Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion
<p>Placental inflammation leads to loss of fetal tolerance. During normal development, placental Hofbauer cells, trophoblasts, and Tregs prevent the development of anti-fetal immunity. These cells maintain the production of tolerogenic factors even during infection with <span class="html-italic">L. monocytogenes</span>. However, a sufficiently severe infection eventually leads to increased proinflammatory cytokines, transition of Hofbauer cells towards an M1 phenotype, and an influx of innate immune cells. These processes culminate in loss of Treg function and the development of anti-fetal CD8+ T cells. Figure created using BioRender.</p> "> Figure 2
<p>Common features of vertically transmitted pathogens. Despite the many apparent differences between <span class="html-italic">Listeria monocytogenes</span> and <span class="html-italic">Treponema pallidum</span>, a careful comparison of the organisms reveals some common features which contribute to their ability to invade and cross the placenta. Figure created using BioRender.</p> ">
Abstract
:1. Introduction
2. Immunity at the Maternal–Fetal Interface
3. Treponema pallidum subsp. pallidum
3.1. Epidemiology
3.2. Pathogenesis
3.3. Bacterial Factors
3.4. Immunity to T. pallidum
4. Listeria monocytogenes
4.1. Epidemiology
4.2. Pathogenesis
4.3. Bacterial Factors
4.4. Immunity to L. monocytogenes
5. Preventative Measures against Fetal Infection for T. pallidum and L. monocytogenes and a Comparison of Managing Infections
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cunningham, F.G.; Leveno, K.J.; Dashe, J.S.; Hoffman, B.L.; Spong, C.Y.; Casey, B.M. Infectious Diseases. In Williams Obstetrics, 26th ed.; McGraw Hill: New York, NY, USA, 2022. [Google Scholar]
- Cunningham, F.G.; Leveno, K.J.; Dashe, J.S.; Hoffman, B.L.; Spong, C.Y.; Casey, B.M. Sexually Transmitted Infections. In Williams Obstetrics, 26th ed.; McGraw Hill: New York, NY, USA, 2022. [Google Scholar]
- Lafond, R.E.; Lukehart, S.A. Biological Basis for Syphilis. Clin. Microbiol. Rev. 2006, 19, 29–49. [Google Scholar] [CrossRef] [PubMed]
- Freitag, N.E.; Port, G.C.; Miner, M.D. Listeria monocytogenes—From saprophyte to intracellular pathogen. Nat. Rev. Microbiol. 2009, 7, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Erlebacher, A. Immunology of the Maternal-Fetal Interface. Annu. Rev. Immunol. 2013, 31, 387–411. [Google Scholar] [CrossRef] [PubMed]
- Crespo, Â.C.; van der Zwan, A.; Ramalho-Santos, J.; Strominger, J.L.; Tilburgs, T. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections. J. Reprod. Immunol. 2016, 119, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Koopman, L.A.; Kopcow, H.D.; Rybalov, B.; Boyson, J.E.; Orange, J.S.; Schatz, F.; Masch, R.; Lockwood, C.J.; Schachter, A.D.; Park, P.J.; et al. Human Decidual Natural Killer Cells Are a Unique NK Cell Subset with Immunomodulatory Potential. J. Exp. Med. 2003, 198, 1201–1212. [Google Scholar] [CrossRef]
- Kopcow, H.D.; Allan, D.S.J.; Chen, X.; Rybalov, B.; Andzelm, M.M.; Ge, B.; Strominger, J.L. Human Decidual NK Cells Form Immature Activating Synapses and Are Not Cytotoxic. Proc. Natl. Acad. Sci. USA 2005, 102, 15563–15568. [Google Scholar] [CrossRef]
