Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells
<p>Expression of Kir currents in amniotic fluid cells with a fibroblastic morphology. (<b>A</b>) Representative microscopic field displaying the heterogeneous morphology of our cellular preparation; (<b>B</b>) GFAP immunofluorescence staining of a fibroblastic-type morphology observed in our cell preparation, with blue fluorescence due to DAPI nuclear staining; (<b>C</b>) a cell with fibroblast-like morphology during electrophysiological recording, note the microelectrode. (<b>D</b>) A family of currents recorded from a Vh of −40 mV with depolarizing pulses from −140 mV to +100 (with 10 mV increments) at 500 ms. Note the large inward component compared to the outward component, and the noise of the current traces at positive potentials. (<b>E</b>) The I-V relationship of the traces shown in (<b>D</b>) (dot points) constructed by plotting the peak currents as a function of the pulse test. The black solid line represents the current obtained by applying a potential ramp from −140 to +110 (Vh −40 mV) in the same cell as (<b>D</b>). The gray trace is the I-V relationship recorded from a cell with insignificant Kir current by using the ramp protocol described in (<b>E</b>). (<b>F</b>) Bar plot of currents at −120 mV derived from cells with (<span class="html-italic">n</span> = 9) and without Kir (<span class="html-italic">n</span> = 3). * <span class="html-italic">p</span> value < 0.05.</p> "> Figure 2
<p>Activation properties of Kir currents in fibroblastic AF-SCs. (<b>A</b>) The current–voltage relationship obtained by the ramp potential protocol (−140 to +110, Vh −40 mV) under control conditions and in the presence of Ba<sup>2+</sup> (300 µM). (<b>B</b>) The I-V relationship of the Ba-sensitive current obtained by subtraction of the control traces minus the one in Ba<sup>2+</sup> shown in (<b>A</b>). The solid red line represents the best fit with the Boltzmann equation: I = (G*(V − E<sub>k</sub>))/1 + e<sup>(V−V/2)/k</sup>, where G is the macroscopic conductance, E<sub>k</sub> is the equilibrium potential of potassium, V/2 is the gating charge and half-activation potential and k is the voltage sensitivity. The dotted line represents the normalized Boltzmann function obtained from the fit (red line). (<b>C</b>) The bar plot of mean V/2 obtained from five experiments similar to that described in (<b>B</b>).</p> "> Figure 3
<p>The dose and voltage dependences of the Kir Ba<sup>2+</sup> block in amniotic fluid cells. (<b>A</b>) Inward currents recorded by applying a hyperpolarising pulse at −130 mV from a Vh of −40 mV with a duration of 500 ms, under control conditions (ctrl) and various concentrations of Ba<sup>2+</sup> (10, 30, 100 and 300 µM). Note the presence of an instantaneous block (peak) and of a second block that develops during the hyperpolarization test. (<b>B</b>) Dose dependence of mean instantaneous peak currents (<span class="html-italic">n</span> = 3) obtained from similar experiments to those shown in (<b>A</b>). The black line represents the better fit with Hill’s equation. (<b>C</b>) The relationship between the mean reciprocal of the inactivation constant (<span class="html-italic">n</span> = 3) at various Ba<sup>2+</sup> concentrations obtained from experiments similar to those shown in (<b>A</b>). The black line represents the better linear fit (see text for details).</p> "> Figure 4
