A Biorefinery Approach Integrating Lipid and EPS Augmentation Along with Cr (III) Mitigation by Chlorella minutissima
<p>(<b>A</b>) The IC<sub>50</sub> concentration of Cr (III) for <span class="html-italic">C. minutissima</span> after 96 h of exposure. (<b>B</b>) Growth curve comparison for <span class="html-italic">C. minutissima</span> under standard conditions and in the presence of Cr (III) at concentrations of 100 ppm and 200 ppm. (<b>C</b>) Changes in dry cell weight of <span class="html-italic">C. minutissima</span> over 12 days, with measurements taken every 72 h. The data denotes the mean ± S.D. from three independent replicates, with <span class="html-italic">p</span>-values < 0.05 and 0.01 indicated by * and **, respectively.</p> "> Figure 2
<p>(<b>A</b>) Removal efficiency of Cr (III) from the medium over time. (<b>B</b>) Time-course analysis of Cr (III) adsorbed on the cell surface of <span class="html-italic">C. minutissima</span>. (<b>C</b>) Quantification of Cr (III) accumulated within <span class="html-italic">C. minutissima</span> cells over 12 days, with measurements taken every 72 h. (<b>D</b>) Assessment of the bioconcentration factor for <span class="html-italic">C. minutissima</span> after 12 days of exposure to Cr (III) at concentrations of 100 ppm and 200 ppm. The data denotes the mean ± S.D. from three independent replicates, with <span class="html-italic">p</span>-values < 0.05, 0.01 and 0.001 represented by *, **, and ***.</p> "> Figure 3
<p>XPS spectra of microalgal cells reveal Cr (III) in both oxide and hydroxide forms. (<b>A</b>) The first panel shows cells exposed to 100 ppm of Cr (III). (<b>B</b>) The second panel depicts cells treated with 200 ppm of Cr (III).</p> "> Figure 4
<p>(<b>A</b>) FESEM images (top panel) of <span class="html-italic">C. minutissima</span> cells exposed to 100 ppm and 200 ppm Cr (III), captured at a 2 μm scale and 5000× magnification, showing cellular morphology. The bottom panel displays EDX micrographs illustrating Cr (III) ion adsorption on cell surfaces under control conditions and at 100 ppm and 200 ppm Cr (III) concentrations. (<b>B</b>) Cell size measurements. (<b>C</b>) Zeta potential values. (<b>D</b>) FTIR spectra of <span class="html-italic">C. minutissima</span> cells under control conditions and after exposure to Cr (III) for 12 days. The data denotes the mean ± S.D. from three independent replicates, with <span class="html-italic">p</span>-values < 0.05 represented by *, respectively.</p> "> Figure 5
<p>Effects of different Cr (III) concentrations (100 ppm and 200 ppm) on (<b>A</b>) chlorophyll a levels; (<b>B</b>) chlorophyll b levels; (<b>C</b>) total chlorophyll content; (<b>D</b>) chlorophyll a/b ratio; (<b>E</b>) carotenoid content; and (<b>F</b>) PS II efficiency in <span class="html-italic">C. minutissima</span>. Measurements were taken every 72 h over a 12-day period. The data denotes the mean ± S.D. from three independent replicates, with <span class="html-italic">p</span>-values < 0.05 and 0.01 represented by *, and **.</p> "> Figure 6
<p>Changes in (<b>A</b>) carbonic anhydrase activity; (<b>B</b>) total ROS in terms of DCF fluorescence; (<b>C</b>) lipid peroxidation in terms of TBARS content; (<b>D</b>) total glycine betaine; (<b>E</b>) proline content; (<b>F</b>) catalase (CAT) activity; (<b>G</b>) ascorbate peroxidase (APX) activity; (<b>H</b>) glutathione reductase (GR) activity; and (<b>I</b>) superoxide dismutase (SOD) activity in <span class="html-italic">C. minutissima</span> cultivated in control and Cr (III)-spiked (100 ppm and 200 ppm) media for 12 days. The data denotes the mean ± S.D. from three independent replicates, with <span class="html-italic">p</span>-values < 0.05, 0.01 and 0.001 represented by *, **, and ***.</p> "> Figure 7
<p>Time-based analysis of (<b>A</b>) lipid content; (<b>B</b>) carbohydrate content; and (<b>C</b>) protein content in <span class="html-italic">C. minutissima</span> biomass under control conditions and with Cr (III) exposure at 100 ppm and 200 ppm, over a 12-day incubation period. The data denotes the mean ± S.D. from three independent replicates, with <span class="html-italic">p</span>-values < 0.05 and 0.01 represented by * and **.</p> "> Figure 8
<p>(<b>A</b>) Bright field microscopy visuals (upper section) of <span class="html-italic">C. minutissima</span> after 12 days of growth (scale: 50 μm) and fluorescence microscopy visuals (lower section) of <span class="html-italic">C. minutissima</span> dyed with Nile red (scale: 50 μm). (<b>B</b>) Exemplary <sup>1</sup>H NMR spectra showcasing the overall lipid compositions of <span class="html-italic">C. minutissima</span> under standard conditions and after exposure to Cr (III) at concentrations of 100 ppm and 200 ppm. (<b>C</b>) Analysis of fold changes revealing shifts in various lipid categories. Within this context, the current study explores the integration of molecular mechanisms linked to Cr (III) tolerance, the rerouting of carbon metabolism triggered by Cr (III) towards lipid synthesis, and valuable by-products in the heavy metal-adaptive green microalga <span class="html-italic">C. minutissima</span>. Abbreviations: FA—fatty acid residue; TAG—triacylglyceride; PL—total phospholipid; MGDG—monogalactosyl diacylglycerol; PC—phosphatidylcholine; PE—phosphatidylethanolamine; PUFA—polyunsaturated fatty acid; omega-3-PUFA/ω3 PUFA—omega 3 polyunsaturated fatty acid. The data denotes the mean ± S.D. from three independent replicates, with <span class="html-italic">p</span>-values < 0.05 and 0.01 represented by * and **.</p> "> Figure 8 Cont.
