Dysregulation of Metabolic Peptides Precedes Hyperinsulinemia and Inflammation Following Exposure to Rotenone in Rats
<p>Schematic representation of the experimental design. Young adult Lewis rats received vehicle or rotenone (2 mg/kg body weight) in respective treatment groups. Rotenone treatment groups received 10 sub-cutaneous injections of rotenone (total 20 mg/kg body weight). The change in body weight was measured before the treatment (C-pre-treatment, and R-pre-treatment) and one month post-treatment (C-post-treatment and R-post-treatment). Rats were sacrificed one month post-treatment, and samples were collected.</p> "> Figure 2
<p>Alterations of hormonal peptides GIP and GLP-1 in rats following rotenone administration. Plasma samples from control and rotenone-treated rats were analyzed by Metabolic Hormone 10-Plex Discovery Assay. (<b>A</b>) GIP level shows a highly significant increase (<span class="html-italic">p</span> = 0.0003) in the plasma of rotenone-treated rats compared to the control rats. (<b>B</b>) Analysis of GLP-1 showed a significant reduction of this metabolic peptide in the plasma of rotenone-treated rats (<span class="html-italic">p</span> = 0.0045) compared to the control group. N = 5–8.</p> "> Figure 3
<p>Rotenone administration elevated anorectic gut hormones, pancreatic polypeptide and peptide YY, in rats. Both pancreatic polypeptide (<b>A</b>) and peptide YY (<b>B</b>) hormonal peptides were significantly increased (<span class="html-italic">p</span> < 0.0001) in the plasma of the rotenone-treated group compared to the control group. N = 6–9.</p> "> Figure 4
<p>Effects of rotenone on incretin levels in rat plasma one month post-treatment. (<b>A</b>) Metabolic profile in the plasma demonstrates a highly significant increase (<span class="html-italic">p</span> < 0.0001) in the insulin level following rotenone treatment compared to the control group. (<b>B</b>) Meanwhile, the C-peptide level in rotenone-treated rats was significantly decreased (<span class="html-italic">p</span> < 0.05). (<b>C</b>) Amylin levels were also decreased significantly (<span class="html-italic">p</span> < 0.0008) in the rotenone group compared to the control group. (<b>D</b>) However, the plasma level of leptin hormone was increased significantly (<span class="html-italic">p</span> < 0.001) in rotenone-treated rats compared to the control group. These data suggest that rotenone disrupts incretin levels, promoting inflammation and insulinemia. N = 6–9.</p> "> Figure 5
<p>Rotenone treatment increased rat body weight. The change in body weight was measured before the treatment (C-pre-treatment and R-pre-treatment) and one month post-treatment (C-post-treatment and R-post-treatment). The data showed that the rats in the rotenone post-treatment (R-post-treatment) group gained substantial body weight, and it was significantly increased (<span class="html-italic">p</span> < 0.0001) compared to before starting the rotenone treatment (R-pre-treatment) and to the post-vehicle control (C-post-treatment) group (<span class="html-italic">p</span> < 0.005). Body weights of the control pre-treatment and the rotenone pre-treatment group are not significantly different (<span class="html-italic">p</span> < 0.05) at the beginning of the experiment. Moreover, no significant difference (ns) in body weights was detected in the control groups, C-pre-treatment and C-post-treatment. N = 3–7.</p> "> Figure 6