- Tilburgs, T.; Evans, J.H.; Crespo, Â.C.; Strominger, J.L. The HLA-G cycle provides for both NK tolerance and immunity at the maternal–fetal interface. Proc. Natl. Acad. Sci. USA 2015, 112, 13312–13317. [Google Scholar] [CrossRef]
- Vujaklija, D.V.; Gulic, T.; Sucic, S.; Nagata, K.; Ogawa, K.; Laskarin, G.; Saito, S.; Haller, H.; Rukavina, D. First Trimester Pregnancy Decidual Natural Killer Cells Contain and Spontaneously Release High Quantities of Granulysin. Am. J. Reprod. Immunol. 2011, 66, 363–372. [Google Scholar] [CrossRef]
- Liu, L.; Huang, X.; Xu, C.; Chen, C.; Zhao, W.; Li, D.; Li, L.; Wang, L.; Du, M. Decidual CD8+T cells exhibit both residency and tolerance signatures modulated by decidual stromal cells. J. Transl. Med. 2020, 18, 221. [Google Scholar] [CrossRef]
- Van Der Zwan, A.; Bi, K.; Norwitz, E.R.; Crespo, Â.C.; Claas, F.H.J.; Strominger, J.L.; Tilburgs, T. Mixed signature of activation and dysfunction allows human decidual CD8 + T cells to provide both tolerance and immunity. Proc. Natl. Acad. Sci. USA 2017, 115, 385–390. [Google Scholar] [CrossRef]
- Scaife, P.J.; Bulmer, J.N.; Robson, S.C.; Innes, B.A.; Searle, R.F. Effector Activity of Decidual CD8+ T Lymphocytes in Early Human Pregnancy. Biol. Reprod. 2006, 75, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Ingman, K.; Cookson, V.J.K.W.; Jones, C.J.P.; Aplin, J.D. Characterisation of Hofbauer Cells in First and Second Trimester Placenta: Incidence, Phenotype, Survival in vitro and Motility. Placenta 2010, 31, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Romero, R.; Kim, M.R.; Kim, Y.M.; Friel, L.; Espinoza, J.; Kim, C.J. Involvement of Hofbauer cells and maternal T cells in villitis of unknown aetiology. Histopathology 2008, 52, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Castellucci, M.; Zaccheo, D.; Pescetto, G. A three-dimensional study of the normal human placental villous core. I. The Hofbauer cells. Cell Tissue Res. 1980, 210, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Anteby, E.Y.; Natanson-Yaron, S.; Greenfield, C.; Goldman-Wohl, D.; Haimov-Kochman, R.; Holzer, H.; Yagel, S. Human Placental Hofbauer Cells Express Sprouty Proteins: A Possible Modulating Mechanism of Villous Branching. Placenta 2005, 26, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Demir, R.; Kayisli, U.A.; Seval, Y.; Celik-Ozenci, C.; Korgun, E.T.; Demir-Weusten, A.Y.; Huppertz, B. Sequential Expression of VEGF and its Receptors in Human Placental Villi During Very Early Pregnancy: Differences Between Placental Vasculogenesis and Angiogenesis. Placenta 2004, 25, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Li, X.F.; Dunk, C.; Whittle, M.J.; Rushton, D.I.; Rollason, T. Colocalisation of Vascular Endothelial Growth Factor and Its Flt-1 Receptor in Human Placenta. Growth Factors 1995, 12, 235–243. [Google Scholar] [CrossRef]
- Reyes, L.; Golos, T.G. Hofbauer Cells: Their Role in Healthy and Complicated Pregnancy. Front. Immunol. 2018, 9, 2628. [Google Scholar] [CrossRef]
- Adhikari, E.H. Syphilis in Pregnancy. Obstet. Gynecol. 2020, 135, 1121–1135. [Google Scholar] [CrossRef]
- Division of STD Prevention Sexually Transmitted Disease Surveillance, 2021; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2022.
- Global Report on HIV, Viral Hepatitis, and Sexually Transmitted Infections, 2021; World Health Organization: Geneva, Switzerland, 2022.