<p>(<b>A</b>) Bright field microscopy visuals (upper section) of <span class="html-italic">C. minutissima</span> after 12 days of growth (scale: 50 μm) and fluorescence microscopy visuals (lower section) of <span class="html-italic">C. minutissima</span> dyed with Nile red (scale: 50 μm). (<b>B</b>) Exemplary <sup>1</sup>H NMR spectra showcasing the overall lipid compositions of <span class="html-italic">C. minutissima</span> under standard conditions and after exposure to Cr (III) at concentrations of 100 ppm and 200 ppm. (<b>C</b>) Analysis of fold changes revealing shifts in various lipid categories. Within this context, the current study explores the integration of molecular mechanisms linked to Cr (III) tolerance, the rerouting of carbon metabolism triggered by Cr (III) towards lipid synthesis, and valuable by-products in the heavy metal-adaptive green microalga <span class="html-italic">C. minutissima</span>. Abbreviations: FA—fatty acid residue; TAG—triacylglyceride; PL—total phospholipid; MGDG—monogalactosyl diacylglycerol; PC—phosphatidylcholine; PE—phosphatidylethanolamine; PUFA—polyunsaturated fatty acid; omega-3-PUFA/ω3 PUFA—omega 3 polyunsaturated fatty acid. The data denotes the mean ± S.D. from three independent replicates, with <span class="html-italic">p</span>-values < 0.05 and 0.01 represented by * and **.</p> "> Figure 9
<p>FAME profile of control and Cr (III) spiked lyophilized biomass after 12 days of incubation.</p> "> Figure 10
<p>(<b>A</b>) Total soluble extracellular polysaccharide content (EPS). (<b>B</b>) Total carbohydrate content in soluble EPS. (<b>C</b>) FTIR spectra of lyophilized EPS powder from supernatant of control and Cr (III)-spiked microalgal cultures.The data denotes the mean ± S.D. from three independent replicates, with <span class="html-italic">p</span>-values < 0.05 and 0.01 represented by * and **, respectively.</p> "> Figure 11
<p>(<b>A</b>) A schematic representation depicting the tolerance mechanism adopted by <span class="html-italic">C. minutissima</span> to survive under Cr (III) stress. Various steps involved in survival mechanism adopted by <span class="html-italic">C. minutissima</span> involves: (A). Interaction of Cr (III) ions with the functional groups present on algal cellular surface; (B) Impaired photosynthesis machinery due to Cr (III) stress; (C) Disruption of mitochondrial metabolic activities; (D) Generation of oxidative stress within the cell; (E) Activation of antioxidant machinery as defense mechanism; (F) Lipid peroxidation induced due to elevated levels of ROS; (G) Disruption of cellular membrane/membrane lipids; (H–I) in response <span class="html-italic">C. minutissima</span> shift carbon flux towards synthesis of energy reservoirs; (J) increased lipid production. (<b>B</b>) A conceptual illustration portraying an environmentally friendly biorefinery design that harnesses Cr (III) resistant microalgae for the purpose of environmental remediation while concurrently facilitating the production of biodiesel and an array of high-value substances like exopolysaccharides (EPS).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation and Maintenance of Microalgal Cultures
2.2. Toxicity Assessment of Cr (III)
2.3. Cellular Growth and Biomass Estimation
2.4. Analysis of Residual, Adsorbed, and Accumulated Cr (III) Ions
2.5. Photosynthetic Pigment Estimation
2.6. Biochemical Analysis
2.7. Lipid Content Profiling by 1H-NMR Spectroscopy
2.8. Fatty Acid Methyl Ester (FAME) Profiling and Biodiesel Properties
2.9. Morphology and Surface Characteristics
2.10. Analysis of Stress-Elicited Metabolites and Antioxidant Enzymes
2.11. Estimation of Carbonic Anhydrase Activity
2.12. Extraction and Qualitative/Quantitative Estimation of EPS
2.13. Statistical Analysis
3. Results
3.1. Growth Modulation of C. minutissima Under Cr (III) Stress
3.2. Cr (III) Removal Dynamics in C. minutissima
3.3. Effect of Cr (III) Exposure on Surface Morphology
3.4. Attenuation of Photosynthetic Efficiency
3.5. Analysis of Oxidative Stress and Enzymatic and Non-Enzymatic Antioxidant Molecules
3.6. Analysis of Temporal Based Biochemical Response
3.7. 1H NMR-Based Lipid Profiling of Cr (III)-Exposed C. minutissima
3.8. FAME Profiling and Assessment of Biodiesel Properties
3.9. Compositional Analysis of EPS Secreted by C. minutissima Under Cr (III) Stress
4. Discussion
4.1. Insights into the Cr (III) Detoxification and Lipid Accumulation Dynamics
4.2. Sustainable Biorefinery Approach Using C. minutissima Under Cr (III) Stress: Socio-Economic Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Choudhary, S.; Poluri, K.M. Microalgal-Based Biorefinery Approaches Toward a Sustainable Future. In Industrial Microbiology and Biotechnology; Springer Nature: Singapore, 2024; pp. 229–275. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Taylor, M. Energy Subsidies Evolution in the Global Energy Transformation to 2050; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020; pp. 10–14. Available online: www.irena.org (accessed on 23 April 2023).