<p>Administration of rotenone promoted activation of macrophages in rats. (<b>A</b>) Immunostaining of CD68 in cryosections of spleens from control and rotenone treatment groups. There was a distinct upregulation of CD68-positive cells in the rat spleen’s red pulp (RP) area following rotenone treatment compared to the vehicle treatment control group. (<b>B</b>) Counting of CD68-stained cells by ImageJ software showed a significant increase (<span class="html-italic">p</span> < 0.05) in CD68-positive cells in the rotenone treatment group compared to the control. N = 4.</p> "> Figure 7
<p>Rotenone treatment promoted activation of inflammatory CD4<sup>+</sup> T cells in rats. (<b>A</b>) Immunostaining for the presence of CD4 and TNF-α in spleens from control and rotenone treatment groups counterstained with DAPI. Expansion of CD4<sup>+</sup> T cells in the spleen following rotenone treatment was noticeable compared to control. These CD4<sup>+</sup> T cells also expressed TNF-α, indicating inflammatory changes in the rotenone-treated animals. (<b>B</b>,<b>C</b>) Counting of cells expressing CD4 (<b>B</b>) and CD4/TNF-α markers (<b>C</b>). The rotenone treatment group showed a significant increase (<span class="html-italic">p</span> < 0.01) in the CD4<sup>+</sup> T cell population in the spleen compared to the spleens from the control group. Moreover, these CD4<sup>+</sup> T cells also co-expressed increased TNF-α in rotenone-treated rats compared to the control group (<span class="html-italic">p</span> < 0.005). N = 4.</p> "> Figure 8
<p>Administration of rotenone disrupts metabolic hormones and influences gut–brain axis and hyperinsulinemia. The observed low levels of GLP-1 and amylin indicate a potential dysregulation of appetite and blood sugar levels. This dysregulation may be associated with increased body weight and hyperinsulinemia. Furthermore, the hyperinsulinemia observed in the rotenone-treated rats indicates that the peripheral toxicity caused by rotenone may have disrupted regulation of insulin secretion mediated by dopamine. Red arrows indicate levels and pathways affected by rotenone treatment. Black arrows indicate the cell types and the metabolic hormones they secret.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Rotenone Treatment
2.3. Analysis of Metabolic Peptides
2.4. Tissue Processing
2.5. Immunostaining
2.6. Statistical Analysis
3. Results
3.1. Dysregulation of Metabolic Peptides After Administration of Rotenone in Rats
3.2. Changes in Incretins in Rat Plasma by Rotenone
3.3. Significant Increase in Anorectic Hormones in Rat Plasma by Rotenone
3.4. Alterations of Insulin, C-Peptide, Amylin, and Leptin by Administration of Rotenone
3.5. Rotenone Treatment Increased Body Weight in Rats
3.6. Rotenone Treatment Activated Macrophages and Inflammatory CD4+ T Cells in Rats
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costello, S.; Cockburn, M.; Bronstein, J.; Zhang, X.; Ritz, B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am. J. Epidemiol. 2009, 169, 919–926. [Google Scholar] [CrossRef]
