK complex. STRIPAK—striatin-interacting phosphatase and kinase; STRN4—Striatin 4; PLK1—Polo-like kinase 1; CDK1—cyclin-dependent kinase 1; MINK1—Misshapen-like kinase 1; and PPP2CA—protein phosphatase 2 catalytic subunit A.</p> "> Figure 7
<p>MINK1 in immunity. SLE—systemic lupus erythematosus; OCR—open chromatin regions; TCR—T-cell receptor; ROS—reactive oxygen species; NLRP3—NOD-like receptor family pyrin domain containing 3; MINK1—Misshapen-like kinase 1; RA—rheumatoid arthritis; and SNHG14—small nucleolar RNA host gene 14.</p> "> Figure 8
<p>MINK1 as a key component in different cancer types. HNSC—head and neck squamous cell carcinoma; GBM—glioblastoma multiforme; OSCC—oral squamous cell carcinoma; PRICKLE—Prickle planar cell polarity protein; MINK1—Misshapen-like kinase 1; RICTOR—rapamycin-insensitive companion of mTOR; CLASP2—cytoplasmic linker-associated protein 2; LL5β—pleckstrin homology domain-containing family L member 5β; APC—adenomatous polyposis coli; and CRC—colorectal cancer.</p> "> Figure 9
<p>MINK1 in cardiovascular diseases. MINK1—Misshapen-like kinase 1; MAPK—mitogen-activated protein kinase; PI3K—phosphoinositide 3-kinase; AKT—AKT serine/threonine kinase; and OFT—outflow tract.</p> "> Figure 10
<p>MINK1 role in the nervous system and in neurodegenerative diseases. DLK—dual leucine zipper kinase; JNK—c-Jun N-terminal kinase; AMPA-R—alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; AD—Alzheimer’s disease; and MINK1—Misshapen-like kinase 1.</p> ">
Abstract
:1. Introduction
2. MINK1 Structure and Cellular Localization
3. Embryogenesis and Cellular Signaling Pathways
3.1. Wnt Signaling
3.1.1. MINK1 in Planar Cell Polarity and Convergent Extension
3.1.2. Interactions with Other Protein Complexes and the Implications for Cell Motility
3.2. RAS Proteins
3.3. JNK Signaling
MINK1 Interactions with the JNK Family
3.4. The Hippo Pathway
3.5. MINK1 in the STRIPAK Complexes
4. The Role of MINK1 in Immunological Processes and Diseases
4.1. Reactive Oxygen Species, Inflammation, and the Immune System
4.2. Autoimmune Diseases and Other Conditions
4.3. Viral Infections
4.4. MINK1 in Immunity
5. MINK1 in Cancer
5.1. Breast Cancer
5.2. Oral Squamous Cell Carcinoma
5.3. Colorectal Cancer
5.4. Other Malignancies
6. The Role of MINK1 in Other Systems and Pathological Conditions
6.1. Cardiovascular System and Hemostasis
6.2. Nervous System and Neurodegenerative Diseases
6.3. Other Systems and Conditions
7. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Z.; Shang, Y.; Yuan, Y.; He, Y.; Wasti, B.; Duan, W.; Ouyang, R.; Jia, J.; Xiao, B.; Zhang, D.; et al. MBD2 Mediates Th17 Cell Differentiation by Regulating MINK1 in Th17-Dominant Asthma. Front. Genet. 2022, 13, 959059. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of Rare Inherited and de Novo Variants in 2,871 Congenital Heart Disease Probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef]
- Larhammar, M.; Huntwork-Rodriguez, S.; Rudhard, Y.; Sengupta-Ghosh, A.; Lewcock, J.W. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons. J. Neurosci. 2017, 37, 11074–11084. [Google Scholar] [CrossRef]
- Nicke, B.; Bastien, J.; Khanna, S.J.; Warne, P.H.; Cowling, V.; Cook, S.J.; Peters, G.; Delpuech, O.; Schulze, A.; Berns, K.; et al. Involvement of MINK, a Ste20 Family Kinase, in Ras Oncogene-Induced Growth Arrest in Human Ovarian Surface Epithelial Cells. Mol. Cell 2005, 20, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.; Brown, G.; Wallin, C.; Tatusova, T.; Pruitt, K.; Maglott, D. Gene Help: Integrated Access to Genes of Genomes in the Reference Sequence Collection. In Gene Help [Internet]; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2006. [Google Scholar]
- Singh, P.P.; Arora, J.; Isambert, H. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes. PLoS Comput. Biol. 2015, 11, e1004394. [Google Scholar] [CrossRef]
- Dan, I.; Watanabe, N.M.; Kobayashi, T.; Yamashita-Suzuki, K.; Fukagaya, Y.; Kajikawa, E.; Kimura, W.K.; Nakashima, T.M.; Matsumoto, K.; Ninomiya-Tsuji, J.; et al. Molecular Cloning of MINK, a Novel Member of Mammalian GCK Family Kinases, Which Is up-Regulated during Postnatal Mouse Cerebral Development. FEBS Lett. 2000, 469, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Boyce, K.J.; Andrianopoulos, A. Ste20-Related Kinases: Effectors of Signaling and Morphogenesis in Fungi. Trends Microbiol. 2011, 19, 400–410. [Google Scholar] [CrossRef]
- Daulat, A.M.; Luu, O.; Sing, A.; Zhang, L.; Wrana, J.L.; McNeill, H.; Winklbauer, R.; Angers, S. Mink1 Regulates β-Catenin-Independent Wnt Signaling via Prickle Phosphorylation. Mol. Cell. Biol. 2012, 32, 173–185. [Google Scholar] [CrossRef]
- Qu, K.; Lu, Y.; Lin, N.; Singh, R.; Xu, X.; Payan, D.; Xu, D. Computational and Experimental Studies on Human Misshapen/NIK-Related Kinase MINK-1. Curr. Med. Chem. 2004, 11, 569–582. [Google Scholar] [CrossRef]
- Gohla, A.; Bokoch, G.M. 14-3-3 Regulates Actin Dynamics by Stabilizing Phosphorylated Cofilin. Curr. Biol. 2002, 12, 1704–1710. [Google Scholar] [CrossRef]
- Subramanian, R.R.; Masters, S.C.; Zhang, H.; Fu, H. Functional Conservation of 14-3-3 Isoforms in Inhibiting Bad-Induced Apoptosis. Exp. Cell Res. 2001, 271, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Suzuki, T.; Sakaki, Y. Isolation of hNap1BP Which Interacts with Human Nap1 (NCKAP1) Whose Expression Is down-Regulated in Alzheimer’s Disease. Gene 2001, 271, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Guzman, M.; Dolfi, F.; Russello, M.; Vuori, K. Cell Adhesion Regulates the Interaction between the Docking Protein p130Cas and the 14-3-3 Proteins. J. Biol. Chem. 1999, 274, 5762–5768. [Google Scholar] [CrossRef]
- Nonaka, H.; Takei, K.; Umikawa, M.; Oshiro, M.; Kuninaka, K.; Bayarjargal, M.; Asato, T.; Yamashiro, Y.; Uechi, Y.; Endo, S.; et al. MINK Is a Rap2 Effector for Phosphorylation of the Postsynaptic Scaffold Protein TANC1. Biochem. Biophys. Res. Commun. 2008, 377, 573–578. [Google Scholar] [CrossRef]
- Mikryukov, A.; Moss, T. Agonistic and Antagonistic Roles for TNIK and MINK in Non-Canonical and Canonical Wnt Signalling. PLoS ONE 2012, 7, e43330. [Google Scholar] [CrossRef]
- Li, A.X.; Zeng, J.J.; Martin, T.A.; Ye, L.; Ruge, F.; Sanders, A.J.; Khan, E.; Dou, Q.P.; Davies, E.; Jiang, W.G. Striatins and STRIPAK Complex Partners in Clinical Outcomes of Patients with Breast Cancer and Responses to Drug Treatment. Chin. J. Cancer Res. 2023, 35, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Qin, F.; Yuan, H.; He, B.; Yang, N.; Zhang, Y.; Ren, H.; Zeng, Y. Normal Tissue Adjacent to Tumor Expression Profile Analysis Developed and Validated a Prognostic Model Based on Hippo-related Genes in Hepatocellular Carcinoma. Cancer Med. 2021, 10, 3139–3152. [Google Scholar] [CrossRef]
- Zhang, Z.-L.; Zhao, L.; Chai, L.; Zhou, S.-H.; Wang, F.; Wei, Y.; Xu, Y.-P.; Zhao, P. Seven LncRNA-mRNA Based Risk Score Predicts the Survival of Head and Neck Squamous Cell Carcinoma. Sci. Rep. 2017, 7, 309. [Google Scholar] [CrossRef]
