Encapsulation and Melanization Are Not Correlated to Successful Immune Defense Against Parasitoid Wasps in Drosophila melanogaster
<p>Hemocyte composition in <span class="html-italic">D. melanogaster</span> larvae following parasitoid wasp infection. Hemocyte isolates of wasp-infected (72 h post-infection) and age-matched naïve larvae were examined. The total hemocyte number (<b>A</b>) and the ratio of the lamellocytes related to the total hemocyte count (<b>B</b>) were analyzed in four <span class="html-italic">D. melanogaster</span> strains. Three independent experiments were performed with 20 larvae each. The error bars indicate the standard error of the mean. Kruskal–Wallis test and pairwise Wilcoxon tests were used for statistical analysis. <span class="html-italic">p</span>-values: <0.05 = *; <0.01 = **; <0.001 = ***. (<b>C</b>) Indirect immunofluorescence analysis of hemocytes using the anti-L1 antibody to detect lamellocytes and DAPI to visualize the nuclei. Images were generated with an epifluorescence Zeiss Axioscope 2 MOT microscope. Representative images are shown.</p> "> Figure 2
<p>Survival of <span class="html-italic">L. boulardi</span> 72 h post-infection does not correlate with encapsulation and melanization efficiency. Three independent experiments were completed, each with 60 <span class="html-italic">D. melanogaster</span> larvae. Images were taken with an Olympus FV1000 confocal LSM microscope. The scale bars represent 100 μm. (<b>A</b>) Most of the host larvae carried one live and more dead <span class="html-italic">L. boulardi</span> parasitoids. The live/dead ratio of parasitoids is indicated for each strain. Representative images are shown. (<b>B</b>) Indirect immunofluorescence analysis of dead parasitoids using the L1 lamellocyte-specific monoclonal antibody and DAPI to visualize the nuclei. The ratio of melanized and not melanized dead parasitoids is indicated. (<b>C</b>) Indirect immunofluorescence analysis of live <span class="html-italic">L. boulardi</span> parasitoids using the anti-Hemese monoclonal antibody and DAPI to visualize the nuclei. As positive control, supernumerary dead <span class="html-italic">L. boulardi</span> parasitoids, isolated from BL5905, were used.</p> "> Figure 3
<p>Expression of <span class="html-italic">PPO2</span> (<b>A</b>,<b>A’</b>) and <span class="html-italic">PPO3</span> (<b>B</b>,<b>B’</b>) prophenoloxidase genes following infection with <span class="html-italic">L. boulardi</span> and <span class="html-italic">L. heterotoma</span> parasitoid wasps. The same data are shown in (<b>A</b>,<b>A’</b>) and (<b>B</b>,<b>B’</b>), in different interpretations. The error bars indicate standard error of the mean of four data points. Two independent experiments were carried out, with two technical replicates in each. ANOVA and Tukey HSD were used for statistical analysis. Significant differences are labeled. * = <span class="html-italic">p</span> ≤ 0.05; ** <span class="html-italic">p</span> ≤ 0.01; *** = <span class="html-italic">p</span> ≤ 0.001. ΔΔCt was calculated by normalizing ΔCt against the lowest values, the <span class="html-italic">L. heterotoma</span>-infected Oregon-R samples in (<b>A</b>,<b>A’</b>), and the <span class="html-italic">L. heterotoma</span>-infected BL5905 in (<b>B</b>,<b>B’</b>).</p> "> Figure 4
<p>Eclosion success following infection with <span class="html-italic">L. boulardi</span> and <span class="html-italic">L. heterotoma</span>. Four to six independent experiments were carried out with 60 <span class="html-italic">D. melanogaster</span> larvae in each. The error bars indicate the standard error of the mean. ANOVA and Tukey HSD were used for statistical analysis. <span class="html-italic">p</span>-values: <0.05 = *.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Stocks and Culturing