- Singh, J.; Singh, V.; Ojha, C. Elevation Dependent Precipitation Changes in Historical and Future Times in the Himalayan Upper Ganga Basin, India. Atmos. Res. 2024, 307, 107501. [Google Scholar] [CrossRef]
- You, X.; Yang, L.; Zhou, X.; Zhang, Y. Sustainability and Carbon Neutrality Trends for Microalgae-Based Wastewater Treatment: A review. Environ. Res. 2022, 209, 112860. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Tripathi, S.; Poluri, K.M. Microalgal-Based Bioenergy: Strategies, Prospects, and Sustainability. Energy Fuels 2022, 36, 14584–14612. [Google Scholar] [CrossRef]
- Al-Jabri, H.; Das, P.; Khan, S.; Thaher, M.; AbdulQuadir, M. Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass—A Review. Water 2020, 13, 27. [Google Scholar] [CrossRef]
- Ali, S.S.; El-Sheekh, M.; Manni, A.; Ruiz, H.A.; Elsamahy, T.; Sun, J.; Schagerl, M. Microalgae-mediated Wastewater Treatment for Biofuels Production: A comprehensive review. Microbiol. Res. 2022, 265, 127187. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Arora, N.; Pruthi, V.; Poluri, K.M. Elucidating the bioremediation mechanism of Scenedesmus sp. IITRIND2 under cadmium stress. Chemosphere 2021, 283, 131196. [Google Scholar] [CrossRef] [PubMed]
- Iakovidou, G.; Itziou, A.; Tsiotsias, A.; Lakioti, E.; Samaras, P.; Tsanaktsidis, C.; Karayannis, V. Application of Microalgae to Wastewater Bioremediation, with CO2 Biomitigation, Health Product and Biofuel Development, and Environmental Biomonitoring. Appl. Sci. 2024, 14, 6727. [Google Scholar] [CrossRef]
- Mahlangu, D.; Mphahlele, K.; De Paola, F.; Mthombeni, N.H. Microalgae-Mediated Biosorption for Effective Heavy Metals Removal from Wastewater: A Review. Water 2024, 16, 718. [Google Scholar] [CrossRef]
- Radice, R.P.; De Fabrizio, V.; Donadoni, A.; Scopa, A.; Martelli, G. Crude Oil Bioremediation: From Bacteria to Microalgae. Processes 2023, 11, 442. [Google Scholar] [CrossRef]
- Das, P.; Halder, G.; Bal, M. A Critical Review on Remediation of Microplastics Using Microalgae from Aqueous System. Sci. Total Environ. 2023, 898, 166425. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhang, Z.; Liu, H.; Dong, S.; Nghiem, L.D.; Gao, L.; Chaves, A.V.; Zamyadi, A.; Li, X.; Wang, Q. A Review on Microalgae-Mediated Biotechnology for Removing Pharmaceutical Contaminants in Aqueous Environments: Occurrence, fate, and removal mechanism. J. Hazard. Mater. 2023, 443, 130213. [Google Scholar] [CrossRef]
- Tang, C.H.; Buskey, E.J. De-coupled phytoplankton growth and microzooplankton grazing in a simulated oil spill event in mesocosms. Mar. Pollut. Bull. 2022, 178, 113631. [Google Scholar] [CrossRef]
- Wang, J.; Tian, Q.; Cui, L.; Cheng, J.; Zhou, H.; Zhang, Y.; Peng, A.; Shen, L. Bioimmobilization and transformation of chromium and cadmium in the fungi-microalgae symbiotic system. J. Hazard. Mater. 2022, 445, 130507. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Yang, C.; Jiang, X.; Guo, W.; Ngo, H.H.; Wang, X.C. Impacts of fulvic acid and Cr(VI) on metabolism and chromium removal pathways of green microalgae. J. Hazard. Mater. 2023, 459, 132171. [Google Scholar] [CrossRef]
- Aravind, M.K.; Vignesh, N.S.; Gayathri, S.; Anjitha, N.; Athira, K.M.; Gunaseelan, S.; Arunkumar, M.; Sanjaykumar, A.; Karthikumar, S.; Moorthy, I.M.G.; et al. Review on rewiring of microalgal strategies for the heavy metal remediation—A metal specific logistics and tactics. Chemosphere 2023, 313, 137310. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Paz, J.; Lozada-Castro, J.J.; Lester, E.; Williams, O.; Stevens, L.; Barraza-Burgos, J. Solutions to hazardous wastes issues in the leather industry: Adsorption of Chromium iii and vi from leather industry wastewaters using activated carbons produced from leather industry solid wastes. J. Environ. Chem. Eng. 2023, 11, 109715. [Google Scholar] [CrossRef]