- Hu, Y.; Leo, C.; Yu, S.; Huang, B.C.B.; Wang, H.; Shen, M.; Luo, Y.; Daniel-Issakani, S.; Payan, D.G.; Xu, X. Identification and Functional Characterization of a Novel Human Misshapen/Nck Interacting Kinase-Related Kinase, hMINKβ. J. Biol. Chem. 2004, 279, 54387–54397. [Google Scholar] [CrossRef]
- Finger, F.P.; Novick, P. Sec3p Is Involved in Secretion and Morphogenesis in Saccharomyces Cerevisiae. Mol. Biol. Cell 1997, 8, 647–662. [Google Scholar] [CrossRef]
- Springer, T.A. An Extracellular β-Propeller Module Predicted in Lipoprotein and Scavenger Receptors, Tyrosine Kinases, Epidermal Growth Factor Precursor, and Extracellular Matrix Components. J. Mol. Biol. 1998, 283, 837–862. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.K.; Hsin, H.; Huganir, R.L.; Sheng, M. MINK and TNIK Differentially Act on Rap2-Mediated Signal Transduction to Regulate Neuronal Structure and AMPA Receptor Function. J. Neurosci. 2010, 30, 14786–14794. [Google Scholar] [CrossRef]
- Popow, O.; Paulo, J.A.; Tatham, M.H.; Volk, M.S.; Rojas-Fernandez, A.; Loyer, N.; Newton, I.P.; Januschke, J.; Haigis, K.M.; Näthke, I. Identification of Endogenous Adenomatous Polyposis Coli Interaction Partners and β-Catenin–Independent Targets by Proteomics. Mol. Cancer Res. 2019, 17, 1828–1841. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.H.K.; Iioka, H.; Ohashi, M.; Iemura, S.; Natsume, T.; Kinoshita, N. XRab40 and XCullin5 Form a Ubiquitin Ligase Complex Essential for the Noncanonical Wnt Pathway. EMBO J. 2007, 26, 3592–3606. [Google Scholar] [CrossRef] [PubMed]
- Eaton, S.; Wepf, R. Roles for Racl and Cdc42 in Planar Polarization and Hair Outgrowth in the Wing of Drosophila. J. Cell Biol. 1996, 135, 1277–1289. [Google Scholar] [CrossRef]
- Curtin, J.A.; Quint, E.; Tsipouri, V.; Arkell, R.M.; Cattanach, B.; Copp, A.J.; Henderson, D.J.; Spurr, N.; Stanier, P.; Fisher, E.M.; et al. Mutation of Celsr1 Disrupts Planar Polarity of Inner Ear Hair Cells and Causes Severe Neural Tube Defects in the Mouse. Curr. Biol. 2003, 13, 1129–1133. [Google Scholar] [CrossRef]
- Fanto, M.; McNeill, H. Planar Polarity from Flies to Vertebrates. J. Cell Sci. 2004, 117, 527–533. [Google Scholar] [CrossRef]
- Usui, T.; Shima, Y.; Shimada, Y.; Hirano, S.; Burgess, R.W.; Schwarz, T.L.; Takeichi, M.; Uemura, T. Flamingo, a Seven-Pass Transmembrane Cadherin, Regulates Planar Cell Polarity under the Control of Frizzled. Cell 1999, 98, 585–595. [Google Scholar] [CrossRef]
- Perrimon, N.; Mahowald, A.P. Multiple Functions of Segment Polarity Genes in Drosophila. Dev. Biol. 1987, 119, 587–600. [Google Scholar] [CrossRef]
- Feiguin, F.; Hannus, M.; Mlodzik, M.; Eaton, S. The Ankyrin Repeat Protein Diego Mediates Frizzled-Dependent Planar Polarization. Dev. Cell 2001, 1, 93–101. [Google Scholar] [CrossRef]
- Gubb, D.; Green, C.; Huen, D.; Coulson, D.; Johnson, G.; Tree, D.; Collier, S.; Roote, J. The Balance between Isoforms of the Prickle LIM Domain Protein Is Critical for Planar Polarity in Drosophila Imaginal Discs. Genes Dev. 1999, 13, 2315–2327. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Abramova, N.; Charlton, J.; Adler, P.N. Van Gogh: A New Drosophila Tissue Polarity Gene. Genetics 1998, 150, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Gros, J.; Serralbo, O.; Marcelle, C. WNT11 Acts as a Directional Cue to Organize the Elongation of Early Muscle Fibres. Nature 2009, 457, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, H.; Moriguchi, T.; Masuyama, N.; Kusakabe, M.; Hanafusa, H.; Takada, R.; Takada, S.; Nishida, E. JNK Functions in the Non-canonical Wnt Pathway to Regulate Convergent Extension Movements in Vertebrates. EMBO Rep. 2002, 3, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Minegishi, K.; Hashimoto, M.; Ajima, R.; Takaoka, K.; Shinohara, K.; Ikawa, Y.; Nishimura, H.; McMahon, A.P.; Willert, K.; Okada, Y.; et al. A Wnt5 Activity Asymmetry and Intercellular Signaling via PCP Proteins Polarize Node Cells for Left-Right Symmetry Breaking. Dev. Cell 2017, 40, 439–452.e4. [Google Scholar] [CrossRef]
- Wang, W.; Runkle, K.B.; Terkowski, S.M.; Ekaireb, R.I.; Witze, E.S. Protein Depalmitoylation Is Induced by Wnt5a and Promotes Polarized Cell Behavior. J. Biol. Chem. 2015, 290, 15707–15716. [Google Scholar] [CrossRef]
- Ishitani, T.; Kishida, S.; Hyodo-Miura, J.; Ueno, N.; Yasuda, J.; Waterman, M.; Shibuya, H.; Moon, R.T.; Ninomiya-Tsuji, J.; Matsumoto, K. The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt-5a/Ca2+ Pathway To Antagonize Wnt/β-Catenin Signaling. Mol. Cell. Biol. 2003, 23, 131–139. [Google Scholar] [CrossRef]
- Qin, L.; Yin, Y.-T.; Zheng, F.-J.; Peng, L.-X.; Yang, C.-F.; Bao, Y.-N.; Liang, Y.-Y.; Li, X.-J.; Xiang, Y.-Q.; Sun, R.; et al. WNT5A Promotes Stemness Characteristics in Nasopharyngeal Carcinoma Cells Leading to Metastasis and Tumorigenesis. Oncotarget 2015, 6, 10239–10252. [Google Scholar] [CrossRef]
- Jenny, A. Prickle and Strabismus Form a Functional Complex to Generate a Correct Axis during Planar Cell Polarity Signaling. EMBO J. 2003, 22, 4409–4420. [Google Scholar] [CrossRef]
- Shitashige, M.; Satow, R.; Jigami, T.; Aoki, K.; Honda, K.; Shibata, T.; Ono, M.; Hirohashi, S.; Yamada, T. Traf2- and Nck-Interacting Kinase Is Essential for Wnt Signaling and Colorectal Cancer Growth. Cancer Res. 2010, 70, 5024–5033. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Li, V.S.W.; Ng, S.S.; Taouatas, N.; Vries, R.G.J.; Mohammed, S.; Heck, A.J.; Clevers, H. The Kinase TNIK Is an Essential Activator of Wnt Target Genes. EMBO J. 2009, 28, 3329–3340. [Google Scholar] [CrossRef] [PubMed]
- Daulat, A.M.; Bertucci, F.; Audebert, S.; Sergé, A.; Finetti, P.; Josselin, E.; Castellano, R.; Birnbaum, D.; Angers, S.; Borg, J.-P. PRICKLE1 Contributes to Cancer Cell Dissemination through Its Interaction with mTORC2. Dev. Cell 2016, 37, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Daulat, A.M.; Wagner, M.S.; Audebert, S.; Kowalczewska, M.; Ariey-Bonnet, J.; Finetti, P.; Bertucci, F.; Camoin, L.; Borg, J.-P. The Serine/Threonine Kinase MINK1 Directly Regulates the Function of Promigratory Proteins. J. Cell Sci. 2022, 135, jcs259347. [Google Scholar] [CrossRef]
- Lansbergen, G.; Grigoriev, I.; Mimori-Kiyosue, Y.; Ohtsuka, T.; Higa, S.; Kitajima, I.; Demmers, J.; Galjart, N.; Houtsmuller, A.B.; Grosveld, F.; et al. CLASPs Attach Microtubule Plus Ends to the Cell Cortex through a Complex with LL5β. Dev. Cell 2006, 11, 21–32. [Google Scholar] [CrossRef]
- Takabayashi, T.; Xie, M.-J.; Takeuchi, S.; Kawasaki, M.; Yagi, H.; Okamoto, M.; Tariqur, R.M.; Malik, F.; Kuroda, K.; Kubota, C.; et al. LL5β Directs the Translocation of Filamin A and SHIP2 to Sites of Phosphatidylinositol 3,4,5-Triphosphate (PtdIns(3,4,5)P3) Accumulation, and PtdIns(3,4,5)P3 Localization Is Mutually Modified by Co-Recruited SHIP2. J. Biol. Chem. 2010, 285, 16155–16165. [Google Scholar] [CrossRef] [PubMed]
- Ying, J.; Li, H.; Yu, J.; Ng, K.M.; Poon, F.F.; Wong, S.C.C.; Chan, A.T.C.; Sung, J.J.Y.; Tao, Q. WNT5A Exhibits Tumor-Suppressive Activity through Antagonizing the Wnt/β-Catenin Signaling, and Is Frequently Methylated in Colorectal Cancer. Clin. Cancer Res. 2008, 14, 55–61. [Google Scholar] [CrossRef]