2.2. Generation of Wasp-Induced Samples
2.3. Parasitoid Monitoring and Analysis of Capsule Melanization
2.4. Indirect Immunofluorescence and Image Analysis
2.5. Quantitative RT-PCR
2.6. Parasitization Assay
2.7. Statistical Analysis
3. Results
3.1. Lamellocytes Differentiate in the Examined D. melanogaster Strains
3.2. Encapsulation and Melanization Efficiency Varies Across D. melanogaster Strains
3.3. Expression of the PPO2 and PPO3 Genes
3.4. Parasitoid Emergence Does Not Correlate with the Efficiency of Encapsulation and Melanization
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eleftherianos, I.; Heryanto, C.; Bassal, T.; Zhang, W.; Tettamanti, G.; Mohamed, A. Haemocyte-Mediated Immunity in Insects: Cells, Processes and Associated Components in the Fight Against Pathogens and Parasites. Immunology 2021, 164, 401–432. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, L.-M.; Fang, Q.; Stanley, D.W.; Ye, G.-Y. Cellular and Humoral Immune Interactions between Drosophila and Its Parasitoids. Insect Sci. 2021, 28, 1208–1227. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Y.; Xu, L. Uncovering the Immune Evasion Mechanism of Microbial Pathogens: Lessons from Anti-Encapsulation Strategies Adopted by a Fungus. Integr. Zool. 2024, 19, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Russo, J.; Dupas, S.; Frey, F.; Carton, Y.; Brehelin, M. Insect Immunity: Early Events in the Encapsulation Process of Parasitoid (Leptopilina boulardi) Eggs in Resistant and Susceptible Strains of Drosophila. Parasitology 1996, 112, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Rizki, T.M.; Rizki, R.M. The Cellular Defense System of Drosophila melanogaster. In Insect Ultrastructure: Volume 2; King, R.C., Akai, H., Eds.; Springer: Boston, MA, USA, 1984; pp. 579–604. ISBN 978-1-4613-2715-8. [Google Scholar]
- Bidla, G.; Dushay, M.S.; Theopold, U. Crystal Cell Rupture after Injury in Drosophila Requires the JNK Pathway, Small GTPases and the TNF Homolog Eiger. J. Cell Sci. 2007, 120, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Nappi, A.; Poirié, M.; Carton, Y. The Role of Melanization and Cytotoxic By-Products in the Cellular Immune Responses of Drosophila against Parasitic Wasps. Adv. Parasitol. 2009, 70, 99–121. [Google Scholar] [CrossRef]
- Taylor, R.L. A Suggested Role for the Polyphenol-Phenoloxidase System in Invertebrate Immunity. J. Invertebr. Pathol. 1969, 14, 427–428. [Google Scholar] [CrossRef]
- Söderhäll, K.; Cerenius, L. Role of the Prophenoloxidase-Activating System in Invertebrate Immunity. Curr. Opin. Immunol. 1998, 10, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Ashida, M.; Brey, P.T. Role of the Integument in Insect Defense: Pro-Phenol Oxidase Cascade in the Cuticular Matrix. Proc. Natl. Acad. Sci. USA 1995, 92, 10698–10702. [Google Scholar] [CrossRef] [PubMed]
- Sugumaran, M.; Barek, H. Critical Analysis of the Melanogenic Pathway in Insects and Higher Animals. Int. J. Mol. Sci. 2016, 17, 1753. [Google Scholar] [CrossRef]
- Nappi, A.J.; Christensen, B.M. Melanogenesis and Associated Cytotoxic Reactions: Applications to Insect Innate Immunity. Insect Biochem. Mol. Biol. 2005, 35, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Nappi, A.J.; Carton, Y. Cellular Immune Responses and Their Genetic Aspects in Drosophila. In Proceedings of the Immunity in Invertebrates; Brehélin, M., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 171–187. [Google Scholar]
