Changes in the Expression Profile of Pyroptosis-Related Genes in Senescent Retinal Pigment Epithelial Cells after Lutein Treatment
<p>Cell viability of the ARPE-19 cells that were treated with (<b>a</b>) H<sub>2</sub>O<sub>2</sub> for 30, 60, and 120 min., as well as (<b>b</b>) treated with lutein for 24 h. Each bar represents the mean ± standard deviation (SD), Dunnett’s test, * <span class="html-italic">p</span> < 0.05 versus control (C). Sample size: five wells and three technical replicates for each concetration of H<sub>2</sub>0<sub>2</sub> and eight wells and three technical replicates for each concetration of lutein.</p> "> Figure 2
<p>Non-treated and H<sub>2</sub>O<sub>2</sub>-treated ARPE-19 cells stained for senescence-associated β-galactosidase activity. The cells were treated with H<sub>2</sub>O<sub>2</sub> at a concentration of 400 μM for 60 min. The arrows indicate blue SA-β-gal-positive cells.</p> "> Figure 3
<p>Percentage of SA-β-gal-positive cells in non-treated (C) and H<sub>2</sub>O<sub>2</sub>-treated ARPE-19 cells (H). The bars present mean ± standard deviation (SD); Student’s <span class="html-italic">t</span>-test; * <span class="html-italic">p</span> < 0.05. The percent of SA-β-gal-positive cells was counted in ten microscopic fields.</p> "> Figure 4
<p>Changes in the mRNA levels of (<b>a</b>) TP53, (<b>b</b>) CDKN1A and (<b>c</b>) CDKN1B genes in non-treated (C) and H<sub>2</sub>O<sub>2</sub>-treated (H) ARPE-19 cells. The box and whisker plots present the mean ± standard error (SE) and standard deviation (SD) of copy numbers per 1 μg of the total RNA; Student’s <span class="html-italic">t</span>-test; * <span class="html-italic">p</span> < 0.05 versus C. Sample size: three biological and three technical replicates for each test group.</p> "> Figure 5
<p>Fluorescence signal intensity maps specific to 128 ID mRNA pyroptosis-related genes specific to the control ARPE--19 cells (C), lutein-treated ARPE-19 cells (L), H<sub>2</sub>O<sub>2-</sub>-treated ARPE-19 cells (H), and lutein-- and H<sub>2</sub>O<sub>2</sub>-treated ARPE-19 cells (LH). Blue—indicates the lowest values and red—indicates the highest values of fluorescence signals.</p> "> Figure 6
<p>Changes in the mRNA levels of (<b>a</b>) <span class="html-italic">TXNIP</span>, (<b>b</b>) <span class="html-italic">CXCL8</span>, (<b>c</b>) <span class="html-italic">BCL2</span>, (<b>d</b>) <span class="html-italic">BAX</span>, (<b>e</b>) <span class="html-italic">CASP1</span>, and (<b>f</b>) <span class="html-italic">CASP9</span> genes in senescent retinal pigment epithelial cells after treatment with H<sub>2</sub>O<sub>2</sub> (H), lutein (L), co-treated with lutein and H<sub>2</sub>O<sub>2</sub> (LH), and non-treated cells (C). The box and whisker plots present the mean ± standard error (SE) and standard deviation (SD) of copy numbers per 1 μg of the total RNA; Tukey’s post hoc test; * <span class="html-italic">p</span> < 0.05 versus C; # <span class="html-italic">p</span> < 0.05 versus H; ^ <span class="html-italic">p</span> < 0.05 versus LH. Sample size—three biological and three technical replicates for each test group.</p> "> Figure 7