- Liang, H.; Chen, Q.; Coles, A.H.; Anderson, S.J.; Pihan, G.; Bradley, A.; Gerstein, R.; Jurecic, R.; Jones, S.N. Wnt5a Inhibits B Cell Proliferation and Functions as a Tumor Suppressor in Hematopoietic Tissue. Cancer Cell 2003, 4, 349–360. [Google Scholar] [CrossRef]
- Schöpel, M.; Potheraveedu, V.N.; Al-Harthy, T.; Abdel-Jalil, R.; Heumann, R.; Stoll, R. The Small GTPases Ras and Rheb Studied by Multidimensional NMR Spectroscopy: Structure and Function. Biol. Chem. 2017, 398, 577–588. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Ramachandran, S. Comparative and Evolutionary Analysis of Genes Encoding Small GTPases and Their Activating Proteins in Eukaryotic Genomes. Physiol. Genomics 2006, 24, 235–251. [Google Scholar] [CrossRef]
- Cowley, S. Activation of MAP Kinase Kinase Is Necessary and Sufficient for PC12 Differentiation and for Transformation of NIH 3T3 Cells. Cell 1994, 77, 841–852. [Google Scholar] [CrossRef]
- Schulze, A.; Lehmann, K.; Jefferies, H.B.J.; McMahon, M.; Downward, J. Analysis of the Transcriptional Program Induced by Raf in Epithelial Cells. Genes Dev. 2001, 15, 981–994. [Google Scholar]
- Von Gise, A.; Lorenz, P.; Wellbrock, C.; Hemmings, B.; Berberich-Siebelt, F.; Rapp, U.R.; Troppmair, J. Apoptosis Suppression by Raf-1 and MEK1 Requires MEK- and Phosphatidylinositol 3-Kinase-Dependent Signals. Mol. Cell. Biol. 2001, 21, 2324–2336. [Google Scholar] [CrossRef] [PubMed]
- Troppmair, J.; Bruder, J.T.; Munoz, H.; Lloyd, P.A.; Kyriakis, J.; Banerjee, P.; Avruch, J.; Rapp, U.R. Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Protein Kinase Activation by Oncogenes, Serum, and 12-O-Tetradecanoylphorbol-13-Acetate Requires Raf and Is Necessary for Transformation. J. Biol. Chem. 1994, 269, 7030–7035. [Google Scholar] [CrossRef] [PubMed]
- Foltran, L.; Maglio, G.D.; Pella, N.; Ermacora, P.; Aprile, G.; Masiero, E.; Giovannoni, M.; Iaiza, E.; Cardellino, G.G.; Lutrino, S.E.; et al. Prognostic Role of KRAS, NRAS, BRAF and PIK3CA Mutations in Advanced Colorectal Cancer. Future Oncol. 2015, 11, 629–640. [Google Scholar] [CrossRef]
- Jakob, J.A.; Bassett, R.L.; Ng, C.S.; Curry, J.L.; Joseph, R.W.; Alvarado, G.C.; Rohlfs, M.L.; Richard, J.; Gershenwald, J.E.; Kim, K.B.; et al. NRAS Mutation Status Is an Independent Prognostic Factor in Metastatic Melanoma. Cancer 2012, 118, 4014–4023. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, Y.; Qian, L.; Wang, P. Emerging Strategies to Target RAS Signaling in Human Cancer Therapy. J. Hematol. Oncol. 2021, 14, 116. [Google Scholar] [CrossRef]
- Prior, I.A.; Hood, F.E.; Hartley, J.L. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020, 80, 2969–2974. [Google Scholar] [CrossRef]
- Ohba, Y.; Mochizuki, N.; Matsuo, K.; Yamashita, S.; Nakaya, M.; Hashimoto, Y.; Hamaguchi, M.; Kurata, T.; Nagashima, K.; Matsuda, M. Rap2 as a Slowly Responding Molecular Switch in the Rap1 Signaling Cascade. Mol. Cell. Biol. 2000, 20, 6074–6083. [Google Scholar] [CrossRef]
- Suzuki, T.; Li, W.; Zhang, J.; Tian, Q.; Sakagami, H.; Usada, N.; Kondo, H.; Fujii, T.; Endo, S. A Novel Scaffold Protein, TANC, Possibly a Rat Homolog of Drosophila Rolling Pebbles (Rols), Forms a Multiprotein Complex with Various Postsynaptic Density Proteins. Eur. J. Neurosci. 2005, 21, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Barrett, T.; Whitmarsh, A.J.; Cavanagh, J.; Sluss, H.K.; Dérijard, B.; Davis, R.J. Selective Interaction of JNK Protein Kinase Isoforms with Transcription Factors. EMBO J. 1996, 15, 2760–2770. [Google Scholar] [CrossRef]
- Kuan, C.-Y.; Yang, D.D.; Roy, D.R.S.; Davis, R.J.; Rakic, P.; Flavell, R.A. The Jnk1 and Jnk2 Protein Kinases Are Required for Regional Specific Apoptosis during Early Brain Development. Neuron 1999, 22, 667–676. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, Y.; Jiang, C.; Chang, Q.; Zhang, S.; Luo, T.; Zhang, B.; Jia, X.; Hung, M.-C.; Dong, C.; et al. JNK1 Negatively Controls Antifungal Innate Immunity by Suppressing CD23 Expression. Nat. Med. 2017, 23, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Jones, Y.; Ellisman, M.H.; Goldstein, L.S.B.; Karin, M. JNK1 Is Required for Maintenance of Neuronal Microtubules and Controls Phosphorylation of Microtubule-Associated Proteins. Dev. Cell 2003, 4, 521–533. [Google Scholar] [CrossRef]
- Waetzig, V.; Zhao, Y.; Herdegen, T. The Bright Side of JNKs—Multitalented Mediators in Neuronal Sprouting, Brain Development and Nerve Fiber Regeneration. Prog. Neurobiol. 2006, 80, 84–97. [Google Scholar] [CrossRef]
- Brecht, S.; Kirchhof, R.; Chromik, A.; Willesen, M.; Nicolaus, T.; Raivich, G.; Wessig, J.; Waetzig, V.; Goetz, M.; Claussen, M.; et al. Specific Pathophysiological Functions of JNK Isoforms in the Brain. Eur. J. Neurosci. 2005, 21, 363–377. [Google Scholar] [CrossRef]
- Okazawa, H.; Estus, S. The JNK/c-Jun Cascade and Alzheimer’s Disease. Am. J. Alzheimers Dis. Dementiasr 2002, 17, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Ploia, C.; Antoniou, X.; Sclip, A.; Grande, V.; Cardinetti, D.; Colombo, A.; Canu, N.; Benussi, L.; Ghidoni, R.; Forloni, G.; et al. JNK Plays a Key Role in Tau Hyperphosphorylation in Alzheimer’s Disease Models. J. Alzheimers Dis. 2011, 26, 315–329. [Google Scholar] [CrossRef]
- Lee, H.M.; Kim, K.-S.; Kim, J. A Comparative Study of the Effects of Inhibitory Cytokines on Human Natural Killer Cells and the Mechanistic Features of Transforming Growth Factor-Beta. Cell. Immunol. 2014, 290, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Volk, A.; Li, J.; Xin, J.; You, D.; Zhang, J.; Liu, X.; Xiao, Y.; Breslin, P.; Li, Z.; Wei, W.; et al. Co-Inhibition of NF-κB and JNK Is Synergistic in TNF-Expressing Human AML. J. Exp. Med. 2014, 211, 1093–1108. [Google Scholar] [CrossRef]
- Funakoshi-Tago, M.; Nagata, T.; Tago, K.; Tsukada, M.; Tanaka, K.; Nakamura, S.; Mashino, T.; Kasahara, T. Fullerene Derivative Prevents Cellular Transformation Induced by JAK2 V617F Mutant through Inhibiting C-Jun N-Terminal Kinase Pathway. Cell. Signal. 2012, 24, 2024–2034. [Google Scholar] [CrossRef]
- Chuang, J.-Y.; Huang, Y.-L.; Yen, W.-L.; Chiang, I.-P.; Tsai, M.-H.; Tang, C.-H. Syk/JNK/AP-1 Signaling Pathway Mediates Interleukin-6-Promoted Cell Migration in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2014, 15, 545–559. [Google Scholar] [CrossRef]
- Su, Y.-C.; Treisman, J.E.; Skolnik, E.Y. The Drosophila Ste20-Related Kinase Misshapen Is Required for Embryonic Dorsal Closure and Acts through a JNK MAPK Module on an Evolutionarily Conserved Signaling Pathway. Genes Dev. 1998, 12, 2371–2380. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Lennard, A.; Sheppard, P.W.; Kellie, S. Identification of Residues Which Regulate Activity of the STE20-Related Kinase hMINK. Biochem. Biophys. Res. Commun. 2003, 300, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Sengupta Ghosh, A.; Wang, B.; Pozniak, C.D.; Chen, M.; Watts, R.J.; Lewcock, J.W. DLK Induces Developmental Neuronal Degeneration via Selective Regulation of Proapoptotic JNK Activity. J. Cell Biol. 2011, 194, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lei, H.; Li, X.