- Wang, Y.; Wu, M.; Gong, X.; Zhao, L.; Zhao, J.; Zhu, C.; Gong, C. Risk Factors for Congenital Syphilis Transmitted from Mother to Infant—Suzhou, China, 2011–2014. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 247–250. [Google Scholar] [CrossRef]
- Kittipornpechdee, N.; Hanamornroongruang, S.; Lekmak, D.; Treetipsatit, J. Fetal and Placental Pathology in Congenital Syphilis: A Comprehensive Study in Perinatal Autopsy. Fetal Pediatr. Pathol. 2018, 37, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, J.S.; Sánchez, P.J.; Wendel, G.D.; Fong, D.W.I.; Margraf, L.R.; Zeray, F.; Mcintire, D.D.; Rogers, B.B. Placental histopathology of congenital syphilis. Obstet. Gynecol. 2002, 100, 126–133. [Google Scholar] [CrossRef]
- Garel, B.; Grange, P.; Benhaddou, N.; Schaub, B.; Desbois-Nogard, N.; Thouvenin, M.; Lepoutre, X.; Levy, R.; Navarro, C.; Charlier, C.; et al. Congenital syphilis: A prospective study of 22 cases diagnosed by PCR. Ann. Dermatol. Vénéréol. 2019, 146, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Young, S.A.; Crocker, D.W. Occult congenital syphilis in macerated stillborn fetuses. Arch. Pathol. Lab. Med. 1994, 118, 44–47. [Google Scholar] [PubMed]
- Sankaran, D.; Partridge, E.; Lakshminrusimha, S. Congenital Syplilis an Illustrative Review. Children 2023, 10, 1310. [Google Scholar] [CrossRef]
- Edmondson, D.G.; Hu, B.; Norris, S.J. Long-Term In Vitro Culture of the Syphilis Spirochete Treponema pallidum subsp. pallidum. mBio 2018, 9, e01153-18. [Google Scholar] [CrossRef] [PubMed]
- Cameron, C.E.; Brown, E.L.; Kuroiwa, J.M.Y.; Schnapp, L.M.; Brouwer, N.L. Treponema pallidum Fibronectin-Binding Proteins. J. Bacteriol. 2004, 186, 7019–7022. [Google Scholar] [CrossRef]
- Cameron, C.E. Identification of a Treponema pallidum Laminin-Binding Protein. Infect. Immun. 2003, 71, 2525–2533. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, H.J.; Jung, J.; Lee, M.G.; Lee, J.B.; Lee, K.H. Receptors for Treponema pallidum Attachment to the Surface and Matrix Proteins of Cultured Human Dermal Microvascular Endothelial Cells. Yonsei Med. J. 2003, 44, 371–378. [Google Scholar] [CrossRef]
- Primus, S.; Rocha, S.C.; Giacani, L.; Parveen, N. Identification and Functional Assessment of the First Placental Adhesin of Treponema pallidum That May Play Critical Role in Congenital Syphilis. Front. Microbiol. 2020, 11, 621654. [Google Scholar] [CrossRef]
- Edmondson, D.G.; Norris, S.J. In Vitro Cultivation of the Syphilis Spirochete Treponema pallidum. Curr. Protoc. 2021, 1, e44. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.; Romeis, E.; Tantalo, L.; Giacani, L. In Vitro Transformation and Selection of Treponema pallidum subsp. pallidum. Curr. Protoc. 2022, 2, e507. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.W.; Cruz, A.R.; LaVake, C.J.; Marzo, A.L.; Eggers, C.H.; Salazar, J.C.; Radolf, J.D. Phagocytosis of Borrelia burgdorferi and Treponema pallidum Potentiates Innate Immune Activation and Induces Gamma Interferon Production. Infect. Immun. 2007, 75, 2046–2062. [Google Scholar] [CrossRef] [PubMed]
- Sellati, T.J.; Bouis, D.A.; Kitchens, R.L.; Darveau, R.P.; Pugin, J.; Ulevitch, R.J.; Gangloff, S.C.; Goyert, S.M.; Norgard, M.V.; Radolf, J.D. Treponema pallidum and Borrelia burgdorferi Lipoproteins and Synthetic Lipopeptides Activate Monocytic Cells via a CD14-Dependent Pathway Distinct from That Used by Lipopolysaccharide. J. Immunol. 1998, 160, 5455–5464. [Google Scholar] [CrossRef] [PubMed]