- Carton, Y.; Frey, F.; Nappi, A. Genetic Determinism of the Cellular Immune Reaction in Drosophila melanogaster. Heredity 1992, 69, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Nappi, A.J.; Vass, E. Melanogenesis and the Generation of Cytotoxic Molecules during Insect Cellular Immune Reactions. Pigment Cell Res. 1993, 6, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Binggeli, O.; Neyen, C.; Poidevin, M.; Lemaitre, B. Prophenoloxidase Activation Is Required for Survival to Microbial Infections in Drosophila. PLoS Pathog. 2014, 10, e1004067. [Google Scholar] [CrossRef] [PubMed]
- Dudzic, J.P.; Kondo, S.; Ueda, R.; Bergman, C.M.; Lemaitre, B. Drosophila Innate Immunity: Regional and Functional Specialization of Prophenoloxidases. BMC Biol. 2015, 13, 81. [Google Scholar] [CrossRef] [PubMed]
- Dolezal, T. How to Eliminate Pathogen without Killing Oneself? Immunometabolism of Encapsulation and Melanization in Drosophila. Front. Immunol. 2023, 14, 1330312. [Google Scholar] [CrossRef]
- Labrosse, C.; Carton, Y.; Dubuffet, A.; Drezen, J.M.; Poirie, M. Active Suppression of D. melanogaster Immune Response by Long Gland Products of the Parasitic Wasp Leptopilina boulardi. J. Insect Physiol. 2003, 49, 513–522. [Google Scholar] [CrossRef]
- Rizki, R.M.; Rizki, T.M. Effects of Lamellolysin from a Parasitoid Wasp on Drosophila Blood Cells In Vitro. J. Exp. Zool. 1991, 257, 236–244. [Google Scholar] [CrossRef]
- Rizki, T.M.; Rizki, R.M. Parasitoid-Induced Cellular Immune Deficiency in Drosophila. Ann. N. Y. Acad. Sci. 1994, 712, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Silvers, M.J.; Nappi, A.J. In Vitro Study of Physiological Suppression of Supernumerary Parasites by the Endoparasitic Wasp Leptopilina heterotoma. J. Parasitol. 1986, 72, 405–409. [Google Scholar] [CrossRef]
- Carton, Y.; Bouletreau, M.; van Alphen, J.J.M.; van Lenteren, J.C. The Drosophila Parasitic Wasps. In The Genetics and Biology of Drosophila; Academic Press: Cambridge, MA, USA, 1986; Volume 3, pp. 348–394. [Google Scholar]
- Govind, S.; Melk, J.P.; Morales, J. Developmental Arrest and Physical Entrapment Eliminates Supernumerary Ganaspis xanthopoda Parasitoids in Drosophila melanogaster. J. Parasitol. 2000, 86, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Kurucz, E.; Váczi, B.; Márkus, R.; Laurinyecz, B.; Vilmos, P.; Zsámboki, J.; Csorba, K.; Gateff, E.; Hultmark, D.; Andó, I. Definition of Drosophila Hemocyte Subsets by Cell-Type Specific Antigens. Acta. Biol. Hung. 2007, 58, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Vilmos, P.; Nagy, I.; Kurucz, E.; Hultmark, D.; Gateff, E.; Andó, I. A Rapid Rosetting Method for Separation of Hemocyte Sub-Populations of Drosophila melanogaster. Dev. Comp. Immunol. 2004, 28, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.; Wuebbolt, C.; Heryanto, C.; Eleftherianos, I. The Prophenoloxidase System in Drosophila Participates in the Anti-Nematode Immune Response. Mol. Immunol. 2019, 109, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.J.; Liu, T.; Girard, J.R.; Banerjee, U. Injury-Induced Inflammatory Signaling and Hematopoiesis in Drosophila. Proc. Natl. Acad. Sci. USA 2022, 119, e2119109119. [Google Scholar] [CrossRef] [PubMed]
- Kacsoh, B.Z.; Bozler, J.; Schlenke, T.A. A Role for Nematocytes in the Cellular Immune Response of the Drosophilid Zaprionus indianus. Parasitology 2014, 141, 697–715. [Google Scholar] [CrossRef] [PubMed]
- Cinege, G.; Magyar, L.B.; Kovacs, H.; Varga, V.; Bodai, L.; Zsindely, N.; Nagy, G.; Hegedűs, Z.; Hultmark, D.; Andó, I. Distinctive Features of Zaprionus indianus Hemocyte Differentiation and Function Revealed by Transcriptomic Analysis. Front. Immunol. 2023, 14, 1322381. [Google Scholar] [CrossRef] [PubMed]