LncRNA SNHG14Contributes to Proinflammatory Cytokine Production in Rheumatoid Arthritis via the Regulation of the miR-17-5p/MINK1-JNKPathway. Environ. Toxicol. 2021, 36, 2484–2492. [Google Scholar] [CrossRef] - Morin-Kensicki, E.M.; Boone, B.N.; Howell, M.; Stonebraker, J.R.; Teed, J.; Alb, J.G.; Magnuson, T.R.; O’Neal, W.; Milgram, S.L. Defects in Yolk Sac Vasculogenesis, Chorioallantoic Fusion, and Embryonic Axis Elongation in Mice with Targeted Disruption of Yap65. Mol. Cell. Biol. 2006, 26, 77–87. [Google Scholar] [CrossRef]
- Dong, J.; Feldmann, G.; Huang, J.; Wu, S.; Zhang, N.; Comerford, S.A.; Gayyed, M.F.; Anders, R.A.; Maitra, A.; Pan, D. Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals. Cell 2007, 130, 1120–1133. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Wang, B.; Yue, T.; Yun, E.-Y.; Ip, Y.T.; Jiang, J. Hippo Signaling Regulates Drosophila Intestine Stem Cell Proliferation through Multiple Pathways. Proc. Natl. Acad. Sci. USA 2010, 107, 21064–21069. [Google Scholar] [CrossRef]
- Nishioka, N.; Inoue, K.; Adachi, K.; Kiyonari, H.; Ota, M.; Ralston, A.; Yabuta, N.; Hirahara, S.; Stephenson, R.O.; Ogonuki, N.; et al. The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass. Dev. Cell 2009, 16, 398–410. [Google Scholar] [CrossRef]
- Barry, E.R.; Camargo, F.D. The Hippo Superhighway: Signaling Crossroads Converging on the Hippo/Yap Pathway in Stem Cells and Development. Curr. Opin. Cell Biol. 2013, 25, 247–253. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Dong, J.; Pan, D. Hippo Encodes a Ste-20 Family Protein Kinase That Restricts Cell Proliferation and Promotes Apoptosis in Conjunction with Salvador and Warts. Cell 2003, 114, 445–456. [Google Scholar] [CrossRef]
- Udan, R.S.; Kango-Singh, M.; Nolo, R.; Tao, C.; Halder, G. Hippo Promotes Proliferation Arrest and Apoptosis in the Salvador/Warts Pathway. Nat. Cell Biol. 2003, 5, 914–920. [Google Scholar] [CrossRef]
- Harvey, K.F.; Pfleger, C.M.; Hariharan, I.K. The Drosophila Mst Ortholog, Hippo, Restricts Growth and Cell Proliferation and Promotes Apoptosis. Cell 2003, 114, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, S.; Barrera, J.; Matthews, K.; Pan, D. The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005, 122, 421–434. [Google Scholar] [CrossRef]
- Pantalacci, S.; Tapon, N.; Léopold, P. The Salvador Partner Hippo Promotes Apoptosis and Cell-Cycle Exit in Drosophila. Nat. Cell Biol. 2003, 5, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Aragona, M.; Panciera, T.; Manfrin, A.; Giulitti, S.; Michielin, F.; Elvassore, N.; Dupont, S.; Piccolo, S. A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors. Cell 2013, 154, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xiao, Z.-D.; Li, X.; Aziz, K.E.; Gan, B.; Johnson, R.L.; Chen, J. AMPK Modulates Hippo Pathway Activity to Regulate Energy Homeostasis. Nat. Cell Biol. 2015, 17, 490–499. [Google Scholar] [CrossRef]
- Zhao, B.; Li, L.; Wang, L.; Wang, C.-Y.; Yu, J.; Guan, K.-L. Cell Detachment Activates the Hippo Pathway via Cytoskeleton Reorganization to Induce Anoikis. Genes Dev. 2012, 26, 54–68. [Google Scholar] [CrossRef]
- Mo, J.-S.; Meng, Z.; Kim, Y.C.; Park, H.W.; Hansen, C.G.; Kim, S.; Lim, D.-S.; Guan, K.-L. Cellular Energy Stress Induces AMPK-Mediated Regulation of YAP and the Hippo Pathway. Nat. Cell Biol. 2015, 17, 500–510. [Google Scholar] [CrossRef]
- DeRan, M.; Yang, J.; Shen, C.-H.; Peters, E.C.; Fitamant, J.; Chan, P.; Hsieh, M.; Zhu, S.; Asara, J.M.; Zheng, B.; et al. Energy Stress Regulates Hippo-YAP Signaling Involving AMPK-Mediated Regulation of Angiomotin-like 1 Protein. Cell Rep. 2014, 9, 495–503. [Google Scholar] [CrossRef]
- Yu, F.-X.; Zhang, Y.; Park, H.W.; Jewell, J.L.; Chen, Q.; Deng, Y.; Pan, D.; Taylor, S.S.; Lai, Z.-C.; Guan, K.-L. Protein Kinase A Activates the Hippo Pathway to Modulate Cell Proliferation and Differentiation. Genes Dev. 2013, 27, 1223–1232. [Google Scholar] [CrossRef]
- Yu, F.-X.; Guan, K.-L. The Hippo Pathway: Regulators and Regulations. Genes Dev. 2013, 27, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Gumbiner, B.M.; Kim, N.-G. The Hippo-YAP Signaling Pathway and Contact Inhibition of Growth. J. Cell Sci. 2014, 127, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Conrad, C.; Xia, F.; Park, J.-S.; Payer, B.; Yin, Y.; Lauwers, G.Y.; Thasler, W.; Lee, J.T.; Avruch, J.; et al. Mst1 and Mst2 Maintain Hepatocyte Quiescence and Suppress Hepatocellular Carcinoma Development through Inactivation of the Yap1 Oncogene. Cancer Cell 2009, 16, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Harvey, K.F.; Zhang, X.; Thomas, D.M. The Hippo Pathway and Human Cancer. Nat. Rev. Cancer 2013, 13, 246–257. [Google Scholar] [CrossRef]
- Meng, Z.; Moroishi, T.; Mottier-Pavie, V.; Plouffe, S.W.; Hansen, C.G.; Hong, A.W.; Park, H.W.; Mo, J.-S.; Lu, W.; Lu, S.; et al. MAP4K Family Kinases Act in Parallel to MST1/2 to Activate LATS1/2 in the Hippo Pathway. Nat. Commun. 2015, 6, 8357. [Google Scholar] [CrossRef]
- Meng, Z.; Qiu, Y.; Lin, K.C.; Kumar, A.; Placone, J.K.; Fang, C.; Wang, K.-C.; Lu, S.; Pan, M.; Hong, A.W.; et al. RAP2 Mediates Mechanoresponses of the Hippo Pathway. Nature 2018, 560, 655–660. [Google Scholar] [CrossRef]
- Hyodo, T.; Ito, S.; Hasegawa, H.; Asano, E.; Maeda, M.; Urano, T.; Takahashi, M.; Hamaguchi, M.; Senga, T. Misshapen-like Kinase 1 (MINK1) Is a Novel Component of Striatin-Interacting Phosphatase and Kinase (STRIPAK) and Is Required for the Completion of Cytokinesis. J. Biol. Chem. 2012, 287, 25019–25029. [Google Scholar] [CrossRef]
- Benoist, M.; Baude, A.; Tasmadjian, A.; Dargent, B.; Kessler, J.; Castets, F. Distribution of Zinedin in the Rat Brain. J. Neurochem. 2008, 106, 969–977. [Google Scholar] [CrossRef]
- Benoist, M.; Gaillard, S.; Castets, F. The Striatin Family: A New Signaling Platform in Dendritic Spines. J. Physiol.-Paris 2006, 99, 146–153. [Google Scholar] [CrossRef]
- Moreno, C.S.; Park, S.; Nelson, K.; Ashby, D.; Hubalek, F.; Lane, W.S.; Pallas, D.C. WD40 Repeat Proteins Striatin and S/G2 Nuclear Autoantigen Are Members of a Novel Family of Calmodulin-Binding Proteins That Associate with Protein Phosphatase 2A. J. Biol. Chem. 2000, 275, 5257–5263. [Google Scholar] [CrossRef]
- Goudreault, M.; D’Ambrosio, L.M.; Kean, M.J.; Mullin, M.J.; Larsen, B.G.; Sanchez, A.; Chaudhry, S.; Chen, G.I.; Sicheri, F.; Nesvizhskii, A.I.; et al. A PP2A Phosphatase High Density Interaction Network Identifies a Novel Striatin-Interacting Phosphatase and Kinase Complex Linked to the Cerebral Cavernous Malformation 3 (CCM3) Protein. Mol. Cell. Proteomics 2009, 8, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Guzzo, R.M.; Salih, M.; Moore, E.D.; Tuana, B.S. Molecular Properties of Cardiac Tail-Anchored Membrane Protein SLMAP Are Consistent with Structural Role in Arrangement of Excitation-Contraction Coupling Apparatus. Am. J. Physiol.-Heart Circ. Physiol. 2005, 288, H1810–H1819. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Mauceli, E.; Lahmers, S.; Acland, G.M.; White, S.N.; Lindblad-Toh, K. Genome-Wide Association Identifies a Deletion in the 3′ Untranslated Region of Striatin in a Canine Model of Arrhythmogenic Right Ventricular Cardiomyopathy. Hum. Genet. 2010, 128, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Sotoodehnia, N.; Isaacs, A.; De Bakker, P.I.W.; Dörr, M.; Newton-Cheh, C.; Nolte, I.M.; Van Der Harst, P.; Müller, M.; Eijgelsheim, M.; Alonso, A.; et al. Common Variants in 22 Loci Are Associated with QRS Duration and Cardiac Ventricular Conduction. Nat. Genet. 2010, 42, 1068–1076. [Google Scholar] [CrossRef]
