Changes in Ankle Range of Motion, Gait Function and Standing Balance in Children with Bilateral Spastic Cerebral Palsy after Ankle Mobilization by Manual Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sample Size Calculation
2.4. Intervention Methods
2.5. Ankle Joint Mobilization
2.6. Sham Mobilization
2.7. Assessments
2.8. Ankle Dorsiflexion ROM
2.9. COP Displacements
2.10. Gait Function
2.11. Statistical Analysis
3. Result
3.1. Change in ROM Dorsiflexion
3.2. Change in COP Displacements, TUG, and 10-m Walk Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gajdosik, C.G.; Cicirello, N. Secondary conditions of the musculoskeletal system in adolescents and adults with cerebral palsy. J. Phys. Occup. Ther. Pediatrics 2002, 21, 49–68. [Google Scholar] [CrossRef]
- Lomax, M.R.; Shrader, M.W. Orthopedic Conditions in Adults with Cerebral Palsy. J. Phys. Med. Rehabil. Clin. 2020, 31, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Morrell, D.S.; Pearson, J.M.; Sauser, D.D. Progressive bone and joint abnormalities of the spine and lower extremities in cerebral palsy. J. Radiogr. 2002, 22, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Lance, J.W. Pathophysiology of Spasticity and Clinical Experience with Baclofen. In Spasticity: Disordered Motor Control; Lance, J.W.F.R., Young, R.R., Koella, W.P., Eds.; Year Book Medical Publishers: Chicago, IL, USA, 1980. [Google Scholar]
- Ross, S.A.; Engsberg, J.R. Relation between spasticity and strength in individuals with spastic diplegic cerebral palsy. J. Dev. Med. Child Neurol. 2002, 44, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Hägglund, G.; Wagner, P. Spasticity of the gastrosoleus muscle is related to the development of reduced passive dorsiflexion of the ankle in children with cerebral palsy: A registry analysis of 2796 examinations in 355 children. J. Acta Orthop. 2011, 82, 744–748. [Google Scholar] [CrossRef]
- Rose, S.; DeLuca, P.; Davis, R., III; Ounpuu, S.; Gage, J. Kinematic and kinetic evaluation of the ankle after lengthening of the gastrocnemius fascia in children with cerebral palsy. J. Pediatric Orthop. 1993, 13, 727–732. [Google Scholar] [CrossRef]
- Ferdjallah, M.; Harris, G.F.; Smith, P.; Wertsch, J.J. Analysis of postural control synergies during quiet standing in healthy children and children with cerebral palsy. J. Clin. Biomech. 2002, 17, 203–210. [Google Scholar] [CrossRef]
- Booth, A.T.; Buizer, A.I.; Meyns, P.; Oude Lansink, I.L.; Steenbrink, F.; van der Krogt, M.M. The efficacy of functional gait training in children and young adults with cerebral palsy: A systematic review and meta-analysis. J. Dev. Med. Child Neurol. 2018, 60, 866–883. [Google Scholar] [CrossRef]
- Lintanf, M.; Bourseul, J.S.; Houx, L.; Lempereur, M.; Brochard, S.; Pons, C. Effect of ankle-foot orthoses on gait, balance and gross motor function in children with cerebral palsy: A systematic review and meta-analysis. J. Clin. Rehabil. 2018, 32, 1175–1188. [Google Scholar] [CrossRef]
- De Vlugt, E.; de Groot, J.H.; van der Heijden-Maessen, H.C.; Wielheesen, D.H.; van Wijlen-Hempel, R.M.S.; Arendzen, J.H.; Meskers, C.G. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J. Neuroeng. Rehabil. 2013, 10, 1–8. [Google Scholar]
- Engsberg, J.R.; Ross, S.A.; Olree, K.S.; Park, T.S. Ankle spasticity and strength in children with spastic diplegic cerebral palsy. J. Dev. Med. Child Neurol. 2000, 42, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.R.; Park, G.Y. Differences in Lateral Ankle Ligaments between Affected and Unaffected Legs in Children with Spastic Hemiplegic Cerebral Palsy. J. Ultrasound Med. 2013, 32, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Huijing, P.A.; Bénard, M.R.; Harlaar, J.; Jaspers, R.T.; Becher, J.G. Movement within foot and ankle joint in children with spastic cerebral palsy: A 3-dimensional ultrasound analysis of medial gastrocnemius length with correction for effects of foot deformation. BMC Musculoskelet. Disord. 2013, 14, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballaz, L.; Plamondon, S.; Lemay, M. Ankle range of motion is key to gait efficiency in adolescents with cerebral palsy. J. Clin. Biomech. 2010, 25, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Rha, D.W.; Kim, D.J.; Park, E.S. Effect of hinged ankle-foot orthoses on standing balance control in children with bilateral spastic cerebral palsy. J. Yonsei Med. J. 2010, 51, 746–752. [Google Scholar] [CrossRef] [Green Version]