<p>Protein–protein interaction network generated using the STRING database. STRING database—Search Tool for the Retrieval of Interacting Genes/Proteins.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture Conditions and ARPEs-19 Viability Assessment
2.2. ARPE-19 Cells Treatment
2.3. Senescence Assay
2.4. Ribonucleic Acid Extraction
2.5. Oligonucleotide Microarray Analysis
2.6. Quantitative Real-Time Polymerase Chain Reaction Assay
2.7. Bioinfromatics Analysis
2.8. Statistical Analysis
3. Results
3.1. ARPE-19 Viability Assessment
3.2. Cellular Senescence of ARPE-19 Assessment
3.3. Differential Expression of Pyroptosis-Related Genes Based on Oligonucleotide Microarrays
3.4. Differential Expression of Pyroptosis-Related Genes Based on Real-Time RT-qPCR
3.5. Bioinformatic Analysis Using the String Database
4. Discussion
4.1. Altered Expression of p53, CDKN1A, and CDKN1B Genes as Additional Confirmation of Cellular Senescence in ARPE-19 Cells
4.2. Effect of The Tested Compounds on the Expression of TXNIP as a Key Gene Involved in the Process of Pyroptosis
4.3. Change in CXCL8 Gene Expression as a Key Pro-inflammatory Cytokine Exposed to the Tested Substances
4.4. Effect of the Studied Compounds on APRE-19 Cells in Reference to the Genes Involved in the Process of Apoptosis
4.5. Expression of Caspase-1 and Caspase-9 mRNA in ARPE-19 Cells Treated with Test Compounds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, H.H.; Liutkevičienė, R. Age-related macular degeneration: What do we know so far? Acta Med. Litu. 2021, 28, 36–47. [Google Scholar] [CrossRef]
- Sreekumar, P.G.; Su, F.; Spee, C.; Araujo, E.; Nusinowitz, S.; Reddy, S.T.; Kannan, R. Oxidative stress and lipid accumulation augments cell death in LDLR-deficient RPE cells and Ldlr−/− mice. Cells 2022, 12, 43. [Google Scholar] [CrossRef]
- Zhang, C.; Baffi, J.; Cousins, S.W.; Csaky, K.G. Oxidant-induced cell death in retinal pigment epithelium cells mediated through the release of apoptosis-inducing factor. J. Cell Sci. 2003, 116, 1915–1923. [Google Scholar] [CrossRef]
- Farazdaghi, M.K.; Ebrahimi, K.B. Role of the choroid in age-related macular degeneration: A current review. J. Ophthalmic. Vis. Res. 2019, 14, 78–87. [Google Scholar]
- Farinha, C.; Silva, A.L.; Coimbra, R.; Nunes, S.; Cachulo, M.L.; Marques, J.P.; Pires, I.; Cunha-Vaz, J.; Silva, R. Retinal layer thicknesses and neurodegeneration in early age-related macular degeneration: Insights from the coimbra eye study. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 2545–2557. [Google Scholar]
- Nita, M.; Grzybowski, A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef]
- Toma, C.; De Cillà, S.; Palumbo, A.; Garhwal, D.P.; Grossini, E. Oxidative and nitrosative stress in age-related macular degeneration: A review of their role in different stages of disease. Antioxidants 2021, 10, 653. [Google Scholar] [CrossRef]