- Ding, H.; Howarth, A.G.; Pannirselvam, M.; Anderson, T.J.; Severson, D.L.; Wiehler, W.B.; Triggle, C.R.; Tuana, B.S. Endothelial Dysfunction in Type 2 Diabetes Correlates with Deregulated Expression of the Tail-Anchored Membrane Protein SLMAP. Am. J. Physiol.-Heart Circ. Physiol. 2005, 289, H206–H211. [Google Scholar] [CrossRef]
- Nerstedt, A.; Cansby, E.; Andersson, C.X.; Laakso, M.; Stančáková, A.; Blüher, M.; Smith, U.; Mahlapuu, M. Serine/Threonine Protein Kinase 25 (STK25): A Novel Negative Regulator of Lipid and Glucose Metabolism in Rodent and Human Skeletal Muscle. Diabetologia 2012, 55, 1797–1807. [Google Scholar] [CrossRef]
- Cheung, J.; Petek, E.; Nakabayashi, K.; Tsui, L.-C.; Vincent, J.B.; Scherer, S.W. Identification of the Human Cortactin-Binding Protein-2 Gene from the Autism Candidate Region at 7q31. Genomics 2001, 78, 7–11. [Google Scholar] [CrossRef]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.; Narzisi, G.; Leotta, A.; et al. De Novo Gene Disruptions in Children on the Autistic Spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef]
- Weber, A.; Engers, R.; Nockemann, S.; Gohr, L.L.; Hausen, A.Z.; Gabbert, H.E. Differentially Expressed Genes in Association with in Vitro Invasiveness of Human Epithelioid Sarcoma. Mol. Pathol. 2001, 54, 324–330. [Google Scholar] [CrossRef]
- Grand, E.K.; Grand, F.H.; Chase, A.J.; Ross, F.M.; Corcoran, M.M.; Oscier, D.G.; Cross, N.C.P. Identification of a Novel Gene, FGFR1OP2, Fused to FGFR1 in 8p11 Myeloproliferative Syndrome. Genes Chromosomes Cancer 2004, 40, 78–83. [Google Scholar] [CrossRef]
- Bergametti, F.; Denier, C.; Labauge, P.; Arnoult, M.; Boetto, S.; Clanet, M.; Coubes, P.; Echenne, B.; Ibrahim, R.; Irthum, B.; et al. Mutations within the Programmed Cell Death 10 Gene Cause Cerebral Cavernous Malformations. Am. J. Hum. Genet. 2005, 76, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Akers, A.L.; Johnson, E.; Steinberg, G.K.; Zabramski, J.M.; Marchuk, D.A. Biallelic Somatic and Germline Mutations in Cerebral Cavernous Malformations (CCMs): Evidence for a Two-Hit Mechanism of CCM Pathogenesis. Hum. Mol. Genet. 2009, 18, 919–930. [Google Scholar] [CrossRef]
- Hwang, J.; Pallas, D.C. STRIPAK Complexes: Structure, Biological Function, and Involvement in Human Diseases. Int. J. Biochem. Cell Biol. 2014, 47, 118–148. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.A.; Nigg, E.A. Antibody Microinjection Reveals an Essential Role for Human Polo-like Kinase 1 (Plkl) in the Functional Maturation of Mitotic Centrosomes. J. Cell Biol. 1996, 135, 1701–1713. [Google Scholar] [CrossRef] [PubMed]
- Toyoshima-Morimoto, F.; Taniguchi, E.; Shinya, N.; Iwamatsu, A.; Nishida, E. Polo-like Kinase 1 Phosphorylates Cyclin B1 and Targets It to the Nucleus during Prophase. Nature 2001, 410, 215–220. [Google Scholar] [CrossRef]
- Draetta, G.; Beach, D. Activation of Cdc2 Protein Kinase during Mitosis in Human Cells: Cell Cycle-Dependent Phosphorylation and Subunit Rearrangement. Cell 1988, 54, 17–26. [Google Scholar] [CrossRef]
- Gordon, J.; Hwang, J.; Carrier, K.J.; Jones, C.A.; Kern, Q.L.; Moreno, C.S.; Karas, R.H.; Pallas, D.C. Protein Phosphatase 2a (PP2A) Binds within the Oligomerization Domain of Striatin and Regulates the Phosphorylation and Activation of the Mammalian Ste20-Like Kinase Mst3. BMC Biochem. 2011, 12, 54. [Google Scholar] [CrossRef]
- Cundell, M.J.; Bastos, R.N.; Zhang, T.; Holder, J.; Gruneberg, U.; Novak, B.; Barr, F.A. The BEG (PP2A-B55/ENSA/Greatwall) Pathway Ensures Cytokinesis Follows Chromosome Separation. Mol. Cell 2013, 52, 393–405. [Google Scholar] [CrossRef]
- Cundell, M.J.; Hutter, L.H.; Nunes Bastos, R.; Poser, E.; Holder, J.; Mohammed, S.; Novak, B.; Barr, F.A. A PP2A-B55 Recognition Signal Controls Substrate Dephosphorylation Kinetics during Mitotic Exit. J. Cell Biol. 2016, 214, 539–554. [Google Scholar] [CrossRef]
- Schmitz, M.H.A.; Held, M.; Janssens, V.; Hutchins, J.R.A.; Hudecz, O.; Ivanova, E.; Goris, J.; Trinkle-Mulcahy, L.; Lamond, A.I.; Poser, I.; et al. Live-Cell Imaging RNAi Screen Identifies PP2A–B55α and Importin-Β1 as Key Mitotic Exit Regulators in Human Cells. Nat. Cell Biol. 2010, 12, 886–893. [Google Scholar] [CrossRef]
- Su, C.; Johnson, M.E.; Torres, A.; Thomas, R.M.; Manduchi, E.; Sharma, P.; Mehra, P.; Le Coz, C.; Leonard, M.E.; Lu, S.; et al. Mapping Effector Genes at Lupus GWAS Loci Using Promoter Capture-C in Follicular Helper T Cells. Nat. Commun. 2020, 11, 3294. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Jin, X.; Chi, Z.; Chen, S.; Wu, S.; Sloan, R.D.; Lin, X.; Neculai, D.; Wang, D.; Hu, H.; et al. Priming of NLRP3 Inflammasome Activation by Msn Kinase MINK1 in Macrophages. Cell. Mol. Immunol. 2021, 18, 2372–2382. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Xu, Q.; Qiu, Y.; Jin, X.; Xu, T.; Dong, S.; Wang, J.; Ke, Y.; Hu, H.; Cao, X.; et al. Suppression of Th17 Cell Differentiation by Misshapen/NIK-Related Kinase MINK1. J. Exp. Med. 2017, 214, 1453–1469. [Google Scholar] [CrossRef]
- Langrish, C.L.; Chen, Y.; Blumenschein, W.M.; Mattson, J.; Basham, B.; Sedgwick, J.D.; McClanahan, T.; Kastelein, R.A.; Cua, D.J. IL-23 Drives a Pathogenic T Cell Population That Induces Autoimmune Inflammation. J. Exp. Med. 2005, 201, 233–240. [Google Scholar] [CrossRef]
- Muhammad Yusoff, F.; Wong, K.K.; Mohd Redzwan, N. Th1, Th2, and Th17 Cytokines in Systemic Lupus Erythematosus. Autoimmunity 2020, 53, 8–20. [Google Scholar] [CrossRef]
- Reynolds, J.M.; Pappu, B.P.; Peng, J.; Martinez, G.J.; Zhang, Y.; Chung, Y.; Ma, L.; Yang, X.O.; Nurieva, R.I.; Tian, Q.; et al. Toll-like Receptor 2 Signaling in CD4+ T Lymphocytes Promotes T Helper 17 Responses and Regulates the Pathogenesis of Autoimmune Disease. Immunity 2010, 32, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Li, Z.; Yang, X.O.; Chang, S.H.; Nurieva, R.; Wang, Y.-H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; et al. A Distinct Lineage of CD4 T Cells Regulates Tissue Inflammation by Producing Interleukin 17. Nat. Immunol. 2005, 6, 1133–1141. [Google Scholar] [CrossRef]
- Chakir, J.; Shannon, J.; Molet, S.; Fukakusa, M.; Elias, J.; Laviolette, M.; Boulet, L.-P.; Hamid, Q. Airway Remodeling-Associated Mediators in Moderate to Severe Asthma: Effect of Steroids on TGF-β, IL-11, IL-17, and Type I and Type III Collagen Expression. J. Allergy Clin. Immunol. 2003, 111, 1293–1298. [Google Scholar] [CrossRef]