<p>Calcium-activated potassium currents in amniotic fluid cells. (<b>A</b>) Current ramps obtained by applying linear potential gradients from −140 to 110 from a Vh of −40 mV recorded in ctrl and after ionomycin 1 μM application. Note the increase in outward currents caused by the shift of threshold in voltage activation at negative potentials and characterized by noise. (<b>B</b>) The time course of the −40 mV current measured from current ramps as described in (<b>A</b>) repeated every 15 s. The timing of ionomycin, DCEBIO + ionomycin (100 µM + 500 nM) treatment and co-application with clotrimazole (2 µM) are shown with the bar in the upper part of the graph. Note the transient activation (run-down) of currents during ionomycin application. (<b>C</b>) Current ramps recorded at the times indicated in (<b>B</b>) under different conditions: CTRL (1), ionomycin (2), DCEBIO+ionomycin (3) and DCEBIO + ionomycin+ clotrimazole (4). The arrows in (<b>A</b>,<b>C</b>) indicate the reversal potential of potassium currents in our condition whereas the vertical dashed line indicates −40 mV. (<b>D</b>) A scatter plot of the current activates by DCEBIO + ionomycin at −40 mV (empty dots) and +100 mV (black dots).</p> "> Figure 5
<p>Histamine increases intracellular calcium and activates KCa. (<b>A</b>) The exemplificative calcium imaging experiment that displays the effects of the application of 100 mM of histamine in amniotic cells evaluated by Fura-2-based calcium imaging. The single black traces represent the single-cell recording of the Fura-2 signal recorded in each ROI (region of interest) as indicated with circles in the inset. The red line represents the mean of all traces (<span class="html-italic">n</span> = 14). (<b>B</b>,<b>C</b>) Representative frames of Fura-2 fluorescence recorded at the time indicated in panel (<b>A</b>) before (1) and at the peak of the response to histamine (2), respectively. Note the presence of unresponsive cells (arrows in <b>A</b> and <b>C</b>). (<b>D</b>) The effects of the application of 100 μM of histamine on outward currents at −40 mV during whole-cell perforated configuration recording. (<b>E</b>) The I-V relationships obtained by applying voltage ramp protocols from −140 to 140 (Vh = −40 mV) recorded before (1), at the peak (2) and after peak (3) of histamine activation, respectively, as reported in (<b>D</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Culture of AF-SCs
2.2. Electrophysiological Recordings
2.3. Indirect Immunofluorescence
2.4. Cytosolic Ca2+ Measurements
2.5. rt-PCR
2.6. Statistical Analysis
3. Results
3.1. Functional Expression of Kir Currents and Their Pharmacological Profile
3.2. Functional Expression of KCa Currents and Their Regulation by Histamine
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- In’t Anker, P.S.; Scherjon, S.A.; Kleijburg-van der Keur, C.; Noort, W.A.; Claas, F.H.J.; Willemze, R.; Fibbe, W.E.; Kanhai, H.H.H. Amniotic Fluid as a Novel Source of Mesenchymal Stem Cells for Therapeutic Transplantation. Blood 2003, 102, 1548–1549. [Google Scholar] [CrossRef] [PubMed]
- Renda, M.C.; Fecarotta, E.; Schillaci, G.; Leto, F.; Calvaruso, G.; Garofalo, G.M.; Piazza, A.; Sacco, M.; Di Maggio, R.; Vitrano, A.; et al. Mesenchymal Fetal Stem Cells (FMSC) from Amniotic Fluid (AF): Expansion and Phenotypic Characterization. Blood 2015, 126, 4758. [Google Scholar] [CrossRef]