- Hawley, K.L.; Cruz, A.R.; Benjamin, S.J.; La Vake, C.J.; Cervantes, J.L.; Ledoyt, M.; Ramirez, L.G.; Mandich, D.; Fiel-Gan, M.; Caimano, M.J.; et al. IFNγ Enhances CD64-Potentiated Phagocytosis of Treponema pallidum Opsonized with Human Syphilitic Serum by Human Macrophages. Front. Immunol. 2017, 8, 1227. [Google Scholar] [CrossRef] [PubMed]
- van Voorhis, W.C.; Barrett, L.K.; Koelle, D.M.; Nasio, J.M.; Plummer, F.A.; Lukehart, S.A. Primary and Secondary Syphilis Lesions Contain mRNA for Th1 Cytokines. J. Infect. Dis. 1996, 173, 491–495. [Google Scholar] [CrossRef]
- Stary, G.G.; Klein, I.I.; Brüggen, M.M.; Kohlhofer, S.S.; Brunner, P.M.P.M.; Spazierer, D.D.; Müllauer, L.L.; Petzelbauer, P.P.; Stingl, G.G. Host Defense Mechanisms in Secondary Syphilitic Lesions. Am. J. Pathol. 2010, 177, 2421–2432. [Google Scholar] [CrossRef]
- Cruz, A.R.; Ramirez, L.G.; Zuluaga, A.V.; Pillay, A.; Abreu, C.; Valencia, C.A.; La Vake, C.; Cervantes, J.L.; Dunham-Ems, S.; Cartun, R.; et al. Immune Evasion and Recognition of the Syphilis Spirochete in Blood and Skin of Secondary Syphilis Patients: Two Immunologically Distinct Compartments. PLoS Neglect. Trop. Dis. 2012, 6, e1717. [Google Scholar] [CrossRef]
- Salazar, J.C.; Hazlett, K.R.O.; Radolf, J.D. The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect. 2002, 4, 1133–1140. [Google Scholar] [CrossRef]
- Li, K.; Wang, C.; Lu, H.; Gu, X.; Guan, Z.; Zhou, P. Regulatory T Cells in Peripheral Blood and Cerebrospinal Fluid of Syphilis Patients with and without Neurological Involvement. PLoS Negl. Trop. Dis. 2013, 7, e2528. [Google Scholar] [CrossRef]
- Babolin, C.; Amedei, A.; Ozolins, D.; Zilevica, A.; D’Elios, M.M.; de Bernard, M. TpF1 from Treponema pallidum Activates Inflammasome and Promotes the Development of Regulatory T Cells. J. Immunol. 2011, 187, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Hadjicharalambous, C.; Grispoldi, L.; Chalias, T.; Cenci-Goga, B. A quantitative risk assessment of Listeria monocytogenes from prevalence and concentration data: Application to a traditional read to eat (RTE) meat product. Int. J. Food Microbiol. 2022, 379, 109843. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.; Maculloch, B.; Batz, M. Economic burden of major foodborne illnesses acquired in the United States. In Economic Cost of Foodborne Illnesses in the United States; USDA: Washington, DC, USA, 2015; pp. 1–74. [Google Scholar]
- Frieden, T.R.; Harold Jaffe, D.W.; Cardo, D.M.; Moolenaar, R.L.; Leahy, M.A.; Martinroe, J.C.; Spriggs, S.R.; Starr, T.M.; Doan, Q.M.; King, P.H.; et al. Vital Signs: Listeria Illnesses, Deaths, and Outbreaks—United States, 2009–2011. Ann. Emerg. Med. 2013, 62, 536–537. [Google Scholar] [CrossRef]
- Mateus, T.; Silva, J.; Maia, R.L.; Teixeira, P. Listeriosis during Pregnancy: A Public Health Concern. ISRN Obstet. Gynecol. 2013, 2013, 851712. [Google Scholar] [CrossRef] [PubMed]
- Madjunkov, M.; Chaudhry, S.; Ito, S. Listeriosis during pregnancy. Arch. Gynecol. Obstet. 2017, 296, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Elinav, H.; Hershko-Klement, A.; Valinsky, L.; Jaffe, J.; Wiseman, A.; Shimon, H.; Braun, E.; Paitan, Y.; Block, C.; Sorek, R.; et al. Pregnancy-Associated Listeriosis: Clinical Characteristics and Geospatial Analysis of a 10-Year Period in Israel. Clin. Infect. Dis. 2014, 59, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Charlier, C.; Perrodeau, É.; Leclercq, A.; Cazenave, B.; Pilmis, B.; Henry, B.; Lopes, A.; Maury, M.M.; Moura, A.; Goffinet, F.; et al. Clinical features and prognostic factors of listeriosis: The MONALISA national prospective cohort study. Lancet Infect. Dis. 2017, 17, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Koopmans Merel, M.; Brouwer Matthijs, C.; Vázquez-Boland José, A.; van de Beek, D. Human Listeriosis. Clin. Microbiol. Rev. 2022, 36, 60. [Google Scholar] [CrossRef]