- Talaat, R.M.; Mohamed, S.F.; Bassyouni, I.H.; Raouf, A.A. Th1/Th2/Th17/Treg Cytokine Imbalance in Systemic Lupus Erythematosus (SLE) Patients: Correlation with Disease Activity. Cytokine 2015, 72, 146–153. [Google Scholar] [CrossRef]
- Zhi, L.; Ustyugova, I.V.; Chen, X.; Zhang, Q.; Wu, M.X. Enhanced Th17 Differentiation and Aggravated Arthritis in IEX-1–Deficient Mice by Mitochondrial Reactive Oxygen Species-Mediated Signaling. J. Immunol. 2012, 189, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Chen, X.; Lu, P.; Yao, X.; Wright, T.G.; Rajurkar, M.; Kariya, K.; Mao, J.; Ip, Y.T.; Xu, L. Smad Inhibition by the Ste20 Kinase Misshapen. Proc. Natl. Acad. Sci. USA 2011, 108, 11127–11132. [Google Scholar] [CrossRef] [PubMed]
- Gerriets, V.A.; Kishton, R.J.; Nichols, A.G.; Macintyre, A.N.; Inoue, M.; Ilkayeva, O.; Winter, P.S.; Liu, X.; Priyadharshini, B.; Slawinska, M.E.; et al. Metabolic Programming and PDHK1 Control CD4+ T Cell Subsets and Inflammation. J. Clin. Investig. 2015, 125, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Kummer, J.A.; Broekhuizen, R.; Everett, H.; Agostini, L.; Kuijk, L.; Martinon, F.; Bruggen, R.V.; Tschopp, J. Inflammasome Components NALP 1 and 3 Show Distinct but Separate Expression Profiles in Human Tissues Suggesting a Site-Specific Role in the Inflammatory Response. J. Histochem. Cytochem. 2007, 55, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Baroja-Mazo, A.; Martín-Sánchez, F.; Gomez, A.I.; Martínez, C.M.; Amores-Iniesta, J.; Compan, V.; Barberà-Cremades, M.; Yagüe, J.; Ruiz-Ortiz, E.; Antón, J.; et al. The NLRP3 Inflammasome Is Released as a Particulate Danger Signal That Amplifies the Inflammatory Response. Nat. Immunol. 2014, 15, 738–748. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Van De Veerdonk, F.L.; Mouktaroudi, M.; Raftogiannis, M.; Antonopoulou, A.; Joosten, L.A.; Pickkers, P.; Savva, A.; Georgitsi, M.; Van Der Meer, J.W.; et al. Inhibition of Caspase-1 Activation in Gram-Negative Sepsis and Experimental Endotoxemia. Crit. Care 2011, 15, R27. [Google Scholar] [CrossRef]
- Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-Associated Uric Acid Crystals Activate the NALP3 Inflammasome. Nature 2006, 440, 237–241. [Google Scholar] [CrossRef]
- Wen, H.; Gris, D.; Lei, Y.; Jha, S.; Zhang, L.; Huang, M.T.-H.; Brickey, W.J.; Ting, J.P.-Y. Fatty Acid–Induced NLRP3-ASC Inflammasome Activation Interferes with Insulin Signaling. Nat. Immunol. 2011, 12, 408–415. [Google Scholar] [CrossRef]
- National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma–Summary Report 2007. J. Allergy Clin. Immunol. 2007, 120, S94–S138. [Google Scholar] [CrossRef]
- Kuruvilla, M.E.; Lee, F.E.-H.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Moore, W.C.; Meyers, D.A.; Wenzel, S.E.; Teague, W.G.; Li, H.; Li, X.; D’Agostino, R.; Castro, M.; Curran-Everett, D.; Fitzpatrick, A.M.; et al. Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 2010, 181, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.E.; Sousa, A.R.; Fowler, S.J.; Fleming, L.J.; Roberts, G.; Corfield, J.; Pandis, I.; Bansal, A.T.; Bel, E.H.; Auffray, C.; et al. Clinical and Inflammatory Characteristics of the European U-BIOPRED Adult Severe Asthma Cohort. Eur. Respir. J. 2015, 46, 1308–1321. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-H.S.; Pavlidis, S.; Loza, M.; Baribaud, F.; Rowe, A.; Pandis, I.; Hoda, U.; Rossios, C.; Sousa, A.; Wilson, S.J.; et al. A Transcriptome-Driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. Am. J. Respir. Crit. Care Med. 2017, 195, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Östling, J.; Van Geest, M.; Schofield, J.P.R.; Jevnikar, Z.; Wilson, S.; Ward, J.; Lutter, R.; Shaw, D.E.; Bakke, P.S.; Caruso, M.; et al. IL-17–High Asthma with Features of a Psoriasis Immunophenotype. J. Allergy Clin. Immunol. 2019, 144, 1198–1213. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Yu, Q.; Yang, P.; Rao, X.; He, L.; Fang, J.; Tu, Y.; Zhang, Z.; Lai, Q.; Zhang, S.; et al. MBD2 Regulates TH17 Differentiation and Experimental Autoimmune Encephalomyelitis by Controlling the Homeostasis of T-Bet/Hlx Axis. J. Autoimmun. 2014, 53, 95–104. [Google Scholar] [CrossRef]
- Derksen, V.F.A.M.; Huizinga, T.W.J.; Van Der Woude, D. The Role of Autoantibodies in the Pathophysiology of Rheumatoid Arthritis. Semin. Immunopathol. 2017, 39, 437–446. [Google Scholar] [CrossRef]
- Scherer, H.U.; Häupl, T.; Burmester, G.R. The Etiology of Rheumatoid Arthritis. J. Autoimmun. 2020, 110, 102400. [Google Scholar] [CrossRef]
- Zhong, Y.; Yu, C.; Qin, W. LncRNA SNHG14 Promotes Inflammatory Response Induced by Cerebral Ischemia/Reperfusion Injury through Regulating miR-136-5p/ROCK1. Cancer Gene Ther. 2019, 26, 234–247. [Google Scholar] [CrossRef]
- Tsokos, G.C.; Lo, M.S.; Reis, P.C.; Sullivan, K.E. New Insights into the Immunopathogenesis of Systemic Lupus Erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef]
- Bernatsky, S.; Boivin, J.-F.; Joseph, L.; Manzi, S.; Ginzler, E.; Gladman, D.D.; Urowitz, M.; Fortin, P.R.; Petri, M.; Barr, S.; et al. Mortality in Systemic Lupus Erythematosus. Arthritis Rheum. 2006, 54, 2550–2557. [Google Scholar] [CrossRef]
- Leong, S.Y.; Ong, B.K.T.; Chu, J.J.H. The Role of Misshapen NCK-Related Kinase (MINK), a Novel Ste20 Family Kinase, in the IRES-Mediated Protein Translation of Human Enterovirus 71. PLoS Pathog. 2015, 11, e1004686. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Jiang, H.; Tian, X.; Xia, X.; Huang, T. Epidemiological Characteristics of Hand, Foot, and Mouth Disease in Yunnan Province, China, 2008–2019. BMC Infect. Dis. 2021, 21, 751. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Jin, H.; Zhang, X.F.; Wang, B. Case-Fatality of Hand, Foot and Mouth Disease Associated with EV71: A Systematic Review and Meta-Analysis. Epidemiol. Infect. 2015, 143, 3094–3102. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Shih, S.-R.; Pan, M.; Li, C.; Lue, C.-F.; Stollar, V.; Li, M.-L. hnRNP A1 Interacts with the 5′ Untranslated Regions of Enterovirus 71 and Sindbis Virus RNA and Is Required for Viral Replication. J. Virol. 2009, 83, 6106–6114. [Google Scholar] [CrossRef]
- Thompson, S.R.; Sarnow, P. Enterovirus 71 Contains a Type I IRES Element That Functions When Eukaryotic Initiation Factor eIF4G Is Cleaved. Virology 2003, 315, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Spriggs, K.A.; Bushell, M.; Mitchell, S.A.; Willis, A.E. Internal Ribosome Entry Segment-Mediated Translation during Apoptosis: The Role of IRES-Trans-Acting Factors. Cell Death Differ. 2005, 12, 585–591. [Google Scholar] [CrossRef]
- Li, A.X.; Martin, T.A.; Lane, J.; Jiang, W.G. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers 2023, 16, 76. [Google Scholar] [CrossRef]
- Astro, V.; Chiaretti, S.; Magistrati, E.; Fivaz, M.; De Curtis, I. Liprin-α1, ERC1 and LL5 Identify a Polarized, Dynamic Compartment Implicated in Cell Migration. J. Cell Sci. 2014, 127, 3862–3876. [Google Scholar] [CrossRef]