- Caboni, P.; Sherer, T.B.; Zhang, N.; Taylor, G.; Na, H.M.; Greenamyre, J.T.; Casida, J.E. Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem. Res. Toxicol. 2004, 17, 1540–1548. [Google Scholar] [CrossRef]
- Ascherio, A.; Chen, H.; Weisskopf, M.G.; Eilis O’Reilly; McCullough, M.L.; Calle, E.E.; Schwarzschild, M.A.; Thun, M.J. Pesticide exposure and risk for Parkinson’s disease. Ann. Neurol. 2006, 60, 197–203. [Google Scholar] [CrossRef]
- White, R.F.; Steele, L.; O’Callaghan, J.P.; Sullivan, K.; Binns, J.H.; Golomb, B.A.; Bloom, F.E.; Bunker, J.A.; Crawford, F.; Graves, J.C.; et al. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex 2016, 74, 449–475. [Google Scholar] [CrossRef]
- Betarbet; Greenamyre, J.T. Chapter 14—Complex I Inhibition, Rotenone and Parkinson’s Disease. In Parkinson’s Disease Molecular and Therapeutic Insights from Model Systems; Nass, R., Przedborski, S., Eds.; Academic Press: Cambridge, MA, USA, 2008; Volume 12. [Google Scholar]
- Blesa, J.; Phani, S.; Jackson-Lewis, V.; Przedborski, S. Classic and new animal models of Parkinson’s disease. J. Biomed. Biotechnol. 2012, 2012, 845618. [Google Scholar] [CrossRef]
- Ibarra-Gutierrez, M.T.; Serrano-Garcia, N.; Orozco-Ibarra, M. Rotenone-Induced Model of Parkinson’s Disease: Beyond Mitochondrial Complex I Inhibition. Mol. Neurobiol. 2023, 60, 1929–1948. [Google Scholar] [CrossRef]
- Drolet, R.E.; Cannon, J.R.; Montero, L.; Greenamyre, J.T. Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol. Dis. 2009, 36, 96–102. [Google Scholar] [CrossRef]
- Pan-Montojo, F.J.; Funk, R.H. Oral administration of rotenone using a gavage and image analysis of alpha-synuclein inclusions in the enteric nervous system. J. Vis. Exp. 2010, 44, 2123. [Google Scholar] [CrossRef]
- Perez-Pardo, P.; Dodiya, H.B.; Engen, P.A.; Forsyth, C.B.; Huschens, A.M.; Shaikh, M.; Voigt, R.M.; Naqib, A.; Green, S.J.; Kordower, J.H.; et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: A translational study from men to mice. Gut 2019, 68, 829–843. [Google Scholar] [CrossRef]
- Srivastava, P.; Panda, D. Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J. 2007, 274, 4788–4801. [Google Scholar] [CrossRef]
- Heinz, S.; Freyberger, A.; Lawrenz, B.; Schladt, L.; Schmuck, G.; Ellinger-Ziegelbauer, H. Mechanistic Investigations of the Mitochondrial Complex I Inhibitor Rotenone in the Context of Pharmacological and Safety Evaluation. Sci. Rep. 2017, 7, 45465. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.E.; Stringer, A.; Bobrovskaya, L. Rotenone induces gastrointestinal pathology and microbiota alterations in a rat model of Parkinson’s disease. Neurotoxicology 2018, 65, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Field, B.C.; Chaudhri, O.B.; Bloom, S.R. Bowels control brain: Gut hormones and obesity. Nat. Rev. Endocrinol. 2010, 6, 444–453. [Google Scholar] [CrossRef]
- Surjanhata, B.C.; Kuo, B. Gastrointestinal Motility and Enteric Neuroscience in Health and Disease. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014; Volume 12. [Google Scholar]
- Goyal, R.K.; Guo, Y.; Mashimo, H. Advances in the physiology of gastric emptying. Neurogastroenterol. Motil. 2019, 31, e13546. [Google Scholar] [CrossRef]
- Wachsmuth, H.R.; Weninger, S.N.; Duca, F.A. Role of the gut-brain axis in energy and glucose metabolism. Exp. Mol. Med. 2022, 54, 377–392. [Google Scholar] [CrossRef]