- Bossolasco, P.; Montemurro, T.; Cova, L.; Zangrossi, S.; Calzarossa, C.; Buiatiotis, S.; Soligo, D.; Bosari, S.; Silani, V.; Deliliers, G.L.; et al. Molecular and Phenotypic Characterization of Human Amniotic Fluid Cells and Their Differentiation Potential. Cell Res. 2006, 16, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Blattner, C.; Stuppia, L. Amniotic Fluid Cells, Stem Cells, and P53: Can We Stereotype P53 Functions? Int. J. Mol. Sci. 2019, 20, 2236. [Google Scholar] [CrossRef]
- De Coppi, P.; Bartsch, G.; Siddiqui, M.M.; Xu, T.; Santos, C.C.; Perin, L.; Mostoslavsky, G.; Serre, A.C.; Snyder, E.Y.; Yoo, J.J.; et al. Isolation of Amniotic Stem Cell Lines with Potential for Therapy. Nat. Biotechnol. 2007, 25, 100–106. [Google Scholar] [CrossRef]
- Prusa, A.-R.; Marton, E.; Rosner, M.; Bettelheim, D.; Lubec, G.; Pollack, A.; Bernaschek, G.; Hengstschläger, M. Neurogenic Cells in Human Amniotic Fluid. Am. J. Obstet. Gynecol. 2004, 191, 309–314. [Google Scholar] [CrossRef]
- Shamsnajafabadi, H.; Soheili, Z.-S. Amniotic Fluid Characteristics and Its Application in Stem Cell Therapy: A Review. Int. J. Reprod. Biomed. 2022, 20, 627–643. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Z.; Qi, F.; Wang, D. Applications of Human Amniotic Fluid Stem Cells in Wound Healing. Chin. Med. J. 2022, 135, 2272–2281. [Google Scholar] [CrossRef]
- Gasiūnienė, M.; Valatkaitė, E.; Navakauskaitė, A.; Navakauskienė, R. The Effect of Angiotensin II, Retinoic Acid, EGCG, and Vitamin C on the Cardiomyogenic Differentiation Induction of Human Amniotic Fluid-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 2020, 21, 8752. [Google Scholar] [CrossRef]
- Liang, C.C.; Shaw, S.W.; Huang, Y.H.; Lee, T.H. Human Amniotic Fluid Stem Cells Can Improve Cerebral Vascular Remodelling and Neurological Function after Focal Cerebral Ischaemia in Diabetic Rats. J. Cell. Mol. Med. 2021, 25, 10185–10196. [Google Scholar] [CrossRef]
- Teixo, R.; Pires, A.S.; Pereira, E.; Serambeque, B.; Marques, I.A.; Laranjo, M.; Mojsilović, S.; Gramignoli, R.; Ponsaerts, P.; Schoeberlein, A.; et al. Application of Perinatal Derivatives on Oncological Preclinical Models: A Review of Animal Studies. Int. J. Mol. Sci. 2022, 23, 8570. [Google Scholar] [CrossRef] [PubMed]
- Maraldi, T.; Bertoni, L.; Riccio, M.; Zavatti, M.; Carnevale, G.; Resca, E.; Guida, M.; Beretti, F.; La Sala, G.B.; De Pol, A. Human Amniotic Fluid Stem Cells: Neural Differentiation In Vitro and In Vivo. Cell Tissue Res. 2014, 357, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kuang, W.; Liu, T.; He, F.; Yu, L.; Wang, Q.; Yu, C. Icariside II Promotes the Differentiation of Human Amniotic Mesenchymal Stem Cells into Dopaminergic Neuron-like Cells. Vitr. Cell Dev. Biol. Anim. 2021, 57, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.-C.; Cheng, F.-C.; Chen, C.-J.; Lai, S.-Z.; Lee, C.-W.; Yang, D.-Y.; Chang, M.-H.; Ho, S.-P. Post-Injury Regeneration in Rat Sciatic Nerve Facilitated by Neurotrophic Factors Secreted by Amniotic Fluid Mesenchymal Stem Cells. J. Clin. Neurosci. 2007, 14, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, J.; Tsang, K.S.; Yang, H.; Gao, W.-Q. Therapeutic Potential of Human Amniotic Epithelial Cells on Injuries and Disorders in the Central Nervous System. Stem Cells Int. 2019, 2019, 5432301. [Google Scholar] [CrossRef]
- Ataei, M.L.; Karimipour, M.; Shahabi, P.; Soltani-Zangbar, H.; Pashaiasl, M. Human Mesenchymal Stem Cell Transplantation Improved Functional Outcomes Following Spinal Cord Injury Concomitantly with Neuroblast Regeneration. Adv. Pharm. Bull. 2023, 13, 806–816. [Google Scholar] [CrossRef]
