Impact of Soft Drink Intake on Bone Development and Risk of Fractures in a Danish Cohort of Schoolchildren
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Outcome
2.2.1. Dual Energy X-Ray Absorptiometry—Bone Measurements
2.2.2. Fractures
2.3. Soft Drink Intake
2.4. Covariates
2.5. Accelerometer
2.6. Ethics Approval
2.7. Use of Chat 4o AI
3. Statistical Analysis
4. Results
4.1. Association Between Soft Drink Intake and BMD, BMC, and BA
4.2. Association Between Soft Drink Intake and Risk of Fracture
5. Discussion
Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubio-Gutierrez, J.C.; Mendez-Hernández, P.; Guéguen, Y.; Galichon, P.; Tamayo-Ortiz, M.; Haupt, K.; Medeiros, M.; Barbier, O.C. Overview of Traditional and Environmental Factors Related to Bone Health. Environ. Sci. Pollut. Res. Int. 2022, 29, 31042–31058. [Google Scholar] [CrossRef]
- Chen, L.; Liu, R.; Zhao, Y.; Shi, Z. High Consumption of Soft Drinks Is Associated with an Increased Risk of Fracture: A 7-Year Follow-Up Study. Nutrients 2020, 12, 530. [Google Scholar] [CrossRef]
- Moreno, L.A.; Gottrand, F.; Huybrechts, I.; Ruiz, J.R.; Gonzalez-Gross, M.; DeHenauw, S.; HELENA Study Group. Nutrition and lifestyle in european adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Adv. Nutr. 2014, 5, 615S–623S. [Google Scholar] [CrossRef]
- Park, S.; Xu, F.; Town, M.; Blanck, H.M. Prevalence of Sugar-Sweetened Beverage Intake Among Adults—23 States and the District of Columbia, 2013. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Azais-Braesco, V.; Sluik, D.; Maillot, M.; Kok, F.; Moreno, L.A. A review of total & added sugar intakes and dietary sources in Europe. Nutr. J. 2017, 16, 6. [Google Scholar]
- Sluik, D.; van Lee, L.; Engelen, A.I.; Feskens, E.J. Total, Free, and Added Sugar Consumption and Adherence to Guidelines: The Dutch National Food Consumption Survey 2007–2010. Nutrients 2016, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Park, Y.K. Sugar-sweetened beverage consumption and bone health: A systematic review and meta-analysis. Nutr. J. 2021, 20, 41. [Google Scholar] [CrossRef]
- Delshad, M.; Beck, K.L.; Conlon, C.A.; Mugridge, O.; Kruger, M.C.; von Hurst, P.R. Fracture risk factors among children living in New Zealand. J. Steroid Biochem. Mol. Biol. 2020, 200, 105655. [Google Scholar] [CrossRef]
- Kim, Y.A.; Yoo, J.H. Associations between cola consumption and bone mineral density in Korean adolescents and young adults: A cross-sectional study using data from the Korea National Health and Nutrition Examination Survey, 2008–2011. J. Nutr. Sci. 2020, 9, e56. [Google Scholar] [CrossRef]
- Händel, M.N.; Heitmann, B.L.; Abrahamsen, B. Nutrient and food intakes in early life and risk of childhood fractures: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2015, 102, 1182–1195. [Google Scholar] [CrossRef]
- Libuda, L.; Alexy, U.; Remer, T.; Stehle, P.; Schoenau, E.; Kersting, M. Association between long-term consumption of soft drinks and variables of bone modeling and remodeling in a sample of healthy German children and adolescents. Am. J. Clin. Nutr. 2008, 88, 1670–1677. [Google Scholar] [CrossRef]
- Bragança, M.L.B.M.; Bogea, E.G.; Viola, P.C.d.A.F.; Vaz, J.d.S.; Confortin, S.C.; Menezes, A.M.B.; Gonçalves, H.; Bettiol, H.; Barbieri, M.A.; Cardoso, V.C.; et al. High Consumption of Sugar-Sweetened Beverages Is Associated with Low Bone Mineral Density in Young People: The Brazilian Birth Cohort Consortium. Nutrients 2023, 15, 324. [Google Scholar] [CrossRef]