- Regan, T.; MacSharry, J.; Brint, E. Tracing innate immune defences along the path of Listeria monocytogenes infection. Immunol. Cell Biol. 2014, 92, 563–569. [Google Scholar] [CrossRef]
- Waite, J.C.; Leiner, I.; Lauer, P.; Rae, C.S.; Barbet, G.; Zheng, H.; Portnoy, D.A.; Pamer, E.G.; Dustin, M.L. Dynamic imaging of the effector immune response to listeria infection In Vivo. PLoS Pathog. 2011, 7, e1001326. [Google Scholar] [CrossRef]
- Aoshi, T.; Carrero, J.A.; Konjufca, V.; Koide, Y.; Unanue, E.R.; Miller, M.J. The cellular niche of Listeria monocytogenes infection changes rapidly in the spleen. Eur. J. Immunol. 2009, 39, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Lamond, N.; Freitag, N. Vertical Transmission of Listeria monocytogenes: Probing the Balance between Protection from Pathogens and Fetal Tolerance. Pathogens 2018, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Takeuchi, K.; Anderson, G.; Ware, G.O.; McClure, H.M.; Raybourne, R.B.; Mytle, N.; Doyle, M.P. Dose-Response Model for Listeria monocytogenes-Induced Stillbirths in Nonhuman Primates. Infect. Immun. 2008, 76, 726–731. [Google Scholar] [CrossRef] [PubMed]
- The Commission of the European Communities. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02005R2073-20140601&rid=1 (accessed on 12 February 2023).
- Wolfe, B.; Wiepz, G.J.; Schotzko, M.; Bondarenko, G.I.; Durning, M.; Simmons, H.A.; Mejia, A.; Faith, N.G.; Sampene, E.; Suresh, M.; et al. Acute Fetal Demise with First Trimester Maternal Infection Resulting from Listeria monocytogenes in a Nonhuman Primate Model. mBio 2017, 8, e01938-16. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, B.; Kerr, A.R.; Mejia, A.; Simmons, H.A.; Czuprynski, C.J.; Golos, T.G. Sequelae of Fetal Infection in a Non-human Primate Model of Listeriosis. Front. Microbiol. 2019, 10, 2021. [Google Scholar] [CrossRef]
- Bakardjiev, A.I.; Theriot, J.A.; Portnoy, D.A. Listeria monocytogenes Traffics from Maternal Organs to the Placenta and Back. PLoS Pathog. 2006, 2, e66. [Google Scholar] [CrossRef]
- Le Monnier, A.; Join-Lambert, O.F.; Jaubert, F.; Berche, P.; Kayal, S. Invasion of the Placenta during Murine Listeriosis. Infect. Immun. 2006, 74, 663–672. [Google Scholar] [CrossRef]
- Robbins, J.R.; Skrzypczynska, K.M.; Zeldovich, V.B.; Kapidzic, M.; Bakardjiev, A.I. Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. PLoS Pathog. 2010, 6, e1000732. [Google Scholar] [CrossRef]
- Zeldovich, V.B.; Clausen, C.H.; Bradford, E.; Fletcher, D.A.; Maltepe, E.; Robbins, J.R.; Bakardjiev, A.I. Placental Syncytium Forms a Biophysical Barrier against Pathogen Invasion. PLoS Pathog. 2013, 9, e1003821. [Google Scholar] [CrossRef]
- Zeldovich, V.B.; Robbins, J.R.; Kapidzic, M.; Lauer, P.; Bakardjiev, A.I. Invasive Extravillous Trophoblasts Restrict Intracellular Growth and Spread of Listeria monocytogenes. PLoS Pathog. 2011, 7, e1002005. [Google Scholar] [CrossRef]
- Bakardjiev, A.I.; Stacy, B.A.; Portnoy, D.A. Growth of Listeria monocytogenes in the Guinea Pig Placenta and Role of Cell-to-Cell Spread in Fetal Infection. J. Infect. Dis. 2005, 191, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Mengaud, J.; Ohayon, H.; Gounon, P.; Mège, R.; Cossart, P. E-Cadherin Is the Receptor for Internalin, a Surface Protein Required for Entry of L. monocytogenes into Epithelial Cells. Cell 1996, 84, 923–932. [Google Scholar] [CrossRef]