- Yang, M.; So, K.F.; Lam, W.C.; Lo, A.C.Y. Novel programmed cell death as therapeutic targets in age-related macular degeneration? Int. J. Mol. Sci. 2020, 21, 7279. [Google Scholar] [CrossRef]
- Ruan, Y.; Jiang, S.; Gericke, A. Age-related macular degeneration: Role of oxidative stress and blood vessels. Int. J. Mol. Sci. 2021, 22, 1296. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Y.; Shi, X.; Zuo, J.; Hu, T.; Wu, H.; Xia, Y.; Shi, W.; Wei, W. Ming-mu-di-huang-pill activates SQSTM1 via AMPK-mediated autophagic KEAP1 degradation and protects RPE cells from oxidative damage. Oxid. Med. Cell. Longev. 2022, 2022, 5851315. [Google Scholar] [CrossRef]
- Fang, Y.; Tian, S.; Pan, Y.; Li, W.; Wang, Q.; Tang, Y.; Yu, T.; Wu, X.; Shi, Y.; Ma, P.; et al. Pyroptosis: A new frontier in cancer. Biomed. Pharmacother. 2020, 121, 109595. [Google Scholar]
- Yabal, M.; Calleja, D.J.; Simpson, D.S.; Lawlor, K.E. Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation. J. Leukoc. Biol. 2019, 105, 377–399. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Cui, J.Z.; To, E.; Cao, S.; Matsubara, J.A. Evidence for the activation of pyroptotic and apoptotic pathways in RPE cells associated with NLRP3 inflammasome in the rodent eye. J. Neuroinflamm. 2018, 15, 15. [Google Scholar]
- Yang, M.; So, K.F.; Lo, A.C.Y.; Lam, W.C. The effect of lycium barbarum polysaccharides on pyroptosis-associated amyloid β1- 40 oligomers-induced adult retinal pigment epithelium 19 cell damage. Int. J. Mol. Sci. 2020, 21, 4658. [Google Scholar] [CrossRef]
- Frede, K.; Ebert, F.; Kipp, A.P.; Schwerdtle, T.; Baldermann, S. Lutein activates the transcription factor Nrf2 in human retinal pigment epithelial cells. J. Agric. Food Chem. 2017, 65, 5944–5952. [Google Scholar] [CrossRef]
- Li, L.H.; Lee, J.C.; Leung, H.H.; Lam, W.C.; Fu, Z.; Lo, A.C.Y. Lutein supplementation for eye diseases. Nutrients 2020, 12, 1721. [Google Scholar] [CrossRef]
- Feng, L.; Nie, K.; Jiang, H.; Fan, W. Effects of lutein supplementation in age-related macular degeneration. PLoS ONE 2019, 14, e0227048. [Google Scholar]
- Pfeffer, B.A.; Fliesler, S.J. Reassessing the suitability of ARPE-19 cells as a valid model of native RPE biology. Exp. Eye Res. 2022, 219, 109046. [Google Scholar]
- Samuel, W.; Jaworski, C.; Postnikova, O.A.; Kutty, R.K.; Duncan, T.; Tan, L.X.; Poliakov, E.; Lakkaraju, A.; Redmond, T.M. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol. Vis. 2017, 23, 60–89. [Google Scholar]
- Alizadeh, M.; Wada, M.; Gelfman, C.M.; Handa, J.T.; Hjelmeland, L.M. Downregulation of differentiation specific gene expression by oxidative stress in ARPE-19 cells. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2706–2713. [Google Scholar]
- Muangnoi, C.; Phumsuay, R.; Jongjitphisut, N.; Waikasikorn, P.; Sangsawat, M.; Rashatasakhon, P.; Paraoan, L.; Rojsitthisak, P. Protective effects of a lutein ester prodrug, lutein diglutaric acid, against H2O2-induced oxidative stress in human retinal pigment epithelial cells. Int. J. Mol. Sci. 2021, 22, 4722. [Google Scholar]