- Otero, M.; Lago, R.; Lago, F.; Casanueva, F.F.; Dieguez, C.; Jesús, J.; Gómez-Reino, J.J.; Gualillo, O. Leptin, from fat to inflammation: Old questions and new insights. FEBS Lett. 2005, 579, 295–301. [Google Scholar] [CrossRef]
- La Cava, A. Leptin in inflammation and autoimmunity. Cytokine 2017, 98, 51–58. [Google Scholar] [CrossRef]
- Norman, A.W.; Henry, H.L. (Eds.) Pancreatic Hormones: Insulin and Glucagon. In Hormones, 3rd ed.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Bonzón-Kulichenko, E.; Fernández-Agulló, T.; Moltó, E.; Serrano, R.; Fernández, A.; Ros, M.; Carrascosa, J.M.; Arribas, C.; Martínez, C.; Andrés, A.; et al. Regulation of insulin-stimulated glucose uptake in rat white adipose tissue upon chronic central leptin infusion: Effects on adiposity. Endocrinology 2011, 152, 1366–1377. [Google Scholar] [CrossRef]
- Drucker, D.J.; Philippe, J.; Mojsov, S.; Chick, W.L.; Habener, J.F. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. USA 1987, 84, 3434–3438. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Kakita, K.; Horino, M.; Tenku, A.; Oyama, H.; Endoh, M.; Nishida, S.; Matsuki, M.; Nagase, Y. Insulin and C-peptide secretion from B cells in human subjects stimulated with glucose. Biochem. Med. 1985, 33, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Edholm, T.; Degerblad, M.; Grybäck, P.; Hilsted, L.; Holst, J.J.; Jacobsson, H.; Efendic, S.; Schmidt, P.T.; Hellström, P.M. Differential incretin effects of GIP and GLP-1 on gastric emptying, appetite, and insulin-glucose homeostasis. Neurogastroenterol. Motil. 2010, 22, 1191–1200.e315. [Google Scholar] [CrossRef] [PubMed]
- Yabe, D.; Seino, Y. Two incretin hormones GLP-1 and GIP: Comparison of their actions in insulin secretion and beta cell preservation. Prog. Biophys. Mol. Biol. 2011, 107, 248–256. [Google Scholar] [CrossRef]
- Morrow, N.M.; Morissette, A.; Mulvihill, E.E. Immunomodulation and inflammation: Role of GLP-1R and GIPR expressing cells within the gut. Peptides 2024, 176, 171200. [Google Scholar] [CrossRef]
- Polcyn, R.; Capone, M.; Matzelle, D.; Hossain, A.; Chandran, R.; Banik, N.L.; Haque, A. Enolase inhibition alters metabolic hormones and inflammatory factors to promote neuroprotection in spinal cord injury. Neurochem. Int. 2020, 139, 104788. [Google Scholar] [CrossRef]
- Haque, A.; Capone, M.; Matzelle, D.; Cox, A.; Banik, N.L. Targeting Enolase in Reducing Secondary Damage in Acute Spinal Cord Injury in Rats. Neurochem. Res. 2017, 42, 2777–2787. [Google Scholar] [CrossRef]
- Haque, A.; Samantaray, S.; Knaryan, V.H.; Capone, M.; Hossain, A.; Matzelle, D.; Chandran, R.; Shields, D.C.; Farrand, A.Q.; Boger, H.A.; et al. Calpain mediated expansion of CD4+ cytotoxic T cells in rodent models of Parkinson’s disease. Exp. Neurol. 2020, 330, 113315. [Google Scholar] [CrossRef]
- Zaman, V.; Drasites, K.P.; Myatich, A.; Shams, R.; Shields, D.C.; Matzelle, D.; Haque, A.; Banik, N.L. Inhibition of Calpain Attenuates Degeneration of Substantia Nigra Neurons in the Rotenone Rat Model of Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 13849. [Google Scholar] [CrossRef]
- Gribble, F.M.; Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 2019, 15, 226–237. [Google Scholar] [CrossRef]