- Mohan, D.; Singh, K.P.; Singh, V.K. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J. Hazard. Mater. 2006, 135, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Mir, R.A.; Tyagi, A.; Manzar, N.; Kashyap, A.S.; Mushtaq, M.; Raina, A.; Park, S.; Sharma, S.; Mir, Z.A.; et al. Chromium Toxicity in Plants: Signaling, Mitigation, and Future Perspectives. Plants 2023, 12, 1502. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Bin Emran, T.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Iyer, M.; Anand, U.; Thiruvenkataswamy, S.; Babu, H.W.S.; Narayanasamy, A.; Prajapati, V.K.; Tiwari, C.K.; Gopalakrishnan, A.V.; Bontempi, E.; Sonne, C.; et al. A review of chromium (Cr) epigenetic toxicity and health hazards. Sci. Total. Environ. 2023, 882, 163483. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Gao, Y.; Xue, K.; Qi, Y.; Fan, Y.; Tian, X.; Wang, J.; Zhao, R.; Zhang, P.; Liu, Y.; et al. Toxicity mechanisms and remediation strategies for chromium exposure in the environment. Front. Environ. Sci. 2023, 11, 1131204. [Google Scholar] [CrossRef]
- Jozefczak, M.; Remans, T.; Vangronsveld, J.; Cuypers, A. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 2012, 13, 3145–3175. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.K.; Chang, J.-S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef] [PubMed]
- Ahner, B.A.; Wei, L.; Oleson, J.R.; Ogura, N. Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress. Mar. Ecol. Prog. Ser. 2002, 232, 93–103. [Google Scholar] [CrossRef]
- Danouche, M.; El Ghachtouli, N.; El Arroussi, H. Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 2021, 7, e07609. [Google Scholar] [CrossRef] [PubMed]
- Tattibayeva, Z.; Tazhibayeva, S.; Kujawski, W.; Zayadan, B.; Musabekov, K.; Adilbekova, A. Analysis of Cr(Iii) Ions Adsorption on the Surface of Algae: Implications for the Removal of Heavy Metal Ions from Water. East.-Eur. J. Enterp. Technol. 2021, 4, 14–23. [Google Scholar] [CrossRef]
- Kang, S.-Y.; Lee, J.-U.; Kim, K.-W. Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem. Eng. J. 2007, 36, 54–58. [Google Scholar] [CrossRef]
- Prasad, S.; Yadav, K.K.; Kumar, S.; Gupta, N.; Cabral-Pinto, M.M.; Rezania, S.; Radwan, N.; Alam, J. Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. J. Environ. Manag. 2021, 285, 112174. [Google Scholar] [CrossRef] [PubMed]
- Bartolomé, M.; Sánchez-Fortún, S. Bioadsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: A mechanisms for chromium resistance. Chemosphere 2013, 93, 1057–1063. [Google Scholar] [CrossRef]
- Choudhary, S.; Tripathi, S.; Poluri, K.M. Elucidating the adaptive response and enhanced lipid production of Chlorella minutissima under Cr (VI) stress. J. Water Process Eng. 2024, 63, 105498. [Google Scholar] [CrossRef]
- Tripathi, S.; Kairamkonda, M.; Gupta, P.; Poluri, K.M. Dissecting the molecular mechanisms of producing biofuel and value-added products by cadmium tolerant microalgae as sustainable biorefinery approach. Chem. Eng. J. 2023, 454, 140068. [Google Scholar] [CrossRef]
- Babiak, W.; Krzemińska, I. Extracellular polymeric substances (EPS) as microalgal bioproducts: A review of factors affecting EPS synthesis and application in flocculation processes. Energies 2021, 14, 4007. [Google Scholar] [CrossRef]
- Wang, M.; Ye, X.; Bi, H.; Shen, Z. Microalgae biofuels: Illuminating the path to a sustainable future amidst challenges and opportunities. Biotechnol. Biofuels Bioprod. 2024, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.; Gulati, K.; Patel, A.; Pruthi, P.A.; Poluri, K.M.; Pruthi, V. A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae. Algal Res. 2017, 24, 29–39. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 39, 911–917. [Google Scholar] [CrossRef]
- Tripathi, S.; Choudhary, S.; Poluri, K.M. Insights into lipid accumulation features of Coccomyxa sp. IITRSTKM4 under nutrient limitation regimes. Environ. Technol. Innov. 2021, 24, 101786. [Google Scholar] [CrossRef]
- Arora, N.; Patel, A.; Pruthi, P.A.; Pruthi, V. Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE). Appl. Biochem. Biotechnol. 2016, 180, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, M.A.; Anderson, L.A.; Franz, A.K. Triacylglycerol profiling of marine microalgae by mass spectrometry. J. Lipid Res. 2011, 52, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, J.; Errazu, A. Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass-Bioenergy 2008, 32, 892–895. [Google Scholar] [CrossRef]