- Strzalka-Mrozik, B.; Stanik-Walentek, A.; Kapral, M.; Kowalczyk, M.; Adamska, J.; Gola, J.; Mazurek, U. Differential expression of transforming growth factor-beta isoforms in bullous keratopathy corneas. Mol. Vis. 2010, 16, 161–166. [Google Scholar]
- Zhang, M.; Cheng, Y.; Xue, Z.; Sun, Q.; Zhang, J. A novel pyroptosis-related gene signature predicts the prognosis of glioma through immune infiltration. BMC Cancer 2021, 21, 1311. [Google Scholar] [CrossRef]
- Ye, Y.; Dai, Q.; Qi, H. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell Death Discov. 2021, 7, 71. [Google Scholar] [CrossRef]
- Chen, M.; Rong, R.; Xia, X. Spotlight on pyroptosis: Role in pathogenesis and therapeutic potential of ocular diseases. J. Neuroinflamm. 2022, 19, 183. [Google Scholar] [CrossRef]
- Bardak, H.; Uğuz, A.C.; Bardak, Y. Protective effects of melatonin and memantine in human retinal pigment epithelium (ARPE-19) cells against 2-ethylpyridine-induced oxidative stress: Implications for age-related macular degeneration. Cutan. Ocul. Toxicol. 2018, 37, 112–120. [Google Scholar]
- Du, Y.; You, L.; Ni, B.; Sai, N.; Wang, W.; Sun, M.; Xu, R.; Yao, Y.; Zhang, Z.; Qu, C.; et al. Phillyrin mitigates apoptosis and oxidative stress in hydrogen peroxide-treated RPE cells through activation of the Nrf2 signaling pathway. Oxid. Med. Cell. Longev. 2020, 2020, 2684672. [Google Scholar] [CrossRef]
- Golestaneh, N.; Chu, Y.; Xiao, Y.Y.; Stoleru, G.L.; Theos, A.C. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis. 2017, 8, e2537. [Google Scholar]
- Celkova, L.; Doyle, S.L.; Campbell, M. NLRP3 inflammasome and pathobiology in AMD. J. Clin. Med. 2015, 4, 172–192. [Google Scholar] [CrossRef]
- Choo, P.P.; Woi, P.J.; Bastion, M.C.; Omar, R.; Mustapha, M.; Md Din, N. Review of evidence for the usage of antioxidants for eye aging. Biomed. Res. Int. 2022, 2022, 5810373. [Google Scholar]
- Mrowicka, M.; Mrowicki, J.; Kucharska, E.; Majsterek, I. Lutein and zeaxanthin and their roles in age-related macular degeneration-neurodegenerative disease. Nutrients 2022, 14, 827. [Google Scholar] [CrossRef]
- Roberts, J.E.; Dennison, J. The photobiology of lutein and zeaxanthin in the eye. J. Ophthalmol. 2015, 2015, 687173. [Google Scholar] [CrossRef] [Green Version]
- Li, S.S.; Wang, H.H.; Zhang, D. Efficacy of different nutrients in age-related macular degeneration: A systematic review and network meta-analysis. Semin. Ophthalmol. 2022, 37, 515–523. [Google Scholar]
- Wang, S.; Wang, X.; Cheng, Y.; Ouyang, W.; Sang, X.; Liu, J.; Su, Y.; Liu, Y.; Li, C.; Yang, L.; et al. Autophagy dysfunction, cellular senescence, and abnormal immune-inflammatory responses in AMD: From mechanisms to therapeutic potential. Oxid. Med. Cell. Longev. 2019, 2019, 3632169. [Google Scholar]
- Kumari, R.; Jat, P. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front. Cell. Dev. Biol. 2021, 9, 645593. [Google Scholar]