- Ahmadizadeh, Z.; Khalili, M.A.; Ghalam, M.S.; Mokhlesin, M. Effect of whole body vibration with stretching exercise on active and passive range of motion in lower extremities in children with cerebral palsy: A randomized clinical trial. J. Iran. J. Pediatrics 2019, 29. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.N.; Hwang, M.; Ren, Y.; Gaebler-Spira, D.; Zhang, L.Q. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. J. Neurorehabilit. Neural Repair 2011, 25, 378–385. [Google Scholar] [CrossRef]
- Cho, K.H.; Park, S.J. Effects of joint mobilization and stretching on the range of motion for ankle joint and spatiotemporal gait variables in stroke patients. J. Stroke Cerebrovasc. Dis. 2020, 29, 104933. [Google Scholar] [CrossRef]
- An, C.M.; Won, J.I. Effects of ankle joint mobilization with movement and weight-bearing exercise on knee strength, ankle range of motion, and gait velocity in patients with stroke: A pilot study. J. Phys. Ther. Sci. 2016, 28, 689–694. [Google Scholar] [CrossRef] [Green Version]
- An, C.M.; Jo, S.O. Effects of talocrural mobilization with movement on ankle strength, mobility, and weight-bearing ability in hemiplegic patients with chronic stroke: A randomized controlled trial. J. Stroke Cerebrovasc. Dis. 2017, 26, 169–176. [Google Scholar] [CrossRef]
- Kim, S.L.; Lee, B.H. The effects of posterior talar glide and dorsiflexion of the ankle plus mobilization with movement on balance and gait function in patient with chronic stroke: A randomized controlled trial. J. Neurosci. Rural Pract. 2018, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.v.S.; Venturini, C.; Teixeira, L.M.; Chagas, M.H.; de Resende, M.A. Force-displacement relationship during anteroposterior mobilization of the ankle joint. J. Manip. Physiol. Ther. 2008, 31, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.H.; Oh, J.S.; Kwon, O.Y.; Weon, J.H.; An, D.H.; Yoo, W.G. Immediate combined effect of gastrocnemius stretching and sustained talocrural joint mobilization in individuals with limited ankle dorsiflexion: A randomized controlled trial. J. Man. Ther. 2015, 20, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Hoch, M.C.; McKeon, P.O. Joint mobilization improves spatiotemporal postural control and range of motion in those with chronic ankle instability. J. Orthop. Res. 2011, 29, 326–332. [Google Scholar] [CrossRef]
- Kachmar, O.; Kushnir, A.; Matiushenko, O.; Hasiuk, M. Influence of Spinal Manipulation on Muscle Spasticity and Manual Dexterity in Participants with Cerebral Palsy: Randomized Controlled Trial. J. Chiropr. Med. 2018, 17, 141–150. [Google Scholar] [CrossRef]
- Kachmar, O.; Voloshyn, T.; Hordiyevych, M. Changes in muscle spasticity in patients with cerebral palsy after spinal manipulation: Case series. J. Chiropr. Med. 2016, 15, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Maitland, G.; Hengeveld, E.; Banks, K.; English, K. Maitland’s Vertebral Manipulation, 7th ed.; Elsevier: Philadelphia, PA, USA, 2005. [Google Scholar]
- Cochrane, C.G. Joint mobilization principles: Considerations for use in the child with central nervous system dysfunction. J. Phys. Ther. 1987, 67, 1105–1109. [Google Scholar] [CrossRef]
- Harris, S.R.; Lundgren, B.D. Joint mobilization for children with central nervous system disorders: Indications and precautions. J. Phys. Ther. 1991, 71, 890–896. [Google Scholar] [CrossRef]
- Brooks, S.C. Role of Mobilization in the Management of Cerebral Palsy. J. Pediatric Phys. Ther. 1994, 6, 214–217. [Google Scholar] [CrossRef]
- Kluding, P.M.; Santos, M. Effects of ankle joint mobilizations in adults poststroke: A pilot study. J. Arch. Phys. Med. Rehabil. 2008, 89, 449–456. [Google Scholar] [CrossRef]