- Buffa, R.; Polak, J.M.; Pearse, A.G.E.; Solcia, E.; Grimelius, L.; Capella, C. Identification of the intestinal cell storing gastric inhibitory peptide. Histochemistry 1975, 43, 249–255. [Google Scholar] [CrossRef]
- Holzer, P.; Reichmann, F.; Farzi, A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012, 46, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Karra, E.; Chandarana, K.; Batterham, R.L. The role of peptide YY in appetite regulation and obesity. J. Physiol. 2009, 587, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Ekblad, E.; Sundler, F. Distribution of pancreatic polypeptide and peptide YY. Peptides 2002, 23, 251–261. [Google Scholar] [CrossRef]
- Khandekar, N.; Berning, B.A.; Sainsbury, A.; Lin, S. The role of pancreatic polypeptide in the regulation of energy homeostasis. Mol. Cell. Endocrinol. 2015, 418 Pt 1, 33–41. [Google Scholar] [CrossRef]
- Knudsen, K.; Hartmann, B.; Fedorova, T.D.; Østergaard, K.; Krogh, K.; Møller, N.; Holst, J.J.; Borghammer, P. Pancreatic Polypeptide in Parkinson’s Disease: A Potential Marker of Parasympathetic Denervation. J. Park. Dis. 2017, 7, 645–652. [Google Scholar] [CrossRef]
- Taylor, I.L. Pancreatic Polypeptide Family: Pancreatic Polypeptide, Neuropeptide Y, and Peptide YY. In Handbook of Physiology, the Gastrointestinal System, Neural and Endocrine Biology; Schultz, S.G., Ed.; Wiley: Bethesda, MD, USA, 2001; Volume Supplement 17. [Google Scholar]
- Kim, B.-J.; Carlson, O.D.; Jang, H.-J.; Elahi, D.; Berry, C.; Egan, J.M. Peptide YY is secreted after oral glucose administration in a gender-specific manner. J. Clin. Endocrinol. Metab. 2005, 90, 6665–6671. [Google Scholar] [CrossRef]
- Stock, S.; Leichner, P.; Wong, A.C.; Ghatei, M.A.; Kieffer, T.J.; Bloom, S.R.; Chanoine, J.-P. Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. J. Clin. Endocrinol. Metab. 2005, 90, 2161–2168. [Google Scholar] [CrossRef]
- Maljaars, P.; Peters, H.; Mela, D.; Masclee, A. Ileal brake: A sensible food target for appetite control. A review. Physiol. Behav. 2008, 95, 271–281. [Google Scholar] [CrossRef]
- Wahren, J.; Kallas, A. Loss of pulsatile insulin secretion: A factor in the pathogenesis of type 2 diabetes? Diabetes 2012, 61, 2228–2229. [Google Scholar] [CrossRef]
- Bhatt, M.P.; Lim, Y.-C.; Hwang, J.; Na, S.; Kim, Y.-M.; Ha, K.-S. C-peptide prevents hyperglycemia-induced endothelial apoptosis through inhibition of reactive oxygen species-mediated transglutaminase 2 activation. Diabetes 2013, 62, 243–253. [Google Scholar] [CrossRef]
- Bhatt, M.P.; Lim, Y.-C.; Kim, Y.-M.; Ha, K.-S. C-peptide activates AMPKalpha and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes. Diabetes 2013, 62, 3851–3862. [Google Scholar] [CrossRef] [PubMed]
- Hay, D.L.; Chen, S.; Lutz, T.A.; Parkes, D.G.; Roth, J.D. Amylin: Pharmacology, Physiology, and Clinical Potential. Pharmacol. Rev. 2015, 67, 564–600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chen, Y.; Heiman, M.; Dimarchi, R. Leptin: Structure, function and biology. Vitam. Horm. 2005, 71, 345–372. [Google Scholar] [PubMed]
- Shimizu, H.; Ohtani, K.-I.; Tsuchiya, T.; Takahashi, H.; Uehara, Y.; Sato, N.; Mori, M. Leptin stimulates insulin secretion and synthesis in HIT-T 15 cells. Peptides 1997, 18, 1263–1266. [Google Scholar] [CrossRef]