- Verster, K.I.; Cinege, G.; Lipinszki, Z.; Magyar, L.B.; Kurucz, E.; Tarnopol, R.L.; Ábrahám, E.; Darula, Z.; Karageorgi, M.; Tamsil, J.A.; et al. Evolution of Insect Innate Immunity through Domestication of Bacterial Toxins. Proc. Natl. Acad. Sci. USA 2023, 120, e2218334120. [Google Scholar] [CrossRef]
- Chen, J.; Fang, G.; Pang, L.; Sheng, Y.; Zhang, Q.; Zhou, Y.; Zhou, S.; Lu, Y.; Liu, Z.; Zhang, Y.; et al. Neofunctionalization of an Ancient Domain Allows Parasites to Avoid Intraspecific Competition by Manipulating Host Behaviour. Nat. Commun. 2021, 12, 5489. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Butler, S.; Sanchez, G.; Mateos, M. Male Killing Spiroplasma Protects Drosophila melanogaster against Two Parasitoid Wasps. Heredity 2014, 112, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Kari, B.; Csordás, G.; Honti, V.; Cinege, G.; Williams, M.J.; Andó, I.; Kurucz, É. The Raspberry Gene Is Involved in the Regulation of the Cellular Immune Response in Drosophila melanogaster. PLoS ONE 2016, 11, e0150910. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, M.J.; Perlman, S.J. Generality of Toxins in Defensive Symbiosis: Ribosome-Inactivating Proteins and Defense against Parasitic Wasps in Drosophila. PLoS Pathog. 2017, 13, e1006431. [Google Scholar] [CrossRef]
- Lynch, Z.R.; Schlenke, T.A.; Morran, L.T.; de Roode, J.C. Ethanol Confers Differential Protection against Generalist and Specialist Parasitoids of Drosophila melanogaster. PLoS ONE 2017, 12, e0180182. [Google Scholar] [CrossRef] [PubMed]
- Tarnopol, R.L.; Tamsil, J.; Cinege, G.; Ha, J.H.; Verster, K.I.; Ábrahám, E.; Magyar, L.B.; Kim, B.Y.; Bernstein, S.L.; Lipinszki, Z.; et al. Experimental Horizontal Transfer of Phage-Derived Genes to Drosophila Confers Innate Immunity to Parasitoids. Curr. Biol. 2024. accepted. [Google Scholar] [CrossRef]
- Paredes, J.C.; Herren, J.K.; Schüpfer, F.; Lemaitre, B. The Role of Lipid Competition for Endosymbiont-Mediated Protection against Parasitoid Wasps in Drosophila. mBio 2016, 7, e01006-16. [Google Scholar] [CrossRef]
- Gwokyalya, R.; Herren, J.K.; Weldon, C.W.; Khamis, F.M.; Ndlela, S.; Mohamed, S.A. Differential Immune Responses in New and Old Fruit Fly-Parasitoid Associations: Implications for Their Management. Front. Physiol. 2022, 13, 945370. [Google Scholar] [CrossRef]
- Varaldi, J.; Fouillet, P.; Boulétreau, M.; Fleury, F. Superparasitism Acceptance and Patch-Leaving Mechanisms in Parasitoids: A Comparison between Two Sympatric Wasps. Anim. Behav. 2005, 69, 1227–1234. [Google Scholar] [CrossRef]
- Schlenke, T.A.; Morales, J.; Govind, S.; Clark, A.G. Contrasting Infection Strategies in Generalist and Specialist Wasp Parasitoids of Drosophila melanogaster. PLoS Pathog. 2007, 3, 1486–1501. [Google Scholar] [CrossRef]
- Chiu, H.; Govind, S. Natural Infection of D. melanogaster by Virulent Parasitic Wasps Induces Apoptotic Depletion of Hematopoietic Precursors. Cell Death Differ. 2002, 9, 1379–1381. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Luo, F.; Xu, Y.; Zhang, Y.; Jin, L.H. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front. Immunol. 2022, 13, 905370. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.O.; Arunkumar, R.; Irfan, A.; Ding, S.D.; Leitão, A.B.; Jiggins, F.M. The Evolution of Constitutively Active Humoral Immune Defenses in Drosophila Populations Under High Parasite Pressure. PLoS Pathog. 2024, 20, e1011729. [Google Scholar] [CrossRef]