- Lim, B.C.; Matsumoto, S.; Yamamoto, H.; Mizuno, H.; Kikuta, J.; Ishii, M.; Kikuchi, A. Prickle1 Promotes Focal Adhesion Disassembly in Cooperation with CLASP-LL5β Complex in Migrating Cells. J. Cell Sci. 2016, 129, 3115–3129. [Google Scholar] [CrossRef]
- Mohanty, S.; Mohapatra, P.; Shriwas, O.; Ansari, S.A.; Priyadarshini, M.; Priyadarsini, S.; Rath, R.; Sultania, M.; Das Majumdar, S.K.; Swain, R.K.; et al. CRISPR-Based Kinome-Screening Revealed MINK1 as a Druggable Player to Rewire 5FU-Resistance in OSCC through AKT/MDM2/P53 Axis. Oncogene 2022, 41, 4929–4940. [Google Scholar] [CrossRef]
- Hang, X.; He, S.; Dong, Z.; Li, Y.; Huang, Z.; Zhang, Y.; Sun, H.; Lin, L.; Li, H.; Wang, Y.; et al. High-Throughput DNA Tensioner Platform for Interrogating Mechanical Heterogeneity of Single Living Cells. Small 2022, 18, 2106196. [Google Scholar] [CrossRef] [PubMed]
- Mosquera Orgueira, A.; Bao Pérez, L.; Mosquera Torre, A.; Peleteiro Raíndo, A.; Cid López, M.; Díaz Arias, J.Á.; Ferreiro Ferro, R.; Antelo Rodríguez, B.; González Pérez, M.S.; Albors Ferreiro, M.; et al. FLT3 Inhibitors in the Treatment of Acute Myeloid Leukemia: Current Status and Future Perspectives. Minerva Med. 2020, 111, 427–442. [Google Scholar] [CrossRef] [PubMed]
- Stamos, J.L.; Weis, W.I. The β-Catenin Destruction Complex. Cold Spring Harb. Perspect. Biol. 2013, 5, a007898. [Google Scholar] [CrossRef]
- McInerney, C.E.; Lynn, J.A.; Gilmore, A.R.; Flannery, T.; Prise, K.M. Using AI-Based Evolutionary Algorithms to Elucidate Adult Brain Tumor (Glioma) Etiology Associated with IDH1 for Therapeutic Target Identification. Curr. Issues Mol. Biol. 2022, 44, 2982–3000. [Google Scholar] [CrossRef]
- Calvert, A.E.; Chalastanis, A.; Wu, Y.; Hurley, L.A.; Kouri, F.M.; Bi, Y.; Kachman, M.; May, J.L.; Bartom, E.; Hua, Y.; et al. Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation. Cell Rep. 2017, 19, 1858–1873. [Google Scholar] [CrossRef]
- Hoffman, J.I.E.; Kaplan, S. The Incidence of Congenital Heart Disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Meberg, A.; Hals, J.; Thaulow, E. Congenital Heart Defects—Chromosomal Anomalies, Syndromes and Extracardiac Malformations. Acta Paediatr. 2007, 96, 1142–1145. [Google Scholar] [CrossRef]
- Ferencz, C.; Boughman, J.A.; Neill, C.A.; Brenner, J.I.; Perry, L.W. Congenital Cardiovascular Malformations: Questions on Inheritance. J. Am. Coll. Cardiol. 1989, 14, 756–763. [Google Scholar] [CrossRef]
- Colleluori, V.; Khokha, M.K. Mink1 Regulates Spemann Organizer Cell Fate in the Xenopus Gastrula via Hmga2. Dev. Biol. 2023, 495, 42–53. [Google Scholar] [CrossRef]
- Vonica, A.; Brivanlou, A.H. The Left–Right Axis Is Regulated by the Interplay of Coco, Xnr1 and Derrière in Xenopus Embryos. Dev. Biol. 2007, 303, 281–294. [Google Scholar] [CrossRef]
- Heasman, J.; Gumbiner, B.; McCrea, P.; Kintner, B.C.; Wylie, C. Overexpression of Cadherins and Underexpression of B-Catenin Inhibit Dorsal Mesoderm Induction in Early Xenopus Embryos. Cell 1994, 79, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Vignali, R.; Marracci, S. HMGA Genes and Proteins in Development and Evolution. Int. J. Mol. Sci. 2020, 21, 654. [Google Scholar] [CrossRef]
- Monzen, K.; Ito, Y.; Naito, A.T.; Kasai, H.; Hiroi, Y.; Hayashi, D.; Shiojima, I.; Yamazaki, T.; Miyazono, K.; Asashima, M.; et al. A Crucial Role of a High Mobility Group Protein HMGA2 in Cardiogenesis. Nat. Cell Biol. 2008, 10, 567–574. [Google Scholar] [CrossRef]
- Demarta-Gatsi, C.; Donini, C.; Duffy, J.; Sadler, C.; Stewart, J.; Barber, J.A.; Tornesi, B. Malarial
PI4KInhibitor Induced Diaphragmatic Hernias in Rat: Potential Link with Mammalian Kinase Inhibition. Birth Defects Res. 2022, 114, 487–498. [Google Scholar] [CrossRef] - Yue, M.; Luo, D.; Yu, S.; Liu, P.; Zhou, Q.; Hu, M.; Liu, Y.; Wang, S.; Huang, Q.; Niu, Y.; et al. Misshapen/NIK-Related Kinase (MINK1) Is Involved in Platelet Function, Hemostasis, and Thrombus Formation. Blood 2016, 127, 927–937. [Google Scholar] [CrossRef]
- Meyers, K.M.; Holmsen, H.; Seachord, C.L. Comparative Study of Platelet Dense Granule Constituents. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1982, 243, R454–R461. [Google Scholar] [CrossRef] [PubMed]
- Savage, J.S.; Williams, C.M.; Konopatskaya, O.; Hers, I.; Harper, M.T.; Poole, A.W. Munc13-4 Is Critical for Thrombosis through Regulating Release of ADP from Platelets. J. Thromb. Haemost. 2013, 11, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Flevaris, P.; Li, Z.; Zhang, G.; Zheng, Y.; Liu, J.; Du, X. Two Distinct Roles of Mitogen-Activated Protein Kinases in Platelets and a Novel Rac1-MAPK–Dependent Integrin Outside-in Retractile Signaling Pathway. Blood 2009, 113, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Adam, F.; Kauskot, A.; Nurden, P.; Sulpice, E.; Hoylaerts, M.F.; Davis, R.J.; Rosa, J.-P.; Bryckaert, M. Platelet JNK1 Is Involved in Secretion and Thrombus Formation. Blood 2010, 115, 4083–4092. [Google Scholar] [CrossRef]
- O’Brien, K.A.; Stojanovic-Terpo, A.; Hay, N.; Du, X. An Important Role for Akt3 in Platelet Activation and Thrombosis. Blood 2011, 118, 4215–4223. [Google Scholar] [CrossRef]
- Woulfe, D.S. Akt Signaling in Platelets and Thrombosis. Expert Rev. Hematol. 2010, 3, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Kim, M.J.; Cheng, D.; Duong, D.M.; Gygi, S.P.; Sheng, M. Semiquantitative Proteomic Analysis of Rat Forebrain Postsynaptic Density Fractions by Mass Spectrometry. J. Biol. Chem. 2004, 279, 21003–21011. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pak, D.; Qin, Y.; McCormack, S.G.; Kim, M.J.; Baumgart, J.P.; Velamoor, V.; Auberson, Y.P.; Osten, P.; Van Aelst, L.; et al. Rap2-JNK Removes Synaptic AMPA Receptors during Depotentiation. Neuron 2005, 46, 905–916. [Google Scholar] [CrossRef]
- Rund, B.R. Is Schizophrenia a Neurodegenerative Disorder? Nord. J. Psychiatry 2009, 63, 196–201. [Google Scholar] [CrossRef]
- Chelly, J.; Mandel, J.-L. Monogenic Causes of X-Linked Mental Retardation. Nat. Rev. Genet. 2001, 2, 669–680. [Google Scholar] [CrossRef]
- Coleman, P. Synaptic Slaughter in Alzheimer’s Disease. Neurobiol. Aging 2003, 24, 1023–1027. [Google Scholar] [CrossRef]
- Tararuk, T.; Östman, N.; Li, W.; Björkblom, B.; Padzik, A.; Zdrojewska, J.; Hongisto, V.; Herdegen, T.; Konopka, W.; Courtney, M.J.; et al. JNK1 Phosphorylation of SCG10 Determines Microtubule Dynamics and Axodendritic Length. J. Cell Biol. 2006, 173, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Björkblom, B.; Padzik, A.; Mohammad, H.; Westerlund, N.; Komulainen, E.; Hollos, P.; Parviainen, L.; Papageorgiou, A.C.; Iljin, K.; Kallioniemi, O.; et al. C-Jun N-Terminal Kinase Phosphorylation of MARCKSL1 Determines Actin Stability and Migration in Neurons and in Cancer Cells. Mol. Cell. Biol. 2012, 32, 3513–3526. [Google Scholar] [CrossRef]
- Georges, J.; Miller, O.; Bintener, C. Estimating the Prevalence of Dementia in Europe. 2020. Available online: https://www.researchgate.net/publication/339401240_Estimating_the_prevalence_of_dementia_in_Europe (accessed on 28 November 2024).