- Pérez Parra, J.E.; Henao Lema, C.P. Effect of joint mobilization on the H Reflex amplitude in people with spasticity. J. Rev. Cienc. Salud 2011, 9, 125–140. [Google Scholar]
- Oeffinger, D.; Gorton, G.; Hassani, S.; Sison-Williamson, M.; Johnson, B.; Whitmer, M.; Romness, M.; Kryscio, D.; Tylkowski, C.; Bagley, A. Variability explained by strength, body composition and gait impairment in activity and participation measures for children with cerebral palsy: A multicentre study. J. Clin. Rehabil. 2014, 28, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B.J.D.M. Development and reliability of a system to classify gross motor function in children with cerebral palsy. J. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Denegar, C.R.; Hertel, J.; Fonseca, J. The effect of lateral ankle sprain on dorsiflexion range of motion, posterior talar glide, and joint laxity. J. Orthop. Sports Phys. Ther. 2002, 32, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Sah, A.K.; Balaji, G.K.; Agrahara, S. Effects of task-oriented activities based on neurodevelopmental therapy principles on trunk control, balance, and gross motor function in children with spastic diplegic cerebral palsy: A single-blinded randomized clinical trial. J. Pediatric Neurosci. 2019, 14, 120. [Google Scholar]
- Maitland, G.; Hengeveld, E.; Banks, K.; English, K. Maitland’s Peripheral Manipulation; Butterworth-Heinemann: Oxford, UK, 2005. [Google Scholar]
- Norkin, C.C.; White, D.J. Measurement of Joint Motion: A Guide to Goniometry; FA Davis: Philadelphia, PA, USA, 2016. [Google Scholar]
- Elveru, R.A.; Rothstein, J.M.; Lamb, R.L. Goniometric reliability in a clinical setting: Subtalar and ankle joint measurements. J. Phys. Ther. 1988, 68, 672–677. [Google Scholar] [CrossRef]
- Carey, H.; Martin, K.; Combs-Miller, S.; Heathcock, J.C. Reliability and responsiveness of the timed up and go test in children with cerebral palsy. J. Pediatric Phys. Ther. 2016, 28, 401–408. [Google Scholar] [CrossRef]
- Chrysagis, N.; Skordilis, E.K.; Koutsouki, D. Validity and clinical utility of functional assessments in children with cerebral palsy. J. Arch. Phys. Med. Rehabil. 2014, 95, 369–374. [Google Scholar] [CrossRef]
- Bahrami, F.; Dehkordi, S.N.; Dadgoo, M. Inter and intra rater reliability of the 10 meter walk test in the community dweller adults with spastic cerebral palsy. J. Iran. J. Child Neurol. 2017, 11, 57. [Google Scholar]
- Zhao, H.; Wu, Y.N.; Hwang, M.; Ren, Y.; Gao, F.; Gaebler-Spira, D.; Zhang, L.Q. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy. J. Appl. Physiol. 2011, 111, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Flett, P.; Stern, L.; Waddy, H.; Connell, T.; Seeger, J.; Gibson, S. Botulinum toxin A versus fixed cast stretching for dynamic calf tightness in cerebral palsy. J. Paediatr. Child Health 1999, 35, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.M. Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle Nerve 2005, 31, 535–551. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, U.; Kocak, U.Z.; Unuvar, E.; Unver, B. The Acute Effect of Talocrural Joint Mobilization on Dorsiflexor Muscle Strength in Healthy Individuals: A Randomized Controlled Single-Blind Study. J. Sport Rehabil. 2019, 28, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Vicenzino, B.; Branjerdporn, M.; Teys, P.; Jordan, K. Initial changes in posterior talar glide and dorsiflexion of the ankle after mobilization with movement in individuals with recurrent ankle sprain. J. Orthop. Sports Phys. Ther. 2006, 36, 464–471. [Google Scholar] [CrossRef]
- Chevutschi, A.; D’houwt, J.; Pardessus, V.; Thevenon, A. Immediate effects of talocrural and subtalar joint mobilization on balance in the elderly. J. Physiother. Res. Int. 2015, 20, 1–8. [Google Scholar] [CrossRef]
- Humphreys, B.K. Possible adverse events in children treated by manual therapy: A review. J. Chiropr. Osteopathy 2010, 18, 12. [Google Scholar] [CrossRef] [Green Version]
- Driehuis, F.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.; de Bie, R.A.; Staal, J.B. Spinal manual therapy in infants, children and adolescents: A systematic review and meta-analysis on treatment indication, technique and outcomes. PLoS ONE 2019, 14, e0218940. [Google Scholar] [CrossRef]