- Shen, Y.; Naujokas, M.; Park, M.; Ireton, K. InlB-Dependent Internalization of Listeria Is Mediated by the Met Receptor Tyrosine Kinase. Cell 2000, 103, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Braun, L.; Ghebrehiwet, B.; Cossart, P. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 2000, 19, 1458–1466. [Google Scholar] [CrossRef] [PubMed]
- Jonquières, R.; Pizarro-Cerdá, J.; Cossart, P. Synergy between the N- and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol. Microbiol. 2001, 42, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Disson, O.; Grayo, S.; Huillet, E.; Nikitas, G.; Langa-Vives, F.; Dussurget, O.; Ragon, M.; Le Monnier, A.; Babinet, C.; Cossart, P.; et al. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 2008, 455, 1114–1118. [Google Scholar] [CrossRef] [PubMed]
- Lamond, N.M.; McMullen, P.D.; Paramasvaran, D.; Visvahabrathy, L.; Eallanardo, S.J.; Maheswhari, A.; Freitag, N.E. Cardiotropic isolates of Listeria monocytogenes with enhanced vertical transmission dependent upon the bacterial surface protein InlB. Infect. Immun. 2020, 89, e00321-20. [Google Scholar] [CrossRef]
- Faralla, C.; Rizzuto, G.A.; Lowe, D.E.; Kim, B.; Cooke, C.; Shiow, L.R.; Bakardjiev, A.I. InlP, a New Virulence Factor with Strong Placental Tropism. Infect. Immun. 2016, 84, 3584–3596. [Google Scholar] [CrossRef]
- Faralla, C.; Bastounis, E.E.; Ortega, F.E.; Light, S.H.; Rizzuto, G.; Nocadello, S.; Anderson, W.F.; Robbins, J.R.; Theriot, J.A.; Bakardjiev, A.I. Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing. PLoS Pathog. 2018, 14, e1007084. [Google Scholar] [CrossRef]
- McLauchlin, J. Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 210–213. [Google Scholar] [CrossRef]
- Vasilev, V.; Japheth, R.; Andorn, N.; Yshai, R.; Agmon, V.; Gazit, E.; Kashi, Y.; Cohen, D. A survey of laboratory-confirmed isolates of invasive listeriosis in Israel, 1997–2007. Epidemiol. Infect. 2009, 137, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Maury, M.M.; Tsai, Y.H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef]
- Zenewicz, L.A.; Shen, H. Innate and adaptive immune responses to Listeria monocytogenes: A short overview. Microb. Infect. 2007, 9, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Condotta, S.A.; Richer, M.J.; Badovinac, V.P.; Harty, J.T. Probing CD8 T cell responses with Listeria monocytogenes infection. Adv. Immunol. 2012, 113, 51–80. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, L.; Pejcic-Karapetrovic, B.; Gurnani, K.; Zafer, A.; Sad, S. Pregnancy Does not Deter the Development of a Potent Maternal Protective CD8+ T-Cell Acquired Immune Response Against Listeria monocytogenes Despite Preferential Placental Colonization. Am. J. Reprod. Immunol. 2010, 63, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.R.; Chaturvedi, V.; Kinder, J.M.; Jiang, T.T.; Xin, L.; Ertelt, J.M.; Way, S.S. Perinatal Listeria monocytogenes susceptibility despite preconceptual priming and maintenance of pathogen-specific CD8+ T cells during pregnancy. Cell. Mol. Immunol. 2014, 11, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Erickson, J.J.; Archer-Hartmann, S.; Yarawsky, A.E.; Miller, J.L.C.; Seveau, S.; Shao, T.; Severance, A.L.; Miller-Handley, H.; Wu, Y.; Pham, G.; et al. Pregnancy enables antibody protection against intracellular infection. Nature 2022, 606, 769–775. [Google Scholar] [CrossRef]
- Crespo, Â.C.; Mulik, S.; Dotiwala, F.; Ansara, J.A.; Sen Santara, S.; Ingersoll, K.; Ovies, C.; Junqueira, C.; Tilburgs, T.; Strominger, J.L.; et al. Decidual NK Cells Transfer Granulysin to Selectively Kill Bacteria in Trophoblasts. Cell 2020, 182, 1125–1139. [Google Scholar] [CrossRef]