- Hernández, R.; Jiménez-Luna, C.; Perales-Adán, J.; Perazzoli, G.; Melguizo, C.; Prados, J. Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomol. Ther. 2020, 28, 34–44. [Google Scholar] [CrossRef]
- Kriegstein, A.; Alvarez-Buylla, A. The Glial Nature of Embryonic and Adult Neural Stem Cells. Annu. Rev. Neurosci. 2009, 32, 149–184. [Google Scholar] [CrossRef]
- Cebrian-Silla, A.; Nascimento, M.A.; Redmond, S.A.; Mansky, B.; Wu, D.; Obernier, K.; Romero Rodriguez, R.; Gonzalez-Granero, S.; García-Verdugo, J.M.; Lim, D.A.; et al. Single-Cell Analysis of the Ventricular-Subventricular Zone Reveals Signatures of Dorsal and Ventral Adult Neurogenesis. eLife 2021, 10, e67436. [Google Scholar] [CrossRef]
- Bramanti, V.; Tomassoni, D.; Avitabile, M.; Amenta, F.; Avola, R. Biomarkers of Glial Cell Proliferation and Differentiation in Culture. Front. Biosci. 2010, 2, 558–570. [Google Scholar] [CrossRef]
- Pchelintseva, E.; Djamgoz, M.B.A. Mesenchymal Stem Cell Differentiation: Control by Calcium-Activated Potassium Channels. J. Cell. Physiol. 2018, 233, 3755–3768. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-W.; Fang, Y.-H.; Su, C.-T.; Hwang, S.-M.; Liu, P.-Y.; Wu, S.-N. The Biochemical and Electrophysiological Profiles of Amniotic Fluid-Derived Stem Cells Following Wnt Signaling Modulation Cardiac Differentiation. Cell Death Discov. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Iordache, F.; Constantinescu, A.; Andrei, E.; Amuzescu, B.; Halitzchi, F.; Savu, L.; Maniu, H. Electrophysiology, Immunophenotype, and Gene Expression Characterization of Senescent and Cryopreserved Human Amniotic Fluid Stem Cells. J. Physiol. Sci. 2016, 66, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, S.; Bonini, D.; Marchina, E.; Balgkouranidou, I.; Caimi, L.; Zucconi, G.G.; Barlati, S. Mesenchymal Cells from Human Amniotic Fluid Survive and Migrate after Transplantation into Adult Rat Brain. Cell Biol. Int. 2007, 31, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Romani, R.; Pirisinu, I.; Calvitti, M.; Pallotta, M.T.; Gargaro, M.; Bistoni, G.; Vacca, C.; Di Michele, A.; Orabona, C.; Rosati, J.; et al. Stem cells from human amniotic fluid exert immunoregulatory function via secreted indoleamine 2,3-dioxygenase1. J. Cell Mol. Med. 2015, 19, 1593. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.K.; Kuo, T.K.; Chen, W.-M.; Lee, K.-D.; Hsieh, S.-L.; Chen, T.-H. Isolation of Multipotent Mesenchymal Stem Cells from Umbilical Cord Blood. Blood 2004, 103, 1669–1675. [Google Scholar] [CrossRef]
- Ragonese, F.; Monarca, L.; De Luca, A.; Mancinelli, L.; Mariani, M.; Corbucci, C.; Gerli, S.; Iannitti, R.G.; Leonardi, L.; Fioretti, B. Resveratrol Depolarizes the Membrane Potential in Human Granulosa Cells and Promotes Mitochondrial Biogenesis. Fertil. Steril. 2021, 115, 1063. [Google Scholar] [CrossRef]
- Davydova, D.A.; Vorotelyak, E.A.; Smirnova, Y.A.; Zinovieva, R.D.; Romanov, Y.A.; Kabaeva, N.V.; Terskikh, V.V.; Vasiliev, A.V. Cell Phenotypes in Human Amniotic Fluid. Acta Naturae 2009, 1, 98–103. [Google Scholar] [CrossRef]
- Nogami, M.; Tsuno, H.; Koike, C.; Okabe, M.; Yoshida, T.; Seki, S.; Matsui, Y.; Kimura, T.; Nikaido, T. Isolation and Characterization of Human Amniotic Mesenchymal Stem Cells and Their Chondrogenic Differentiation. Transplantation 2012, 93, 1221–1228. [Google Scholar] [CrossRef]