- Arora, N.; Patel, A.; Sartaj, K.; Pruthi, P.A.; Pruthi, V. Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae. Environ. Sci. Pollut. Res. 2016, 23, 20997–21007. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Valadez-Bustos, M.G.; Aguado-Santacruz, G.A.; Tiessen-Favier, A.; Robledo-Paz, A.; Muñoz-Orozco, A.; Rascón-Cruz, Q.; Santacruz-Varela, A. A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems. Anal. Biochem. 2016, 498, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Schaedle, M.; Bassham, J.A. Chloroplast Glutathione Reductase. Plant Physiol. 1977, 59, 1011–1012. Available online: https://academic.oup.com/plphys/article/59/5/1011/6075031 (accessed on 5 December 2024). [CrossRef] [PubMed]
- Fuchs, W.; Steger, F.; Reich, J.; Ribitsch, D.; Rittmann, S.K.-M.R.; Bochmann, G. A simple and straightforward method for activity measurement of carbonic anhydrases. Catalysts 2021, 11, 819. [Google Scholar] [CrossRef]
- Koul, B.; Sharma, K.; Shah, M.P. Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environ. Technol. Innov. 2021, 25, 102040. [Google Scholar] [CrossRef]
- Sarma, U.; Hoque, M.E.; Thekkangil, A.; Venkatarayappa, N.; Rajagopal, S. Microalgae in removing heavy metals from wastewater—An advanced green technology for urban wastewater treatment. J. Hazard. Mater. Adv. 2024, 15, 100444. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, B.; Li, Z.; Deng, P.; Deng, X.; Long, H.; Wang, X.; Huang, K. Overexpression of the sulfate transporter-encoding SULTR2 increases chromium accumulation in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2023, 120, 1334–1345. [Google Scholar] [CrossRef]
- Krishna, D.N.G.; Philip, J. Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Appl. Surf. Sci. Adv. 2022, 12, 100332. [Google Scholar] [CrossRef]
- Gomes, A.S.O.; Yaghini, N.; Martinelli, A.; Ahlberg, E. A micro-Raman spectroscopic study of Cr(OH)3 and Cr2O3 nanoparticles obtained by the hydrothermal method. J. Raman Spectrosc. 2017, 48, 1256–1263. [Google Scholar] [CrossRef]
- Simonov, V.K.; Grishin, A.M. Solid-phase reduction of Cr2O3 under chemical catalytic conditions. Russ. Met. (Metally) 2016, 2016, 517–521. [Google Scholar] [CrossRef]
- Chakravorty, M.; Nanda, M.; Ahmed, W.; Hussain, A.; Vlaskin, M.; Anna I, K.; Kumar, V. In-vitro Cr (III) alleviation and the concurrent biochemical responses by Chlorella minutissima to establish its phycoremediation potential and biofuel prospects. Bioremediation J. 2024, 1–11. [Google Scholar] [CrossRef]
- Sudhakar, K.; Premalatha, M. Characterization of micro algal biomass through FTIR/TGA/CHN analysis: Application to Scenedesmus sp. Energy Sources Part A Recover. Util. Environ. Eff. 2015, 37, 2330–2337. [Google Scholar] [CrossRef]
- Ociński, D.; Augustynowicz, J.; Wołowski, K.; Mazur, P.; Sitek, E.; Raczyk, J. Natural community of macroalgae from chromium-contaminated site for effective remediation of Cr(VI)-containing leachates. Sci. Total. Environ. 2021, 786, 147501. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, S.; Ali, A.; Kour, N.; Bornhorst, J.; AlHarbi, K.; Rinklebe, J.; Abd El Moneim, D.; Ahmad, P.; Chung, Y.S. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. Plants 2023, 12, 3003. [Google Scholar] [CrossRef] [PubMed]
- Telfer, A. Too much light? How β-carotene protects the photosystem II reaction centre. Photochem. Photobiol. Sci. 2005, 4, 950–956. [Google Scholar] [CrossRef] [PubMed]
- McGinn, P.J.; Morel, F.M.M. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol. Plant. 2008, 133, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Song, X.; Yu, L.; Han, B.; Li, T.; Yu, X. Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1. Energy Convers. Manag. 2019, 188, 76–85. [Google Scholar] [CrossRef]
- Anees, M.; Ahmad, Z.; Rehman, A.U. Microcosmic Study of Nickel Stress towards Soil Bacteria and their Biochemical Characterization. J. Bio-Mol. Sci. JBMS 2013, 1, 37–44. [Google Scholar]
- Afkar, E. Toxicological Response of the Green Alga Chlorella vulgaris, to Some Heavy Metals. Am. J. Environ. Sci. 2010, 6, 230–237. [Google Scholar] [CrossRef]
- ASTM D6751-02; Standard Specification for Biodiesel Fuel (B100) Blend Stock for Distillate Fuels. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- EN 14214; Requirements and Test Methods for the Production of Fatty Acid Methyl Esters (FAME). European Standards: Plzen, Czech Republic, 2003.