Classification | Experimental Group (n = 16) | Control Group (n = 16) | p-Value b | p-Value c |
---|---|---|---|---|
Gender (male/female) | 9/7 | 10/6 | 1.000 | |
GMFCS (Level I/Level II) d | 6/10 | 6/10 | 1.000 | |
Age (years) a | 10.81 ± 2.34 | 11.31 ± 1.78 | 0.502 | |
Weight (kg) a | 37.88 ± 8.17 | 37.13 ± 6.64 | 0.778 | |
Height (cm) a | 137.31 ± 9.67 | 139.06 ± 7.77 | 0.577 |
Measure/Group | Pre-Test a | Post-Test a | Within-Group Difference b | Between-Group Difference b |
---|---|---|---|---|
Lt. Ankle dorsiflexion ROM in sitting position (°) | ||||
Experimental group | 14.31 ± 3.00 | 18.00 ± 2.16 | 3.69 (2.70, 4.67) * | 3.44 (2.42, 4.46) ** |
Control group | 13.63 ± 2.45 | 13.88 ± 2.83 | 0.25 (−0.06, 0.56) | |
Rt. Ankle dorsiflexion ROM in sitting position (°) | ||||
Experimental group | 14.38 ± 3.16 | 18.56 ± 2.06 | 4.19 (2.98, 5.39) * | 3.94 (2.71, 5.17) ** |
Control group | 13.69 ± 2.55 | 14.06 ± 2.77 | 0.37 (−0.01, 0.76) | |
Lt. Ankle dorsiflexion ROM in supine position (°) | ||||
Experimental group | 8.88 ± 2.53 | 11.56 ± 1.93 | 2.69 (1.89, 3.48) * | 2.31 (1.43, 3.20) ** |
Control group | 7.69 ± 2.50 | 8.06 ± 2.54 | 0.38 (−0.10, 0.85) | |
Lt. Ankle dorsiflexion ROM in supine position (°) | ||||
Experimental group | 9.00 ± 2.83 | 12.44 ± 2.50 | 3.44 (2.50, 4.37) * | 2.94 (1.87, 4.01) ** |
Control group | 7.81 ± 2.59 | 8.31 ± 2.36 | 0.50 (−0.12, 1.12) |
Measure/Group | Pre-Test a | Post-Test a | Within-Group Difference b | Between-Group Difference b |
---|---|---|---|---|
Static sway length in the eyes opened condition (cm) | ||||
Experimental group | 12.74 ± 2.94 | 10.23 ± 2.41 | −2.50(−3.32, −1.68) * | −0.79 (−1.85, 0.25) |
Control group | 12.78 ± 2.77 | 11.07 ± 2.50 | −1.71(−2.43, −1.86) * | |
Static sway area in the eyes opened condition (mm2) | ||||
Experimental group | 53.35 ± 6.85 | 36.66 ± 8.73 | −16.69(−21.50, −11.87) * | −2.93 (−9.20, 3.34) |
Control group | 54.15 ± 7.10 | 40.39 ± 7.58 | −13.76(−18.19, −9.33) * | |
Static sway length in the eyes closed condition (cm) | ||||
Experimental group | 14.28 ± 2.41 | 11.23 ± 2.37 | −3.05(−4.03, −2.07) * | −0.98(−2.06, 0.09) |
Control group | 14.42 ± 2.30 | 12.36 ± 2.61 | −2.06(−2.61, −1.51) * | |
Static sway area in the eyes closed condition (mm2) | ||||
Experimental group | 59.11 ± 9.14 | 39.43 ± 9.98 | −19.67(−23.99, −15.35) * | −1.34(−11.57, 2.89) |
Control group | 59.83 ± 9.10 | 44.49 ± 9.84 | −15.34(−21.52, −9.15) * | |
TUG test (sec) | ||||
Experimental group | 12.24 ± 2.06 | 8.50 ± 2.76 | −3.74(−4.45, −3.02) * | −1.95(−3.12, −0.78) ** |
Control group | 12.78 ± 2.09 | 11.00 ± 1.68 | −1.78(−2.77, −0.79) * | |
10 MWT (sec) | ||||
Experimental group | 10.02 ± 2.26 | 7.61 ± 1.96 | −2.41(−2.95, −1.86) * | −1.39(−2.10, −0.68) ** |
Control group | 11.09 ± 1.98 | 10.08 ± 1.75 | −1.01(−1.51, −0.51) * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youn, P.S.; Cho, K.H.; Park, S.J. Changes in Ankle Range of Motion, Gait Function and Standing Balance in Children with Bilateral Spastic Cerebral Palsy after Ankle Mobilization by Manual Therapy. Children 2020, 7, 142. https://doi.org/10.3390/children7090142
Youn PS, Cho KH, Park SJ. Changes in Ankle Range of Motion, Gait Function and Standing Balance in Children with Bilateral Spastic Cerebral Palsy after Ankle Mobilization by Manual Therapy. Children. 2020; 7(9):142. https://doi.org/10.3390/children7090142
Chicago/Turabian StyleYoun, Pong Sub, Kyun Hee Cho, and Shin Jun Park. 2020. "Changes in Ankle Range of Motion, Gait Function and Standing Balance in Children with Bilateral Spastic Cerebral Palsy after Ankle Mobilization by Manual Therapy" Children 7, no. 9: 142. https://doi.org/10.3390/children7090142
APA StyleYoun, P. S., Cho, K. H., & Park, S. J. (2020). Changes in Ankle Range of Motion, Gait Function and Standing Balance in Children with Bilateral Spastic Cerebral Palsy after Ankle Mobilization by Manual Therapy. Children, 7(9), 142. https://doi.org/10.3390/children7090142