- Khalid, N. Impact of carbonated beverages on early onset of osteoporosis: A narrative review. Nutr. Health 2023, 30, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.M.; Murray, K.; Ambrosini, G.L.; Oddy, W.H.; Walsh, J.P.; Zhu, K. Prospective Associations of Sugar-Sweetened Beverage Consumption During Adolescence with Body Composition and Bone Mass at Early Adulthood. J. Nutr. 2022, 152, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Marshall, T.A.; Curtis, A.M.; Cavanaugh, J.E.; Warren, J.J.; Levy, S.M. Child and Adolescent Sugar-Sweetened Beverage Intakes Are Longitudinally Associated with Higher Body Mass Index z Scores in a Birth Cohort Followed 17 Years. J. Acad. Nutr. Diet. 2019, 119, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Rinonapoli, G.; Pace, V.; Ruggiero, C.; Ceccarini, P.; Bisaccia, M.; Meccariello, L.; Caraffa, A. Obesity and Bone: A Complex Relationship. Int. J. Mol. Sci. 2021, 22, 13662. [Google Scholar] [CrossRef]
- Varkal, M.A.; Gulenc, B.; Yildiz, I.; Kandemir, I.; Bilgili, F.; Toprak, S.; Kilic, A.; Unuvar, E. Vitamin D level, body mass index and fracture risk in children: Vitamin D deficiency and fracture risk. J. Pediatr. Orthop. B 2022, 31, e264–e270. [Google Scholar] [CrossRef] [PubMed]
- Kindler, J.M.; Lobene, A.J.; Vogel, K.A.; Martin, B.R.; McCabe, L.D.; Peacock, M.; Warden, S.J.; McCabe, G.P.; Weaver, C.M. Adiposity, Insulin Resistance, and Bone Mass in Children and Adolescents. J. Clin. Endocrinol. Metab. 2018, 104, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Wedderkopp, N.; Jespersen, E.; Franz, C.; Klakk, H.; Heidemann, M.; Christiansen, C.; Møller, N.C.; Leboeuf-Yde, C. Study protocol. The Childhood Health, Activity, and Motor Performance School Study Denmark (The CHAMPS-study DK). BMC Pediatr. 2012, 12, 128. [Google Scholar] [CrossRef] [PubMed]
- Margulies, L.; Horlick, M.; Thornton, J.C.; Wang, J.; Ioannidou, E.; Heymsfield, S.B. Reproducibility of pediatric whole body bone and body composition measures by dual-energy X-ray absorptiometry using the GE Lunar Prodigy. J. Clin. Densitom. 2005, 8, 298–304. [Google Scholar] [CrossRef]
- Heidemann, M.; Mølgaard, C.; Husby, S.; Schou, A.J.; Klakk, H.; Møller, N.C.; Holst, R.; Wedderkopp, N. The intensity of physical activity influences bone mineral accrual in childhood: The childhood health, activity and motor performance school (the CHAMPS) study, Denmark. BMC Pediatr. 2013, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- SMS-Track_ApS. SMS-Track. 1.0 ed2008. p. Surveys and Polls Performed with 2-Way SMS/Text Message Survey Tool. Available online: https://sms-track.com/contact/ (accessed on 23 December 2024).
- Jespersen, E.; Holst, R.; Franz, C.; Rexen, C.T.; Klakk, H.; Wedderkopp, N. Overuse and traumatic extremity injuries in schoolchildren surveyed with weekly text messages over 2.5 years. Scand. J. Med. Sci. Sports 2014, 24, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Fagt, S. Results from the Danish Validation Study in Nordic Monitoring—What Do Adolescents Answer When They Participate in a Survey with FFQ? Denmarks Technical University. DTU Food, The National Food Institute. 2014. Available online: https://www.food.dtu.dk/-/media/institutter/foedevareinstituttet/temaer/ernaering-og-kostvaner/normon-praesentationer/sisse-fagt.pdf (accessed on 23 December 2024).