- Knothe, G. Analyzing biodiesel: Standards and other methods. J. Am. Oil Chem. Soc. 2006, 83, 823–833. [Google Scholar] [CrossRef]
- Uba, S.; Omoniyi, K.; Mikail, A.; Ikeh, D.; Adeosun, S.; Sani, A. Quality assessment of biodiesel produced from Caesalpinia pulcherrima (Pride of Barbados). Bayero J. Pure Appl. Sci. 2022, 15, 80–86. [Google Scholar] [CrossRef]
- Pullen, J.; Saeed, K. Experimental study of the factors affecting the oxidation stability of biodiesel FAME fuels. Fuel Process. Technol. 2014, 125, 223–235. [Google Scholar] [CrossRef]
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M.; et al. Innovative and sustainable technologies to enhance the oxidative stability of vegetable oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Keramat, M.; Ehsandoost, E.; Golmakani, M.-T. Recent Trends in Improving the Oxidative Stability of Oil-Based Food Products by Inhibiting Oxidation at the Interfacial Region. Foods 2023, 12, 1191. [Google Scholar] [CrossRef]
- Guo, X.; Wang, X.; Liu, J. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation. Sci. Rep. 2016, 6, 28391. [Google Scholar] [CrossRef] [PubMed]
- Aharchaou, I.; Rosabal, M.; Liu, F.; Battaglia, E.; Vignati, D.A.; Fortin, C. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii. Aquat. Toxicol. 2017, 182, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, P.; Sathiavelu, M. Effective kinetic modeling and phycoremediation of Cr(IV) ions from tannery effluent by using microalgae—Chlamydomonas moewusii, Auxenochlorella pyrenoidosa, Scenedesmus sp. Bioremediation J. 2022, 27, 169–188. [Google Scholar] [CrossRef]
- Elleuch, J.; Thabet, J.; Ghribi, I.; Jabeur, H.; Hernández, L.E.; Fendri, I.; Abdelkafi, S. Responses of Dunaliella sp. AL-1 to chromium and copper: Biochemical and physiological studies. Chemosphere 2024, 364, 143133. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Hans, S.; Srivastava, A. Chromium bioremediation from river Yamuna using cyanobacteria at white and red illumination wavelengths. J. Water Process Eng. 2021, 44, 102416. [Google Scholar] [CrossRef]
- Liu, T.; Guo, H.; Yu, Q.; Wang, Y.; Liu, H.; Zeng, Y.; Wang, Y.; Liu, C.; Li, J. The Impact of Cr(III) and Cr(VI) on Lipid Accumulation in Chlorella pyrenoidosa. Processes 2024, 12, 905. [Google Scholar] [CrossRef]
- Ayele, A.; Godeto, Y.G. Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. J. Chem. 2021, 2021, 7694157. [Google Scholar] [CrossRef]
- Chen, Y.-E.; Mao, H.-T.; Ma, J.; Wu, N.; Zhang, C.-M.; Su, Y.-Q.; Zhang, Z.-W.; Yuan, M.; Zhang, H.-Y.; Zeng, X.-Y.; et al. Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence. Chemosphere 2018, 194, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Bartolomé, C.; Sánchez-Fortún, S. Photosynthetic activity and protein overexpression found in Cr(III)-tolerant cells of the green algae Dictyosphaerium chlorelloides. Chemosphere 2014, 108, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.A.; Ashraf, U.; Khan, I.; Saleem, M.F.; Wang, L.C. Chromium toxicity induced alterations in growth, photosynthesis, gas exchange attributes and yield formation in maize. Pak. J. Agric. Sci. 2016, 53, 751–757. [Google Scholar] [CrossRef]
- Willows, R.D. The Mg branch of chlorophyll synthesis: Biosynthesis of chlorophyll a from protoporphyrin IX. In Advances in Botanical Research; Academic Press Inc.: Cambridge, MA, USA, 2019; Volume 90, pp. 141–182. [Google Scholar] [CrossRef]
- Perrine, Z.; Negi, S.; Sayre, R.T. Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 2012, 1, 134–142. [Google Scholar] [CrossRef]
- Tripathi, S.; Tripathi, S.; Behera, T.; Behera, T.; Poluri, K.M.; Poluri, K.M. Biochemical insights into cadmium detoxification mechanism of Coccomyxa sp. IITRSTKM4. J. Environ. Chem. Eng. 2022, 10, 108102. [Google Scholar] [CrossRef]
- Arora, N.; Patel, A.; Pruthi, P.A.; Pruthi, V. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresour. Technol. 2016, 213, 79–87. [Google Scholar] [CrossRef]
- Expósito, N.; Carafa, R.; Kumar, V.; Sierra, J.; Schuhmacher, M.; Papiol, G.G. Performance of Chlorella Vulgaris Exposed to Heavy Metal Mixtures: Linking Measured Endpoints and Mechanisms. Int. J. Environ. Res. Public Health 2021, 18, 1037. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, S.; Mochida, K.; Suzuki, K. Diverse biosynthetic pathways and protective functions against environmental stress of antioxidants in microalgae. Plants 2021, 10, 1250. [Google Scholar] [CrossRef] [PubMed]
- Wise, J.P.; Wise, J.T.; Wise, C.F.; Wise, S.S.; Zhu, C.; Browning, C.L.; Zheng, T.; Perkins, C.; Gianios, C.; Xie, H. Metal Levels in Whales from the Gulf of Maine: A One Environmental Health approach. Chemosphere 2019, 216, 653–660. [Google Scholar] [CrossRef]