- Zhuge, C.C.; Xu, J.Y.; Zhang, J.; Li, W.; Li, P.; Li, Z.; Chen, L.; Liu, X.; Shang, P.; Xu, H.; et al. Fullerenol protects retinal pigment epithelial cells from oxidative stress-induced premature senescence via activating SIRT1. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4628–4638. [Google Scholar]
- Dulić, V.; Beney, G.E.; Frebourg, G.; Drullinger, L.F.; Stein, G.H. Uncoupling between phenotypic senescence and cell cycle arrest in aging p21-deficient fibroblasts. Mol. Cell. Biol. 2000, 20, 6741–6754. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, Y.; Tong, D.; Zhang, H.; Luo, Z.; Shang, X.; Dong, Y. Wnt signaling inhibits high-density cell sheet culture induced mesenchymal stromal cell aging by targeting cell cycle inhibitor p27. Front. Bioeng. Biotechnol. 2020, 8, 946. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W.; Zhou, X.; Long, C.; Kuang, X.; Hu, J.; Tang, Y.; Liu, L.; He, J.; Huang, Z.; et al. Protective effect of lutein on ARPE-19 cells upon H2O2-induced G2/M arrest. Mol. Med. Rep. 2017, 16, 2069–2074. [Google Scholar] [CrossRef]
- Horstmann, C.; Davenport, V.; Zhang, M.; Peters, A.; Kim, K. Transcriptome profile alterations with carbon nanotubes, quantum dots, and silver nanoparticles: A review. Genes 2021, 12, 794. [Google Scholar] [CrossRef]
- Devi, T.S.; Hosoya, K.; Terasaki, T.; Singh, L.P. Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: Implications for diabetic retinopathy. Exp. Cell Res. 2013, 319, 1001–1012. [Google Scholar] [CrossRef]
- Qayyum, N.; Haseeb, M.; Kim, M.S.; Choi, S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int. J. Mol. Sci. 2021, 22, 2754. [Google Scholar] [CrossRef]
- Cho, M.J.; Yoon, S.J.; Kim, W.; Park, J.; Lee, J.; Park, J.G.; Cho, Y.L.; Kim, J.H.; Jang, H.; Park, Y.J.; et al. Oxidative stress-mediated TXNIP loss causes RPE dysfunction. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar]
- Kauppinen, A.; Paterno, J.J.; Blasiak, J.; Salminen, A.; Kaarniranta, K. Inflammation and its role in age-related macular degeneration. Cell. Mol. Life Sci. 2016, 73, 1765–1786. [Google Scholar] [CrossRef]
- Yang, I.H.; Lee, J.J.; Wu, P.C.; Kuo, H.K.; Kuo, Y.H.; Huang, H.M. Oxidative stress enhanced the transforming growth factor-β2-induced epithelial-mesenchymal transition through chemokine ligand 1 on ARPE-19 cell. Sci. Rep. 2020, 10, 4000. [Google Scholar] [CrossRef]
- Kim, Y.; Seo, J.H.; Kim, H. β-Carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells. J. Nutr. Sci. Vitaminol. 2011, 57, 216–223. [Google Scholar] [CrossRef]
- Maes, M.E.; Schlamp, C.L.; Nickells, R.W. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog. Retin. Eye Res. 2017, 57, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Chen, M.; Chen, X.; Zhao, C.; Fang, Z.; Wang, H.; Dai, H. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 2020, 11, 281. [Google Scholar] [CrossRef]