- Fagt, S.; Andersen, L.F.; Barbieri, H.E.; Borodulin, K.; Thorgeirsdottir, H.; Trolle, E.; Matthiessen, J. The Nordic Monitoring System: Basis for Decision on 3rd Data Collection; Nordic Working Paper: Copenhagen, Denmark, 2021. [Google Scholar]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.H.; Grøntved, A.; Brønd, J.C.; Møller, N.C.; Larsen, K.T.; Debrabant, B.; Koch, S.; Troelsen, J.; Brage, S.; Schipperijn, J.; et al. Effect of nationwide school policy on device-measured physical activity in Danish children and adolescents: A natural experiment. Lancet Reg. Health Eur. 2023, 26, 100575. [Google Scholar] [CrossRef]
- Trost, S.G.; Pate, R.R.; Freedson, P.S.; Sallis, J.F.; Taylor, W.C. Using objective physical activity measures with youth: How many days of monitoring are needed? Med. Sci. Sports Exerc. 2000, 32, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A.; Parsons, T.J.; Cole, T.J. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am. J. Clin. Nutr. 1994, 60, 837–842. [Google Scholar] [CrossRef]
- Petridou, E.; Karpathios, T.; Dessypris, N.; Simou, E.; Trichopoulos, D. The role of dairy products and non alcoholic beverages in bone fractures among schoolage children. Scand. J. Soc. Med. 1997, 25, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Manias, K.; McCabe, D.; Bishop, N. Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone 2006, 39, 652–657. [Google Scholar] [CrossRef]
- Ma, D.; Jones, G. Soft drink and milk consumption, physical activity, bone mass, and upper limb fractures in children: A population-based case-control study. Calcif. Tissue Int. 2004, 75, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Albala, C.; Ebbeling, C.B.; Cifuentes, M.; Lera, L.; Bustos, N.; Ludwig, D.S. Effects of replacing the habitual consumption of sugar-sweetened beverages with milk in Chilean children. Am. J. Clin. Nutr. 2008, 88, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.O.; Mitchell, D.C.; Smiciklas-Wright, H.; Mannino, M.L.; Birch, L.L. Meeting calcium recommendations during middle childhood reflects mother-daughter beverage choices and predicts bone mineral status. Am. J. Clin. Nutr. 2004, 79, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Whiting, S.J.; Healey, A.; Psiuk, S.; Mirwald, R.; Kowalski, K.; Bailey, D.A. Relationship between carbonated and other low nutrient dense beverages and bone mineral content of adolescents. Nutr. Res. 2001, 21, 1107–1115. [Google Scholar] [CrossRef]
- Nassar, M.F.; Emam, E.K.; Shatla, R.H.; Fouad, D.A.; Zayed, A.G.; Atteya, M.S. Sugar Sweetened Beverages Consumption in Preadolescent Children: 25-Hydroxy Vitamin D and Bone Mineral Density Affection. Br. J. Med. Med. Res. 2014, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- McGartland, C.; Robson, P.; Murray, L.; Cran, G.; Savage, M.; Watkins, D.; Rooney, M.; Boreham, C. Carbonated soft drink consumption and bone mineral density in adolescence: The Northern Ireland Young Hearts project. J. Bone Miner. Res. 2003, 18, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Wyshak, G. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch. Pediatr. Adolesc. Med. 2000, 154, 610–613. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, J.E.; Brennan, S.E. Synthesizing and presenting findings using other methods. In Cochrane Handbook for Systematic Reviews of Interventions; Cochrane: London, UK, 2023; Available online: https://www.training.cochrane.org/handbook (accessed on 23 December 2024).
- Baranowski, T.; Smith, M.; Baranowski, J.; Wang, D.T.; Doyle, C.; Lin, L.S.; Hearn, M.D.; Resnicow, K. Low validity of a seven-item fruit and vegetable food frequency questionnaire among third-grade students. J. Am. Diet. Assoc. 1997, 97, 66–68. [Google Scholar] [CrossRef]
- Burrows, T.L.; Truby, H.; Morgan, P.J.; Callister, R.; Davies, P.S.; Collins, C.E. A comparison and validation of child versus parent reporting of children’s energy intake using food frequency questionnaires versus food records: Who’s an accurate reporter? Clin. Nutr. 2013, 32, 613–618. [Google Scholar] [CrossRef]