- Hmani, R.; Elleuch, J.; Elleuch, F.; Drira, M.; Michaud, P.; Aleya, L.; Abdelkafi, S.; Fendri, I. Molecular and Enzymatic Responses of Chlorococcum dorsiventrale to Heavy Metal Exposure: Implications for Their Removal. Appl. Sci. 2024, 14, 8551. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Garab, G.; Adams, W., III; Govindjee (Eds.) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria; Springer: Dordrecht, The Netherlands, 2014; Volume 40, pp. 605–630. [Google Scholar] [CrossRef]
- Wang, L.; Yang, T.; Pan, Y.; Shi, L.; Jin, Y.; Huang, X. The Metabolism of Reactive Oxygen Species and Their Effects on Lipid Biosynthesis of Microalgae. Int. J. Mol. Sci. 2023, 24, 11041. [Google Scholar] [CrossRef] [PubMed]
- Vignaud, J.; Loiseau, C.; Hérault, J.; Mayer, C.; Côme, M.; Martin, I.; Ulmann, L. Microalgae produce antioxidant molecules with potential preventive effects on mitochondrial functions and skeletal muscular oxidative stress. Antioxidants 2023, 12, 1050. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cai, Y.; Wakisaka, M.; Yang, Z.; Yin, Y.; Fang, W.; Xu, Y.; Omura, T.; Yu, R.; Zheng, A.L.T. Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. Sci. Total. Environ. 2023, 896, 165200. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tang, Y.; Zhang, H.; Zhang, X.; Sun, X.; Zang, X.; Xu, N. Physiological, Transcriptome, and Metabolome Analyses Reveal the Tolerance to Cu Toxicity in Red Macroalgae Gracilariopsis lemaneiformis. Int. J. Mol. Sci. 2024, 25, 4770. [Google Scholar] [CrossRef]
- Ansari, M.K.A.; Iqbal, M.; Ahmad, M.; Munir, M.; Gaffar, S.A.; Chaachouay, N. Heavy Metal Stress and Cellular Antioxidant Systems of Plants: A Review. Agric. Rev. 2024, 45, 400–409. [Google Scholar] [CrossRef]
- Romero-Cruz, M.d.C.; Leon-Vaz, A.; Giráldez, I.; Vega, J.M.; Vigara, J. Effect of heavy metals on the antioxidant system of the acid-tolerant microalga Coccomyxa onubensis. Algal Res. 2024, 77, 103337. [Google Scholar] [CrossRef]
- Vitova, M.; Bisova, K.; Kawano, S.; Zachleder, V. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnol. Adv. 2014, 33, 1204–1218. [Google Scholar] [CrossRef] [PubMed]
- Stiborová, M.; Ditrichová, M.; Březinová, A. Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Biol. Plant. 1987, 29, 453–467. [Google Scholar] [CrossRef]
- Zeng, K.; Huang, X.; Guo, J.; Dai, C.; He, C.; Chen, H.; Xin, G. Microbial-driven mechanisms for the effects of heavy metals on soil organic carbon storage: A global analysis. Environ. Int. 2024, 184, 108467. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; Italiano, F.; Catucci, L.; Agostiano, A.; Cataldi, T.R.I.; Palmisano, F.; Trotta, M. The lipidome of the photosynthetic bacterium Rhodobacter sphaeroides R26 is affected by cobalt and chromate ions stress. BioMetals 2014, 27, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Shekh, A.Y.; Shrivastava, P.; Krishnamurthi, K.; Mudliar, S.N.; Devi, S.S.; Kanade, G.S.; Chakrabarti, T. Stress enhances poly-unsaturation rich lipid accumulation in Chlorella sp. and Chlamydomonas sp. Biomass-Bioenergy 2016, 84, 59–66. [Google Scholar] [CrossRef]
- Oradu, S.A.; Cooks, R.G. Multistep mass spectrometry methodology for direct characterization of polar lipids in green microalgae using paper spray ionization. Anal. Chem. 2012, 84, 10576–10585. [Google Scholar] [CrossRef] [PubMed]
- Laroche, C. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Mar. Drugs 2022, 20, 336. [Google Scholar] [CrossRef] [PubMed]
- Garza-Rodríguez, Z.B.; Hernández-Pérez, J.; Santacruz, A.; Jacobo-Velázquez, D.A.; Benavides, J. Prospective on the application of abiotic stresses to enhance the industrial production of exopolysaccharides from microalgae. Curr. Res. Biotechnol. 2022, 4, 439–444. [Google Scholar] [CrossRef]
- Yang, J.; Cao, J.; Xing, G.; Yuan, H. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour. Technol. 2015, 175, 537–544. [Google Scholar] [CrossRef]
- Wang, S.; Mukhambet, Y.; Esakkimuthu, S.; Abomohra, A.E.-F. Integrated microalgal biorefinery—Routes, energy, economic and environmental perspectives. J. Clean. Prod. 2022, 348, 131245. [Google Scholar] [CrossRef]
- Tawfik, A.; Eraky, M.; Alhajeri, N.S.; Osman, A.I.; Rooney, D.W. Cultivation of microalgae on liquid anaerobic digestate for depollution, biofuels and cosmetics: A review. Environ. Chem. Lett. 2022, 20, 3631–3656. [Google Scholar] [CrossRef]
- Makareviciene, V.; Sendzikiene, E. Application of Microalgae Biomass for Biodiesel Fuel Production. Energies 2022, 15, 4178. [Google Scholar] [CrossRef]
- Zewdie, D.T.; Ali, A.Y. Cultivation of microalgae for biofuel production: Coupling with sugarcane-processing factories. Energy Sustain. Soc. 2020, 10, 27. [Google Scholar] [CrossRef]
- Chakravorty, M.; Jaiswal, K.K.; Bhatnagar, P.; Parveen, A.; Upadhyay, S.; Vlaskin, M.S.; Alajmi, M.F.; Chauhan, P.; Nanda, M.; Kumar, V. Exogenous GABA supplementation to facilitate Cr (III) tolerance and lipid biosynthesis in Chlorella sorokiniana. J. Environ. Manag. 2024, 355, 120441. [Google Scholar] [CrossRef] [PubMed]
- Khoubestani, R.S.; Mirghaffari, N.; Farhadian, O. Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass-derived biosorbent. Environ. Prog. Sustain. Energy 2014, 34, 949–956. [Google Scholar] [CrossRef]