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical Diagnosis of Alzheimer’s Disease: Report of the NINCDS-ADRDA Work Group under the Auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Dammer, E.B.; Lee, A.K.; Duong, D.M.; Gearing, M.; Lah, J.J.; Levey, A.I.; Seyfried, N.T. Quantitative Phosphoproteomics of Alzheimer’s Disease Reveals Cross-talk between Kinases and Small Heat Shock Proteins. Proteomics 2015, 15, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Broce, I.J.; Tan, C.H.; Fan, C.C.; Jansen, I.; Savage, J.E.; Witoelar, A.; Wen, N.; Hess, C.P.; Dillon, W.P.; Glastonbury, C.M.; et al. Dissecting the Genetic Relationship between Cardiovascular Risk Factors and Alzheimer’s Disease. Acta Neuropathol. 2019, 137, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Lawingco, T.; Chaudhury, S.; Brookes, K.J.; Guetta-Baranes, T.; Guerreiro, R.; Bras, J.; Hardy, J.; Francis, P.; Thomas, A.; Belbin, O.; et al. Genetic Variants in Glutamate-, Aβ-, and Tau-Related Pathways Determine Polygenic Risk for Alzheimer’s Disease. Neurobiol. Aging 2021, 101, 299.e13–299.e21. [Google Scholar] [CrossRef] [PubMed]
- Van Der Kraan, P.M. The Changing Role of TGFβ in Healthy, Ageing and Osteoarthritic Joints. Nat. Rev. Rheumatol. 2017, 13, 155–163. [Google Scholar] [CrossRef]
- Johnson, V.L.; Hunter, D.J. The Epidemiology of Osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2014, 28, 5–15. [Google Scholar] [CrossRef]
- Yu, D.; Hu, J.; Sheng, Z.; Fu, G.; Wang, Y.; Chen, Y.; Pan, Z.; Zhang, X.; Wu, Y.; Sun, H.; et al. Dual Roles of Misshapen/NIK-Related Kinase (MINK1) in Osteoarthritis Subtypes through the Activation of TGFβ Signaling. Osteoarthr. Cartil. 2020, 28, 112–121. [Google Scholar] [CrossRef]
- Huse, M.; Muir, T.W.; Xu, L.; Chen, Y.-G.; Kuriyan, J.; Massague, J. The TGFβ Receptor Activation Process: An Inhibitor- to Substrate-Binding Switch. Mol. Cell 2001, 8, 671–682. [Google Scholar] [CrossRef]
- Buck, R.C. Reorientation Response of Cells to Repeated Stretch and Recoil of the Substratum. Exp. Cell Res. 1980, 127, 470–474. [Google Scholar] [CrossRef]
- Huycke, T.R.; Miller, B.M.; Gill, H.K.; Nerurkar, N.L.; Sprinzak, D.; Mahadevan, L.; Tabin, C.J. Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell 2019, 179, 90–105.e21. [Google Scholar] [CrossRef]
- Kumar, S.; Weaver, V.M. Mechanics, Malignancy, and Metastasis: The Force Journey of a Tumor Cell. Cancer Metastasis Rev. 2009, 28, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Engl, W.; Hu, B.; Cai, P.; Leow, W.R.; Tan, N.S.; Lim, C.T.; Chen, X. Nanomechanically Visualizing Drug–Cell Interaction at the Early Stage of Chemotherapy. ACS Nano 2017, 11, 6996–7005. [Google Scholar] [CrossRef]
- Nia, H.T.; Liu, H.; Seano, G.; Datta, M.; Jones, D.; Rahbari, N.; Incio, J.; Chauhan, V.P.; Jung, K.; Martin, J.D.; et al. Solid Stress and Elastic Energy as Measures of Tumour Mechanopathology. Nat. Biomed. Eng. 2016, 1, 0004. [Google Scholar] [CrossRef] [PubMed]
- Seano, G.; Nia, H.T.; Emblem, K.E.; Datta, M.; Ren, J.; Krishnan, S.; Kloepper, J.; Pinho, M.C.; Ho, W.W.; Ghosh, M.; et al. Solid Stress in Brain Tumours Causes Neuronal Loss and Neurological Dysfunction and Can Be Reversed by Lithium. Nat. Biomed. Eng. 2019, 3, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K.; Martin, J.D.; Stylianopoulos, T. The Role of Mechanical Forces in Tumor Growth and Therapy. Annu. Rev. Biomed. Eng. 2014, 16, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Fushimi, K.; Sasaki, S.; Marumo, F. Phosphorylation of Serine 256 Is Required for cAMP-Dependent Regulatory Exocytosis of the Aquaporin-2 Water Channel. J. Biol. Chem. 1997, 272, 14800–14804. [Google Scholar] [CrossRef]
- Lin, S.-T.; Ma, C.-C.; Kuo, K.-T.; Su, Y.-F.; Wang, W.-L.; Chan, T.-H.; Su, S.-H.; Weng, S.-C.; Yang, C.-H.; Lin, S.-L.; et al. Transcription Factor Elf3 Modulates Vasopressin-Induced Aquaporin-2 Gene Expression in Kidney Collecting Duct Cells. Front. Physiol. 2019, 10, 1308. [Google Scholar] [CrossRef]
- Lorenz, D.; Krylov, A.; Hahm, D.; Hagen, V.; Rosenthal, W.; Pohl, P.; Maric, K. Cyclic AMP Is Sufficient for Triggering the Exocytic Recruitment of Aquaporin-2 in Renal Epithelial Cells. EMBO Rep. 2003, 4, 88–93. [Google Scholar] [CrossRef]
- Sandoval, P.C.; Claxton, J.S.; Lee, J.W.; Saeed, F.; Hoffert, J.D.; Knepper, M.A. Systems-Level Analysis Reveals Selective Regulation of Aqp2 Gene Expression by Vasopressin. Sci. Rep. 2016, 6, 34863. [Google Scholar] [CrossRef]
- Park, E.; Yang, C.-R.; Raghuram, V.; Deshpande, V.; Datta, A.; Poll, B.G.; Leo, K.T.; Kikuchi, H.; Chen, L.; Chou, C.-L.; et al. Data Resource: Vasopressin-Regulated Protein Phosphorylation Sites in the Collecting Duct. Am. J. Physiol.-Ren. Physiol. 2023, 324, F43–F55. [Google Scholar] [CrossRef]
- Deshpande, V.; Kao, A.; Raghuram, V.; Datta, A.; Chou, C.-L.; Knepper, M.A. Phosphoproteomic Identification of Vasopressin V2 Receptor-Dependent Signaling in the Renal Collecting Duct. Am. J. Physiol.-Ren. Physiol. 2019, 317, F789–F804. [Google Scholar] [CrossRef] [PubMed]
- Eisfeldt, J.; Schuy, J.; Stattin, E.-L.; Kvarnung, M.; Falk, A.; Feuk, L.; Lindstrand, A. Multi-Omic Investigations of a 17–19 Translocation Links MINK1 Disruption to Autism, Epilepsy and Osteoporosis. Int. J. Mol. Sci. 2022, 23, 9392. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.; Rowlands, T.; Shorter, T.; Brookes, A.J. GWAS Central: An Expanding Resource for Finding and Visualising Genotype and Phenotype Data from Genome-Wide Association Studies. Nucleic Acids Res. 2023, 51, D986–D993. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kot, A.; Koszewska, D.; Ochman, B.; Świętochowska, E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1—A Many-Sided Element of Cell Physiology and Pathology. Curr. Issues Mol. Biol. 2024, 46, 13811-13845. https://doi.org/10.3390/cimb46120826
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1—A Many-Sided Element of Cell Physiology and Pathology. Current Issues in Molecular Biology. 2024; 46(12):13811-13845. https://doi.org/10.3390/cimb46120826
Chicago/Turabian StyleKot, Anna, Dominika Koszewska, Błażej Ochman, and Elżbieta Świętochowska. 2024. "Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1—A Many-Sided Element of Cell Physiology and Pathology" Current Issues in Molecular Biology 46, no. 12: 13811-13845. https://doi.org/10.3390/cimb46120826
APA StyleKot, A., Koszewska, D., Ochman, B., & Świętochowska, E. (2024). Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1—A Many-Sided Element of Cell Physiology and Pathology. Current Issues in Molecular Biology, 46(12), 13811-13845. https://doi.org/10.3390/cimb46120826