- Paz-Filho, G.; Mastronardi, C.; Wong, M.-L.; Licinio, J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J. Endocrinol. Metab. 2012, 16 (Suppl. S3), S549–S555. [Google Scholar] [CrossRef]
- Cesta, M.F. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 2006, 34, 455–465. [Google Scholar] [CrossRef]
- Nolte, M.A.; Hamann, A.; Kraal, G.; Mebius, R.E. The strict regulation of lymphocyte migration to splenic white pulp does not involve common homing receptors. Immunology 2002, 106, 299–307. [Google Scholar] [CrossRef]
- da Silva, H.B.; Fonseca, R.; Pereira, R.M.; Cassado, A.D.A.; Álvarez, J.M.; D’Império Lima, M.R. Splenic Macrophage Subsets and Their Function during Blood-Borne Infections. Front. Immunol. 2015, 6, 480. [Google Scholar]
- Flint, A.; Raben, A.; Astrup, A.; Holst, J.J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Investig. 1998, 101, 515–520. [Google Scholar] [CrossRef]
- Näslund, E.; Barkeling, B.; King, N.; Gutniak, M.; Blundell, J.; Holst, J.; Rössner, S.; Hellström, P. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 304–311. [Google Scholar] [CrossRef]
- Holscher, C. Central effects of GLP-1: New opportunities for treatments of neurodegenerative diseases. J. Endocrinol. 2014, 221, T31–T41. [Google Scholar] [CrossRef] [PubMed]
- Insuela, D.B.R.; Carvalho, V.F. Glucagon and glucagon-like peptide-1 as novel anti-inflammatory and immunomodulatory compounds. Eur. J. Pharmacol. 2017, 812, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Burcelin, R.; Gourdy, P. Harnessing glucagon-like peptide-1 receptor agonists for the pharmacological treatment of overweight and obesity. Obes. Rev. 2017, 18, 86–98. [Google Scholar] [CrossRef]
- Spielman, L.J.; Little, J.P.; Klegeris, A. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J. Neuroimmunol. 2014, 273, 8–21. [Google Scholar] [CrossRef]
- Holst, J.J. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat. Metab. 2024, 6, 1866–1885. [Google Scholar] [CrossRef]
- Jensen, S.B.K.; Blond, M.B.; Sandsdal, R.M.; Olsen, L.M.; Juhl, C.R.; Lundgren, J.R.; Janus, C.; Stallknecht, B.M.; Holst, J.J.; Madsbad, S.; et al. Healthy weight loss maintenance with exercise, GLP-1 receptor agonist, or both combined followed by one year without treatment: A post-treatment analysis of a randomised placebo-controlled trial. EClinicalMedicine 2024, 69, 102475. [Google Scholar] [CrossRef]
- Kanaley, J.A.; Heden, T.D.; Liu, Y.; Whaley-Connell, A.T.; Chockalingam, A.; Dellsperger, K.C.; Fairchild, T.J. Short-term aerobic exercise training increases postprandial pancreatic polypeptide but not peptide YY concentrations in obese individuals. Int. J. Obes. 2014, 38, 266–271. [Google Scholar] [CrossRef]
- Murphy, K.G.; Dhillo, W.S.; Bloom, S.R. Gut peptides in the regulation of food intake and energy homeostasis. Endocr. Rev. 2006, 27, 719–727. [Google Scholar] [CrossRef]
- Näslund, E.; Bogefors, J.; Skogar, S.; Grybäck, P.; Jacobsson, H.; Holst, J.J.; Hellström, P.M. GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am. J. Physiol. 1999, 277, R910–R916. [Google Scholar] [CrossRef]
- Roque, M.I.V.; Camilleri, M.; Stephens, D.A.; Jensen, M.D.; Burton, D.D.; Baxter, K.L.; Zinsmeister, A.R. Gastric sensorimotor functions and hormone profile in normal weight, overweight, and obese people. Gastroenterology 2006, 131, 1717–1724. [Google Scholar] [CrossRef]