- Dostálová, A.; Rommelaere, S.; Poidevin, M.; Lemaitre, B. Thioester-Containing Proteins Regulate the Toll Pathway and Play a Role in Drosophila Defence Against Microbial Pathogens and Parasitoid Wasps. BMC Biol. 2017, 15, 79. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, R.; Zhou, S.O.; Day, J.P.; Bakare, S.; Pitton, S.; Zhang, Y.; Hsing, C.Y.; O’Boyle, S.; Pascual-Gil, J.; Clark, B.; et al. Natural Selection has Driven the Recurrent Loss of an Immunity Gene That Protects Drosophila Against a Major Natural Parasite. Proc. Natl. Acad. Sci. USA 2023, 120, e2211019120. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Kambris, Z.; Lemaitre, B.; Hashimoto, C. Two Proteases Defining a Melanization Cascade in the Immune System of Drosophila. J. Biol. Chem. 2006, 281, 28097–28104. [Google Scholar] [CrossRef] [PubMed]
- Dudzic, J.P.; Hanson, M.A.; Iatsenko, I.; Kondo, S.; Lemaitre, B. More Than Black or White: Melanization and Toll Share Regulatory Serine Proteases in Drosophila. Cell Rep. 2019, 27, 1050–1061.e3. [Google Scholar] [CrossRef]
- Cattenoz, P.B.; Sakr, R.; Pavlidaki, A.; Delaporte, C.; Riba, A.; Molina, N. Temporal Specificity and Heterogeneity of Drosophila Immune Cells. EMBO J. 2020, 39, 104486. [Google Scholar] [CrossRef]
- Cho, B.; Yoon, S.-H.; Lee, D.; Koranteng, F.; Tattikota, S.G.; Cha, N.; Shin, M.; Do, H.; Hu, Y.; Oh, S.Y.; et al. Single-Cell Transcriptome Maps of Myeloid Blood Cell Lineages in Drosophila. Nat. Commun. 2020, 11, 4483. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Huang, X.; Zhang, P.; van de Leemput, J.; Han, Z. Single-Cell RNA Sequencing Identifies Novel Cell Types in Drosophila Blood. J. Genet. Genom. 2020, 47, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.; Belghazi, M.; Lemauf, S.; Poirié, M.; Gatti, J.-L. Proteomics of Purified Lamellocytes from Drosophila melanogaster HopTum-l Identifies New Membrane Proteins and Networks Involved in Their Functions. Insect Biochem. Mol. Biol. 2021, 134, 103584. [Google Scholar] [CrossRef]
- Heavner, M.E.; Gueguen, G.; Rajwani, R.; Pagan, P.E.; Small, C.; Govind, S. Partial Venom Gland Transcriptome of a Drosophila Parasitoid Wasp, Leptopilina heterotoma, Reveals Novel and Shared Bioactive Profiles with Stinging Hymenoptera. Gene 2013, 526, 195–204. [Google Scholar] [CrossRef]
- Wey, B.; Heavner, M.E.; Wittmeyer, K.T.; Briese, T.; Hopper, K.R.; Govind, S. Immune Suppressive Extracellular Vesicle Proteins of Leptopilina heterotoma Are Encoded in the Wasp Genome. G3 Genes Genomes Genet. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Magyar, L.B.; Ábrahám, E.; Lipinszki, Z.; Tarnopol, R.L.; Whiteman, N.K.; Varga, V.; Hultmark, D.; Andó, I.; Cinege, G. Pore-Forming Toxin-like Proteins in the Anti-Parasitoid Immune Response of Drosophila. J. Innate Immun. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
D. melanogaster Strain | No Wasps Alive | One Wasp Alive | Two Wasps Alive |
---|---|---|---|
Canton-S | 0% | 93% | 7% |
Oregon-R | 0% | 97% | 3% |
BL5905 | 7% | 88% | 5% |
BL6326 | 8% | 87% | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magyar, L.B.; Andó, I.; Cinege, G. Encapsulation and Melanization Are Not Correlated to Successful Immune Defense Against Parasitoid Wasps in Drosophila melanogaster. Cells 2025, 14, 46. https://doi.org/10.3390/cells14010046
Magyar LB, Andó I, Cinege G. Encapsulation and Melanization Are Not Correlated to Successful Immune Defense Against Parasitoid Wasps in Drosophila melanogaster. Cells. 2025; 14(1):46. https://doi.org/10.3390/cells14010046
Chicago/Turabian StyleMagyar, Lilla B., István Andó, and Gyöngyi Cinege. 2025. "Encapsulation and Melanization Are Not Correlated to Successful Immune Defense Against Parasitoid Wasps in Drosophila melanogaster" Cells 14, no. 1: 46. https://doi.org/10.3390/cells14010046
APA StyleMagyar, L. B., Andó, I., & Cinege, G. (2025). Encapsulation and Melanization Are Not Correlated to Successful Immune Defense Against Parasitoid Wasps in Drosophila melanogaster. Cells, 14(1), 46. https://doi.org/10.3390/cells14010046