- Alagem, N.; Dvir, M.; Reuveny, E. Mechanism of Ba2+ Block of a Mouse Inwardly Rectifying K+ Channel: Differential Contribution by Two Discrete Residues. J. Physiol. 2001, 534, 381–393. [Google Scholar] [CrossRef]
- Swenson, R.P. Inactivation of Potassium Current in Squid Axon by a Variety of Quaternary Ammonium Ions. J. Gen. Physiol. 1981, 77, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Aveline, P.; Bourseguin, J.I.; Rochefort, G.Y. Mesenchymal Stem Cells and Acquisition of a Bone Phenotype: An Ion Channel Overview. J. Dev. Biol. Tissue Eng. 2011, 3, 103–118. [Google Scholar] [CrossRef]
- Fioretti, B.; Catacuzzeno, L.; Sforna, L.; Aiello, F.; Pagani, F.; Ragozzino, D.; Castigli, E.; Franciolini, F. Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel. Am. J. Physiol. Cell Physiol. 2009, 297, 1. [Google Scholar] [CrossRef] [PubMed]
- Fioretti, B.; Pietrangelo, T.; Catacuzzeno, L.; Franciolini, F. Intermediate-Conductance Ca2+-Activated K+ Channel Is Expressed in C2C12 Myoblasts and Is Downregulated during Myogenesis. Am. J. Physiol. Cell Physiol. 2005, 289, C89–C96. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Syme, C.A.; Singh, A.K.; Devor, D.C.; Bridges, R.J. Benzimidazolone activators of chloride secretion: Potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J. Pharmacol. Exp. Ther. 2001, 296, 600. [Google Scholar] [PubMed]
- Fioretti, B.; Castigli, E.; Calzuola, I.; Harper, A.A.; Franciolini, F.; Catacuzzeno, L. NPPB block of the intermediate-conductance Ca2+-activated K+ channel. Eur. J. Pharmacol. 2004, 16, 1. [Google Scholar] [CrossRef]
- Tran, P.B.; Ren, D.; Veldhouse, T.J.; Miller, R.J. Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J. Neurosci. Res. 2004, 176, 20. [Google Scholar] [CrossRef] [PubMed]
- Agasse, F.; Bernardino, L.; Silva, B.; Ferreira, R.; Grade, S.; Malva, J.O. Response to histamine allows the functional identification of neuronal progenitors, neurons, astrocytes, and immature cells in subventricular zone cell cultures. Rejuvenation Res 2008, 1, 187. [Google Scholar] [CrossRef]
- Kim, E.Y.; Lee, K.-B.; Kim, M.K. The Potential of Mesenchymal Stem Cells Derived from Amniotic Membrane and Amniotic Fluid for Neuronal Regenerative Therapy. BMB Rep. 2014, 47, 135–140. [Google Scholar] [CrossRef]
- Tajiri, N.; Acosta, S.; Portillo-Gonzales, G.S.; Aguirre, D.; Reyes, S.; Lozano, D.; Pabon, M.; Dela Peña, I.; Ji, X.; Yasuhara, T.; et al. Therapeutic Outcomes of Transplantation of Amniotic Fluid-Derived Stem Cells in Experimental Ischemic Stroke. Front. Cell Neurosci. 2014, 8, 227. [Google Scholar] [CrossRef]
- Zavatti, M.; Gatti, M.; Beretti, F.; Palumbo, C.; Maraldi, T. Exosomes Derived from Human Amniotic Fluid Mesenchymal Stem Cells Preserve Microglia and Neuron Cells from Aβ. Int. J. Mol. Sci. 2022, 23, 4967. [Google Scholar] [CrossRef] [PubMed]
- Fioretti, B.; Castigli, E.; Micheli, M.R.; Bova, R.; Sciaccaluga, M.; Harper, A.; Franciolini, F.; Catacuzzeno, L. Expression and Modulation of the Intermediate-Conductance Ca2+-Activated K+ Channel in Glioblastoma GL-15 Cells. Cell Physiol. Biochem. 2006, 18, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Monarca, L.; Ragonese, F.; Biagini, A.; Sabbatini, P.; Pacini, M.; Zucchi, A.; Spaccapelo, R.; Ferrari, P.; Nicolini, A.; Fioretti, B. Electrophysiological Impact of SARS-CoV-2 Envelope Protein in U251 Human Glioblastoma Cells: Possible Implications in Gliomagenesis? Int. J. Mol. Sci. 2024, 25, 6669. [Google Scholar] [CrossRef] [PubMed]