- Shi, C.S.; Kehrl, J.H. Bcl-2 regulates pyroptosis and necroptosis by targeting BH3-like domains in GSDMD and MLKL. Cell Death Discov. 2019, 5, 151. [Google Scholar] [CrossRef]
- Pan, Y.; Cai, W.; Huang, J.; Cheng, A.; Wang, M.; Yin, Z.; Jia, R. Pyroptosis in development, inflammation and disease. Front. Immunol. 2022, 13, 5456. [Google Scholar] [CrossRef]
- Zacks, D.N.; Kocab, A.J.; Choi, J.J.; Gregory-Ksander, M.S.; Cano, M.; Handa, J.T. Cell death in AMD: The rationale for targeting Fas. J. Clin. Med. 2022, 11, 592. [Google Scholar] [CrossRef]
- Zhao, M.; Li, S.; Matsubara, J.A. Targeting pyroptotic cell death pathways in retinal disease. Front. Med. 2022, 8, 802063. [Google Scholar] [CrossRef]
- Tseng, W.A.; Thein, T.; Kinnunen, K.; Lashkari, K.; Gregory, M.S.; D’Amore, P.A.; Ksander, B.R. NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: Implications for age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2013, 54, 110–120. [Google Scholar] [CrossRef]
- Avrutsky, M.I.; Troy, C.M. Caspase-9: A multimodal therapeutic target with diverse cellular expression in human disease. Front. Pharmacol. 2021, 12, 701301. [Google Scholar]
- Gao, L.; Jiang, Z.; Han, Y.; Li, Y.; Yang, X. Regulation of pyroptosis by ncRNA: A novel research direction. Front. Cell. Dev. Biol. 2022, 10, 840576. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, S.; Wu, J.; Chen, M.; Cai, M.C.; Fu, Y.; Li, W.; Wang, J.; Zhao, X.; Yu, Z.; et al. Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death. Clin. Cancer Res. 2018, 24, 6066–6077. [Google Scholar] [CrossRef]
- Dunn, K.C.; Aotaki-Keen, A.E.; Putkey, F.R.; Hjelmeland, L.M. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp. Eye Res. 1996, 62, 155–169. [Google Scholar] [CrossRef]
- Ablonczy, Z.; Dahrouj, M.; Tang, P.H.; Liu, Y.; Sambamurti, K.; Marmorstein, A.D.; Crosson, C.E. Human retinal pigment epithelium cells as functional models for the RPE in vivo. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8614–8620. [Google Scholar] [CrossRef]
Gene | Oligonucleotide Sequence | Amplimer Length (bp) | Tm (°C) |
---|---|---|---|
TXNIP | Forward: 5′CAGCCAACAGGTGAGAATGA3′ Reverse: 5′TTGAAGGATGTTCCCAGAGG3′ | 104 | 83.1 |
CXCL8 | Forward: 5′CTCTAACTCTTTATATAGGAATT3′ Reverse: 5′GATTGATTTTATCAACAGGCA3′ | 203 | 81.2 |
BCL2 | Forward: 5′GATTGTGGCCTTCTTTGAG3′ Reverse: 5′GTTCCACAAAGGCATCC3′ | 164 | 85.8 |
BAX | Forward: 5′CCTGTGCACCAAGGTGCCGGAACT3′ Reverse: 5′CCACCCTGGTCTTGGATCCAGCCC3′ | 99 | 84.4 |
CASP1 | Forward: 5′CAACTACAGAAGAGTTTGAGG3′ Reverse: 5′AACATTATCTGGTGTGGAAG3′ | 92 | 82.0 |
CASP9 | Forward: 5′CTCTACTTTCCCAGGTTTTG3′ Reverse: 5′TTTCACCGAAACAGCATTAG3′ | 148 | 84.4 |
TP53 | Forward: 5′ACCTATGGAAACTACTTCCTG3′ Reverse: 5′ACCATTGTTCAATATCGTCC3′ | 99 | 83.7 |
CDKN1A | Forward: 5′ CAGCATGACAGATTTCTACC3′ Reverse: 5′CAGGGTATGTACATGAGGAG3′ | 200 | 88.4 |
CDKN1B | Forward: 5′ AACCGACGATTCTTCTACTC3′ Reverse: 5′ TGTTTACGTTTGACGTCTTC3′ | 133 | 84.7 |
ACTB | Forward: 5′TCACCCACACTGTGCCCATCTACGA3′ Reverse: 5′CAGCGGAACCGCTCATTGCCAATGG3′ | 295 | 88.4 |