Soft Drink Intake | |
---|---|
Answer | N (%) |
Every day (%) | 2 (0.38) |
Almost every day (%) | 25 (4.73) |
Between one and two times per week (%) | 282 (53.31) |
Between one or two times per month (%) | 147 (27.79) |
Almost never or never (%) | 73 (13.80) |
Total | 529 (100) |
Key Variables (Mean ± SD or n (%)) | Participants at Baseline with Full Dataset (n = 529) | ||
---|---|---|---|
Total N = 529 | Soft Drink Intake ≤ 2 Times per Month N = 220 (41.59) | Soft Drink > 2 Times per Month N = 309 (58.41) | |
Sex | |||
Boy | 262 (49.53) | 108 (49.09) | 154 (49.84) |
Girl | 267 (50.47) | 112 (50.91) | 155 (50.16) |
Type of school | |||
Sports school | 330 (56.71) | 126 (57.27) | 174 (56.31) |
Traditional school | 229 (43.29) | 94 (42.73) | 135 (43.69) |
Anthropometry | |||
Weight | 32.38 ± 6.28 | 32.52 ± 6.82 | 32.28 ± 5.87 |
Height | 139.09 ± 7.54 | 139.13 ± 8.14 | 139.05 ± 7.08 |
BMI | 16.62 ± 2.07 | 16.66 ± 2.20 | 16.59 ± 1.98 |
Puberty stage | |||
Tanner stage 1 | 336 (63.52) | 139 (63.18) | 197 (63.75) |
Tanner stage 2 | 177 (33.46) | 74 (33.64) | 103 (33.33) |
Tanner stage 3 | 14 (2.65) | 6 (2.73) | 8 (2.59) |
Tanner stage 4 | 2 (0.38) | 1 (0.45) | 1 (0.32) |
Tanner stage 5 | 0 (0) | 0 (0) | 0 |
Age | 9.58 ± 0.87 | 9.53 ± 0.89 | 9.62 ± 0.84 |
BMD (g/cm2) | 0.76 ± 0.06 | 0.76 ± 0.06 | 0.76 ± 0.05 |
BA (cm2) | 1118.37 ± 174.72 | 1121.22 ± 190.79 | 1116.33 ± 162.61 |
BMC (g) | 857.10 ± 191.82 | 860.83 ± 211.01 | 854.44 ± 177.20 |
Fractures | 34 | 19 | 15 |
Highest attained education level of mother | |||
1 | 222 (41.97) | 117 (53.18) | 105 (33.98) |
2 | 111 (20.98) | 33 (15.00) | 78 (25.24) |
3 | 196 (37.05) | 70 (31.82) | 126 (40.78) |
Physical activity | |||
Sedentary Activity (mean %) | 63.76 ± 5.52 | 64.033 ± 5.70 | 63.56 ± 5.39 |
Light activity (mean %) | 28.28 ± 4.12 | 28.10 ± 4.23 | 28.41 ± 4.03 |
Moderate activity (mean %) | 5.11 ± 1.43 | 5.06 ± 1.40 | 5.14 ± 1.44 |
Vigorous activity (mean %) | 2.85 ± 1.32 | 2.80 ± 1.28 | 2.90 ± 1.34 |
Bone Measures | N | Soft Drink Intake β (95% CI) |
---|---|---|
Total body BMC | ||
Crude | 551 | 5.49 (−38.29; 49.26) |
Model 1 * | 531 | 3.38 (−5.50; 12.26) |
Model 2 ** | 529 | 3.74 (−5.08; 12.55) |
Model 3 *** | 529 | 3.46 (−5.34; 12.27) |
Total body BA | ||
Crude | 551 | 2.68 (−32.24; 37.59) |
Model 1 * | 531 | 2.41 (−10.01; 14.84) |
Model 2 ** | 529 | 2.54 (−9.72; 14.80) |
Model 3 *** | 529 | 3.05 (−9.17; 15.26) |
Total body BMD | ||
Crude | 551 | 0.004 (−0.007; 0.016) |
Model 1 * | 531 | 0.002 (−0.002; 0.007) |
Model 2 ** | 529 | 0.003 (−0.001; 0.007) |
Model 3 *** | 529 | 0.003 (−0.001; 0.007) |
Fracture | N (Number of obs) | Soft Drink Intake HR (95% CI) |
---|---|---|
Crude | 580 | 0.86 (0.43; 1.71) |
Model 1 * | 531 | 0.90 (0.44; 1.83) |
Model 2 ** | 529 | 0.88 (0.43; 1.81) |
Model 3 *** | 529 | 0.88 (0.43; 1.80) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermansen, H.; Händel, M.N.; Heidemann, M.S.; Wedderkopp, N. Impact of Soft Drink Intake on Bone Development and Risk of Fractures in a Danish Cohort of Schoolchildren. Children 2025, 12, 43. https://doi.org/10.3390/children12010043
Hermansen H, Händel MN, Heidemann MS, Wedderkopp N. Impact of Soft Drink Intake on Bone Development and Risk of Fractures in a Danish Cohort of Schoolchildren. Children. 2025; 12(1):43. https://doi.org/10.3390/children12010043
Chicago/Turabian StyleHermansen, Helene, Mina Nicole Händel, Malene Søborg Heidemann, and Niels Wedderkopp. 2025. "Impact of Soft Drink Intake on Bone Development and Risk of Fractures in a Danish Cohort of Schoolchildren" Children 12, no. 1: 43. https://doi.org/10.3390/children12010043
APA StyleHermansen, H., Händel, M. N., Heidemann, M. S., & Wedderkopp, N. (2025). Impact of Soft Drink Intake on Bone Development and Risk of Fractures in a Danish Cohort of Schoolchildren. Children, 12(1), 43. https://doi.org/10.3390/children12010043