- Athira, K.; Sathish, A.; Nithya, K.; Guhananthan, A. Corn cob immobilised Chlorella sorokiniana for the sequestration of chromium ions from aqueous solution. Mater. Today Proc. 2020, 33, 2148–2155. [Google Scholar] [CrossRef]
- Song, X.; Kong, F.; Liu, B.-F.; Song, Q.; Ren, N.-Q.; Ren, H.-Y. Lipidomics analysis of microalgal lipid production and heavy metal adsorption under glycine betaine-mediated alleviation of low-temperature stress. J. Hazard. Mater. 2024, 480, 135831. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.H.; Sheikh, H.M. Response of the green microalga Chlorella vulgaris to the oxidative stress caused by some heavy metals. Life Sci. J. 2014, 11, 1349–1357. [Google Scholar] [CrossRef]
- Kafil, M.; Berninger, F.; Koutra, E.; Kornaros, M. Utilization of the microalga Scenedesmus quadricauda for hexavalent chromium bioremediation and biodiesel production. Bioresour. Technol. 2022, 346, 126665. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Nag, S.; Bhowmick, T.K.; Gayen, K. Bioremediation of chromium(VI) and arsenic(III) using isolated microalgal (Chlorella thermophilia): Analysis of growth, biomolecular compositions (carbohydrate, protein, chlorophyll) and biosorption kinetics. Algal Res. 2024, 82, 103635. [Google Scholar] [CrossRef]
- Duque-Granda, D.; Montoya-Vallejo, C.; Botero-Botero, L.R. Cadmium (Cd) tolerance evaluation of three strains of microalgae of the genus Ankistrodesmus, Chlorella and Scenedesmus. Rev. Fac. Ing. Univ. Antioq. 2019, 92, 88–95. [Google Scholar] [CrossRef]
- Nanda, M.; Jaiswal, K.K.; Kumar, V.; Vlaskin, M.S.; Gautam, P.; Bahuguna, V.; Chauhan, P. Micro-pollutant Pb(II) mitigation and lipid induction in oleaginous microalgae Chlorella sorokiniana UUIND6. Environ. Technol. Innov. 2021, 23, 101613. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, J.-J.; Hong, Y. Effects of metal ions on the cultivation of an oleaginous microalga Chlorella sp. Environ. Sci. Pollut. Res. 2017, 24, 26594–26604. [Google Scholar] [CrossRef] [PubMed]
- Ciempiel, W.; Czemierska, M.; Szymańska-Chargot, M.; Zdunek, A.; Wiącek, D.; Jarosz-Wilkołazka, A.; Krzemińska, I. Soluble Extracellular Polymeric Substances Produced by Parachlorella kessleri and Chlorella vulgaris: Biochemical Characterization and Assessment of Their Cadmium and Lead Sorption Abilities. Molecules 2022, 27, 7153. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, F.; Liu, N.; Ge, F.; Xiao, H.; Yang, Y. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium. Bioresour. Technol. 2015, 190, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Kuo-Dahab, W.C.; Dolan, S.; Park, C. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour. Technol. 2014, 154, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lee, D.-J.; Pan, X. Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: Effects of pH, EDTA, Ca(II) and temperature shocks. Bioresour. Technol. 2012, 128, 711–715. [Google Scholar] [CrossRef] [PubMed]
Initial Cr (III) Concentration | Atomic Percentage of Cr2O3 | Atomic Percentage of Cr(OH)3 |
---|---|---|
100 ppm | 65.6 | 34.3 |
200 ppm | 63 | 36.9 |
Physical Properties | Standard Fuel Parameter | Control | Cr (III)-Exposed Cells | Plant Oil Methyl Esters | |||
---|---|---|---|---|---|---|---|
ASTM (D6751-02) | EN (14214) | BBM | 100 ppm | 200 ppm | JME | PME | |
Saponification value (mg KOH) | - | - | 128 | 145 | 168 | 96 | 49 |
Iodine value (g I2/100 g) | - | 120 max | 68 | 78 | 79 | - | - |
Cetane number | 47 min | - | 71 | 64 | 58 | 54 | 61 |
Degree of unsaturation (% weight) | - | - | 65 | 62 | 62 | - | - |
Long-chain saturation factor (% weight) | - | - | 2. | 5 | 6 | - | - |
High heating value (MJ/kg) | - | - | 43 | 42 | 41 | - | - |
Cold flow plugging property (°C) | - | ≤5/≤−20 | −9.2 | −0.75 | 2.3 | −2 | 13 |
Oxidative stability (h) | - | >6 | 13 | 14 | 21 | 3.9 | 16.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, S.; Tiwari, M.; Poluri, K.M. A Biorefinery Approach Integrating Lipid and EPS Augmentation Along with Cr (III) Mitigation by Chlorella minutissima. Cells 2024, 13, 2047. https://doi.org/10.3390/cells13242047
Choudhary S, Tiwari M, Poluri KM. A Biorefinery Approach Integrating Lipid and EPS Augmentation Along with Cr (III) Mitigation by Chlorella minutissima. Cells. 2024; 13(24):2047. https://doi.org/10.3390/cells13242047
Chicago/Turabian StyleChoudhary, Sonia, Mansi Tiwari, and Krishna Mohan Poluri. 2024. "A Biorefinery Approach Integrating Lipid and EPS Augmentation Along with Cr (III) Mitigation by Chlorella minutissima" Cells 13, no. 24: 2047. https://doi.org/10.3390/cells13242047
APA StyleChoudhary, S., Tiwari, M., & Poluri, K. M. (2024). A Biorefinery Approach Integrating Lipid and EPS Augmentation Along with Cr (III) Mitigation by Chlorella minutissima. Cells, 13(24), 2047. https://doi.org/10.3390/cells13242047