- Pearson, W.L.; Dourado, M.; Schreiber, M.; Salkoff, L.; Nichols, C.G. Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver. J. Physiol. 1999, 514, 639. [Google Scholar] [CrossRef]
- de Boer, T.P.; Houtman, M.J.C.; Compier, M.; van der Heyden, M.A.G. The Mammalian K(IR)2.x Inward Rectifier Ion Channel Family: Expression Pattern and Pathophysiology. Acta Physiol. 2010, 199, 243–256. [Google Scholar] [CrossRef]
- Toselli, M.; Cerbai, E.; Rossi, F.; Cattaneo, E. Do Amniotic Fluid–Derived Stem Cells Differentiate into Neurons in Vitro? Nat. Biotechnol. 2008, 26, 269–270. [Google Scholar] [CrossRef]
- Butt, A.M.; Kalsi, A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: A special role for Kir4.1 in glial functions. J. Cell. Mol. Med. 2006, 10, 33–44. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Nedergaard, M. Physiology of Astroglia. Physiol. Rev. 2018, 98, 239. [Google Scholar] [CrossRef]
- Kofuji, P.; Newman, E.A. Potassium buffering in the central nervous system. Neuroscience 2004, 129, 1045. [Google Scholar] [CrossRef]
- Olsen, M.L.; Sontheimer, H. Functional implications for Kir4.1 channels in glial biology: From K+ buffering to cell differentiation. J. Neurochem. 2008, 107, 589. [Google Scholar] [CrossRef]
- Tong, X.; Ao, Y.; Faas, G.C.; Nwaobi, S.E.; Xu, J.; Haustein, M.D.; Anderson, M.A.; Mody, I.; Olsen, M.L.; Sofroniew, M.V.; et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci. 2014, 17, 694. [Google Scholar] [CrossRef] [PubMed]
- Bazargani, N.; Attwell, D. Astrocyte calcium signaling: The third wave. Nat. Neurosci. 2016, 19, 182. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, N.B.; Attwell, D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 2010, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
Gene | Gene Name | Primer Sequence |
---|---|---|
ACTB Forward | Actin Beta | GTGCGTGACATTAAGGAGAA |
ACTB Reverse | Actin Beta | ATGGAGTTGAAGGTAGTTTCGT |
KCNMA1 Forward | Potassium calcium-activated channel subfamily M alpha 1 | CTAATTCCCAAGGGTTCACAC |
KCNMA1 Reverse | Potassium calcium-activated channel subfamily M alpha 1 | GCTTTGCAGAACAGATCACCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabbatini, P.; Cipriani, S.; Biagini, A.; Sallicandro, L.; Arcuri, C.; Romani, R.; Prontera, P.; Mirarchi, A.; Gentile, R.; Bianco, D.D.; et al. Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells. Cells 2025, 14, 50. https://doi.org/10.3390/cells14010050
Sabbatini P, Cipriani S, Biagini A, Sallicandro L, Arcuri C, Romani R, Prontera P, Mirarchi A, Gentile R, Bianco DD, et al. Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells. Cells. 2025; 14(1):50. https://doi.org/10.3390/cells14010050
Chicago/Turabian StyleSabbatini, Paola, Sabrina Cipriani, Andrea Biagini, Luana Sallicandro, Cataldo Arcuri, Rita Romani, Paolo Prontera, Alessandra Mirarchi, Rosaria Gentile, Diletta Del Bianco, and et al. 2025. "Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells" Cells 14, no. 1: 50. https://doi.org/10.3390/cells14010050
APA StyleSabbatini, P., Cipriani, S., Biagini, A., Sallicandro, L., Arcuri, C., Romani, R., Prontera, P., Mirarchi, A., Gentile, R., Bianco, D. D., Gliozheni, E., Gerli, S., Giardina, I., Arduini, M., Favilli, A., Malvasi, A., Tinelli, A., & Fioretti, B. (2025). Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells. Cells, 14(1), 50. https://doi.org/10.3390/cells14010050