Tukey’s Post-Hoc Multiple Comparison Test | ||||
---|---|---|---|---|
Transcriptome Group | IDs [L] | IDs [H] | IDs [LH] | IDs [C] |
IDs [L] | – | 112 | 28 | 3 |
IDs [H] | 16 | – | 98 | 119 |
IDs [LH] | 100 | 30 | – | 28 |
IDs [C] | 125 | 9 | 100 | – |
Probe ID | Gene Symbol | p Value | FC | |||
---|---|---|---|---|---|---|
[H] vs. [C] | [H] vs. [LH] | [L] vs. [C] | [LH] vs. [C] | |||
201008_s_at | TXNIP | p < 0.001 | ↓6.90 | ↓2.35 | ↓1.02 | ↓2.94 |
201009_s_at | TXNIP | p < 0.001 | ↓5.56 | ↓2.12 | ↓1.03 | ↓2.62 |
201010_s_at | TXNIP | p < 0.001 | ↓5.73 | ↓2.07 | ↓1.02 | ↓2.77 |
202269_x_at | GBP1 | p < 0.001 | ↑2.06 | ↑1.19 | ↑1.03 | ↑1.73 |
202270_at | GBP1 | p < 0.01 | ↑2.11 | ↑1.06 | ↓1.11 | ↑1.99 |
202859_x_at | CXCL8 | p < 0.001 | ↑8.57 | ↑3.42 | ↑1.39 | ↑2.51 |
203685_at | BCL2 | p < 0.001 | ↑2.30 | ↑2.40 | ↓1.11 | ↓1.04 |
204475_at | MMP1 | p < 0.001 | ↑3.50 | ↑3.57 | ↓1.05 | ↓1.02 |
205207_at | IL6 | p < 0.001 | ↑2.00 | ↑1.30 | ↑1.17 | ↑1.49 |
205234_at | SLC16A4 | p < 0.01 | ↓2.05 | ↓1.83 | ↓1.17 | ↓1.12 |
206172_at | IL13RA2 | p < 0.001 | ↑2.11 | ↑1.96 | ↓1.11 | ↑1.08 |
209395_at | CHI3L1 | p < 0.01 | ↑1.71 | ↑2.17 | ↓1.09 | ↓1.27 |
209396_s_at | CHI3L1 | p < 0.01 | ↑1.65 | ↑2.05 | ↓1.12 | ↓1.25 |
210538_s_at | BIRC3 | p < 0.01 | ↑2.15 | ↑1.95 | ↑1.03 | ↑1.10 |
211506_s_at | CXCL8 | p < 0.001 | ↑9.28 | ↑4.12 | ↑1.26 | ↑2.25 |
213700_s_at | PKM | p < 0.001 | ↓2.02 | ↓1.11 | ↓1.15 | ↓1.81 |
214657_s_at | NEAT1 | p < 0.01 | ↓3.58 | ↓1.76 | ↓1.36 | ↓2.04 |
219209_at | IFIH1 | p < 0.001 | ↓2.15 | ↓1.81 | ↑1.00 | ↓1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzalka-Mrozik, B.; Madej, M.; Kurowska, N.; Kruszniewska-Rajs, C.; Kimsa-Dudek, M.; Adamska, J.; Gola, J.M. Changes in the Expression Profile of Pyroptosis-Related Genes in Senescent Retinal Pigment Epithelial Cells after Lutein Treatment. Curr. Issues Mol. Biol. 2023, 45, 1500-1518. https://doi.org/10.3390/cimb45020097
Strzalka-Mrozik B, Madej M, Kurowska N, Kruszniewska-Rajs C, Kimsa-Dudek M, Adamska J, Gola JM. Changes in the Expression Profile of Pyroptosis-Related Genes in Senescent Retinal Pigment Epithelial Cells after Lutein Treatment. Current Issues in Molecular Biology. 2023; 45(2):1500-1518. https://doi.org/10.3390/cimb45020097
Chicago/Turabian StyleStrzalka-Mrozik, Barbara, Marcel Madej, Natalia Kurowska, Celina Kruszniewska-Rajs, Magdalena Kimsa-Dudek, Jolanta Adamska, and Joanna Magdalena Gola. 2023. "Changes in the Expression Profile of Pyroptosis-Related Genes in Senescent Retinal Pigment Epithelial Cells after Lutein Treatment" Current Issues in Molecular Biology 45, no. 2: 1500-1518. https://doi.org/10.3390/cimb45020097
APA StyleStrzalka-Mrozik, B., Madej, M., Kurowska, N., Kruszniewska-Rajs, C., Kimsa-Dudek, M., Adamska, J., & Gola, J. M. (2023). Changes in the Expression Profile of Pyroptosis-Related Genes in Senescent Retinal Pigment Epithelial Cells after Lutein Treatment. Current Issues in Molecular Biology, 45(2), 1500-1518. https://doi.org/10.3390/cimb45020097