- Johnson, L.J.; Azari, S.; Webb, A.; Zhang, X.; Gavrilin, M.A.; Marshall, J.M.; Rood, K.; Seveau, S. Human Placental Trophoblasts Infected by Listeria monocytogenes Undergo a Pro-Inflammatory Switch Associated With Poor Pregnancy Outcomes. Front. Immunol. 2021, 12, 709466. [Google Scholar] [CrossRef]
- Kaletka, J.; Lee, K.H.; Altman, J.; Kanada, M.; Hardy, J.W. Listeria monocytogenes Infection Alters the Content and Function of Extracellular Vesicles Produced by Trophoblast Stem Cells. Infect. Immun. 2022, 90, e0034722. [Google Scholar] [CrossRef]
- Azari, S.; Johnson, L.J.; Webb, A.; Kozlowski, S.M.; Zhang, X.; Rood, K.; Amer, A.; Seveau, S. Hofbauer Cells Spread Listeria monocytogenes among Placental Cells and Undergo Pro-Inflammatory Reprogramming while Retaining Production of Tolerogenic Factors. mBio 2021, 12, e01849-21. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.H.; Ertelt, J.M.; Aguilera, M.N.; Farrar, M.A.; Way, S.S. Foxp3+ Regulatory T Cell Expansion Required for Sustaining Pregnancy Compromises Host Defense against Prenatal Bacterial Pathogens. Cell Host Microbe 2011, 10, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.H.; Ertelt, J.M.; Xin, L.; Way, S.S. Listeria monocytogenes Cytoplasmic Entry Induces Fetal Wastage by Disrupting Maternal Foxp3+ Regulatory T Cell-Sustained Fetal Tolerance. PLoS Pathog. 2012, 8, e1002873. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.; Ertelt, J.M.; Jiang, T.T.; Kinder, J.M.; Xin, L.; Owens, K.J.; Jones, H.N.; Way, S.S. CXCR3 blockade protects against Listeria monocytogenes infection–induced fetal wastage. J. Clin. Investig. 2015, 125, 1713–1725. [Google Scholar] [CrossRef] [PubMed]
- Congenital Syphilis: Sexually Transmitted Infection Treatment Guidelines; US Centers for Disease Control and Prevention: Atlanta, GA, USA, 2022.
- Moseley, P.; Bamford, A.; Eisen, S.; Lyall, H.; Kingston, M.; Thorne, C.; Piñera, C.; Rabie, H.; Prendergast, A.J.; Kadambari, S. Resurgence of congenital syphilis: New strategies against an old foe. Lancet Infect. Dis. 2023, 24, e24–e35. [Google Scholar] [CrossRef]
- Gomez, G.B.; Kamb, M.L.; Newman, L.M.; Mark, J.; Broutet, N.; Hawkes, S.J. Untreated maternal syphilis and adverse outcomes of pregnancy: A systematic review and meta-analysis. Bull. World Health Organ. 2013, 91, 217–226. [Google Scholar] [CrossRef]
- Mylonakis, E.; Paliou, M.; Hohmann, E.L.; Calderwood, S.B.; Wing, E.J. Listeriosis during pregnancy: A case series and review of 222 cases. Medicine 2002, 81, 260–269. [Google Scholar] [CrossRef]
- Kaistone, C. Successful antepartum treatment of listeriosis. Am. J. Obstet. Gynecol. 1991, 164, 57–58. [Google Scholar] [CrossRef]
- Allerberger, F.; Huhulescu, S. Pregnancy related listeriosis: Treatment and control. Expert Rev. Anti-Infect. Ther. 2015, 13, 395–403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eallonardo, S.J.; Freitag, N.E. Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion. Cells 2024, 13, 88. https://doi.org/10.3390/cells13010088
Eallonardo SJ, Freitag NE. Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion. Cells. 2024; 13(1):88. https://doi.org/10.3390/cells13010088
Chicago/Turabian StyleEallonardo, Samuel J., and Nancy E. Freitag. 2024. "Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion" Cells 13, no. 1: 88. https://doi.org/10.3390/cells13010088
APA StyleEallonardo, S. J., & Freitag, N. E. (2024). Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion. Cells, 13(1), 88. https://doi.org/10.3390/cells13010088