- Montaner, M.; Denom, J.; Simon, V.; Jiang, W.; Holt, M.K.; Brierley, D.I.; Rouch, C.; Foppen, E.; Kassis, N.; Jarriault, D.; et al. A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion. Nat. Commun. 2024, 15, 6941. [Google Scholar] [CrossRef] [PubMed]
- Farino, Z.J.; Morgenstern, T.J.; Maffei, A.; Quick, M.; De Solis, A.J.; Wiriyasermkul, P.; Freyberg, R.J.; Aslanoglou, D.; Sorisio, D.; Inbar, B.P.; et al. New roles for dopamine D(2) and D(3) receptors in pancreatic beta cell insulin secretion. Mol. Psychiatry 2020, 25, 2070–2085. [Google Scholar] [CrossRef] [PubMed]
- Aslanoglou, D.; Bertera, S.; Sánchez-Soto, M.; Free, R.B.; Lee, J.; Zong, W.; Xue, X.; Shrestha, S.; Brissova, M.; Logan, R.W.; et al. Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Transl. Psychiatry 2021, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Varney, M.J.; Benovic, J.L. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic beta-Cell Function and Diabetes. Pharmacol. Rev. 2024, 76, 267–299. [Google Scholar] [CrossRef]
- Ustione, A.; Piston, D.W.; Harris, P.E. Minireview: Dopaminergic regulation of insulin secretion from the pancreatic islet. Mol. Endocrinol. 2013, 27, 1198–1207. [Google Scholar] [CrossRef]
- Greenamyre, J.T.; Betarbet, R.; Sherer, T.B. The rotenone model of Parkinson’s disease: Genes, environment and mitochondria. Park. Relat. Disord. 2003, 9 (Suppl. S2), S59–S64. [Google Scholar] [CrossRef]
- Van Laar, A.D.; Webb, K.R.; Keeney, M.T.; Van Laar, V.S.; Zharikov, A.; Burton, E.A.; Hastings, T.G.; Glajch, K.E.; Hirst, W.D.; Greenamyre, J.T. Transient exposure to rotenone causes degeneration and progressive parkinsonian motor deficits, neuroinflammation, and synucleinopathy. NPJ Park. Dis. 2023, 9, 121. [Google Scholar] [CrossRef]
- Yan, Z.; Li, R.; Shi, W.; Yao, L. Role of the gut-microbiota-metabolite axis in the rotenone model of early-stage Parkinson’s Disease. Metab. Brain Dis. 2022, 37, 2511–2520. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, F.; Wen, S.; Ding, W.; Si, Y.; Li, R.; Wang, K.; Yao, L. Longitudinal metabolomics profiling of serum amino acids in rotenone-induced Parkinson’s mouse model. Amino Acids 2022, 54, 111–121. [Google Scholar] [CrossRef]
- Qiu, W.Q.; Li, H.; Zhu, H.; Scott, T.; Mwamburi, M.; Rosenberg, I.; Rosenzweig, J. Plasma Amylin and Cognition in Diabetes in the Absence and the Presence of Insulin Treatment. J. Diabetes Metab. 2014, 5, 458. [Google Scholar]
- Cottrell, E.C.; Martin-Gronert, M.S.; Fernandez-Twinn, D.S.; Luan, J.; Berends, L.M.; Ozanne, S.E. Leptin-independent programming of adult body weight and adiposity in mice. Endocrinology 2011, 152, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Naylor, C.; Petri, W.A., Jr. Leptin Regulation of Immune Responses. Trends Mol. Med. 2016, 22, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Haffner, S.M.; Wagenknecht, L.E.; Lorenzo, C.; Norris, J.M.; Bergman, R.N.; Stefanovski, D.; Anderson, A.M.; Rotter, J.I.; Goodarzi, M.O. Insulin clearance and the incidence of type 2 diabetes in Hispanics and African Americans: The IRAS Family Study. Diabetes Care 2013, 36, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, C.; Hanley, A.J.G.; Wagenknecht, L.E.; Rewers, M.J.; Stefanovski, D.; Goodarzi, M.O.; Haffner, S.M. Relationship of insulin sensitivity, insulin secretion, and adiposity with insulin clearance in a multiethnic population: The insulin Resistance Atherosclerosis study. Diabetes Care 2013, 36, 101–103. [Google Scholar] [CrossRef]
- Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct. Target Ther. 2022, 7, 216. [Google Scholar] [CrossRef]
- Kahn, B.B.; Flier, J.S. Obesity and insulin resistance. J. Clin. Investig. 2000, 106, 473–481. [Google Scholar] [CrossRef]
- Meistas, M.T.; Margolis, S.; Kowarski, A.A. Hyperinsulinemia of obesity is due to decreased clearance of insulin. Am. J. Physiol. 1983, 245, E155–E159. [Google Scholar] [CrossRef]
- McLaughlin, T.; Liu, L.-F.; Lamendola, C.; Shen, L.; Morton, J.; Rivas, H.; Winer, D.; Tolentino, L.; Choi, O.; Zhang, H.; et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2637–2643. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef]
- Dilworth, L.; Facey, A.; Omoruyi, F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int. J. Mol. Sci. 2021, 22, 7644. [Google Scholar] [CrossRef]
- Moreno-Indias, I.; Cardona, F.; Tinahones, F.J.; Queipo-Ortuño, M.I. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front. Microbiol. 2014, 5, 190. [Google Scholar] [CrossRef] [PubMed]
- Pataky, M.W.; Young, W.F.; Nair, K.S. Hormonal and Metabolic Changes of Aging and the Influence of Lifestyle Modifications. Mayo Clin. Proc. 2021, 96, 788–814. [Google Scholar] [CrossRef] [PubMed]
- Marks, V. How our food affects our hormones. Clin. Biochem. 1985, 18, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Engin, A. Diet-Induced Obesity and the Mechanism of Leptin Resistance. Adv. Exp. Med. Biol. 2017, 960, 381–397. [Google Scholar]
- Engin, A. Circadian Rhythms in Diet-Induced Obesity. Adv. Exp. Med. Biol. 2017, 960, 19–52. [Google Scholar]
Pro-Inflammatory/Anti-Inflammatory Factors | Control (pg/mL) | Rotenone (pg/mL) | p-Value |
---|---|---|---|
RANTES | 2048.0 ± 273.8 | 5807.7 ± 2661.0 | p = 0.00019 |
LIX | 2555.5 ± 589 | 4125.2 ± 738.7 | p = 0.0000058 |
IL-1β | 48.6 ± 16.8 | 56.7 ± 30.6 | p = 0.451 |
GF-CSF | 55.72 ± 20.17 | 61.3 ± 24.0 | p = 0.673 |
VEGF | 11.9 ± 1.5 | 19.19 ± 8.18 | p = 0.0135 |
IL-4 | 68.22 ± 16.6 | 33.01 ± 19.0 | p = 0.00004 |
IL-10 | 119.01 ± 26.6 | 84.3 ± 12.15 | p = 0.0325 |
IL-13 | 43.9 ± 14.6 | 22.17 ± 14.8 | p = 0.0011 |
EGF | 613.9 ± 55.4 | 97.0 ± 27.0 | p = 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaman, V.; Matzelle, D.; Banik, N.L.; Haque, A. Dysregulation of Metabolic Peptides Precedes Hyperinsulinemia and Inflammation Following Exposure to Rotenone in Rats. Cells 2025, 14, 124. https://doi.org/10.3390/cells14020124
Zaman V, Matzelle D, Banik NL, Haque A. Dysregulation of Metabolic Peptides Precedes Hyperinsulinemia and Inflammation Following Exposure to Rotenone in Rats. Cells. 2025; 14(2):124. https://doi.org/10.3390/cells14020124
Chicago/Turabian StyleZaman, Vandana, Denise Matzelle, Naren L. Banik, and Azizul Haque. 2025. "Dysregulation of Metabolic Peptides Precedes Hyperinsulinemia and Inflammation Following Exposure to Rotenone in Rats" Cells 14, no. 2: 124. https://doi.org/10.3390/cells14020124
APA StyleZaman, V., Matzelle, D., Banik, N. L., & Haque, A. (2025). Dysregulation of Metabolic Peptides Precedes Hyperinsulinemia and Inflammation Following Exposure to Rotenone in Rats. Cells, 14(2), 124. https://doi.org/10.3390/cells14020124