Collagen Organization Does Not Influence T-Cell Distribution in Stroma of Human Pancreatic Cancer
<p>Image processing and analysis workflow of multiphoton and SHG microscopic data.</p> "> Figure 2
<p>Representative microscopic images (fluorescence and SHG) of a normal pancreas and chronic pancreatitis. Collagen (white), CK7+ tumor cells (green), and CD3+ T-cells (red). Horizontal image lines show the same field of view with characteristic collagen pattern. <span class="html-italic">Normal pancreas</span>: (<b>A</b>) exocrine lobules, (<b>B</b>) interlobular stroma-rich region. <span class="html-italic">Chronic pancreatitis (CP):</span> (<b>C</b>) presenting high fibrotic tissue mass, (<b>D</b>) progressing exocrine degradation with strong inflammation. Scale bar 200 µm.</p> "> Figure 3
<p>Representative microscopic images (fluorescence and SHG) of pancreatic cancer. Collagen (white), CK7+ tumor cells (green), and CD3+ T-cells (red). Horizontal image lines show the same field of view with characteristic collagen pattern. (<b>A</b>) <span class="html-italic">PDAC:</span> partially collagen-free regions and curved collagen fibers, (<b>B</b>) homogeneous well-aligned dense collagen, (<b>C</b>) well-aligned collagen with long fibers, (<b>D</b>) homogeneous loosened collagen, (<b>E</b>) <span class="html-italic">ACC:</span> collagen was detected in the narrow interlobular connective tissue and broad fibrous strands. Scale bar 200 µm.</p> "> Figure 4
<p>T-cell infiltration in different pancreatic tissue types. Grades of local T-cell infiltration in (<b>A</b>) normal pancreas, (<b>B</b>) chronic pancreatitis, CP, (<b>C</b>) total PDAC, and (<b>D</b>) according to G2/G3 PDAC. (<b>E</b>) Representative 3D reconstruction of fluorescence and SHG imaging.</p> "> Figure 5
<p>Quantitative analysis of stroma collagen organization. There were no significant differences in any parameters between any tissue types. Collagen alignment was significantly higher in chronic pancreatitis than in the normal pancreas. * <span class="html-italic">p</span> < 0.05, <span class="html-italic">t</span>-test.</p> "> Figure 6
<p>Definition and comparison of two individual stromal tumor regions in PDAC. (<b>A</b>) Illustration of segmentation steps and T-cell analysis. MIP-SHG fusion images of (<b>a</b>) segmentation of collagen surface and (<b>b</b>) CK7 + PDAC cells, (<b>c</b>) representative analysis of two stromal regions. Size-enhanced image of (<b>c</b>); the tumor cluster border is delineated by yellow line, the collagen fibers are marked in blue, and the collagen fiber ends are in green. The analyzed ROIs within the peritumoral stroma region are indicated by 1–4 and the ROIs of the tumor-cell-distant stroma region are indicated by 5–8. The arrows mark the border areas, which were excluded from the analysis because the distance between the tumor cell clusters is too short. (<b>d</b>) Determination of CD3 + T-cell area, which represents the base for the measurement of T-cell density in individual peritumoral (<b>e</b>) and tumor-cell-distant (<b>f</b>) stroma regions. T-cells are shown in white and the analyzed tumor-cell-distant stroma region is marked in blue. The image size is 1625 µm ×1625 µm. (<b>B</b>) Illustration of segmentation and definition of individual stroma regions. (<b>C</b>) Representative angular distribution of fiber orientation (Y-values show the fraction of parallel-oriented fibers) which is dependent on the distance to tumor cell clusters (X-axis, scaled in n multiples of 22.4 µm (mean fiber length)). (<b>D</b>) Paired values of parameters of collagen organization in PDAC between the peritumoral and tumor-cell-distant stroma regions. Black lines: increased values (change of >5%), red lines: decreased values (change of >5%), dotted lines: unchanged values (change of <5%).</p> "> Figure 7
<p>Comparison of collagen and T-cell distribution in PDAC. (<b>A</b>) No relationship between the collagen alignment/collagen density and the T-cell infiltration using the data of individual patients (<span class="html-italic">n</span> = 12) can be seen. (<b>B</b>) Paired values of the peritumoral and tumor-cell-distant stroma regions are shown. No significant difference was detected between the groups. Black lines: increased values (change of >5%), red lines: decreased values (change of >5%), dotted lines: unchanged values (change of <5%).</p> "> Figure 8
<p>Correlation analysis between T-cell infiltration and single parameters of collagen organization in peritumoral and tumor-cell-distant-stroma regions. No correlations were found between T-cell density and collagen alignment, fiber length, fiber diameter, straightness coefficient, and collagen density. r, Pearson’s coefficient.</p> "> Figure 9
<p>Design of 3D matrix with different grades of collagen alignment using the µ-Slide VI chamber. (<b>A</b>) Illustration of a single channel of the µ-Slide VI chamber for preparation of aligned collagen matrices using magnetic microparticles and a magnetic field. The arrows indicate the flow direction of the magnetic microparticles to the magnet. In confocal images, collagen fibers are shown in green and the T-cells are red. Scale bar 50 μm. (<b>B</b>) Representative determination of collagen alignment in one microscopic field. The illustration shows the collagen matrix (fluorescence) with or without alignment, the corresponding reconstructions of collagen fibers, saturation maps, and the angular distribution. The orientation angle of non-aligned collagen was broadly distributed, whereas the great majority of aligned collagen fibers showed the distribution at approximately 90°. (<b>C</b>) Distribution of collagen fiber alignment with and without magnetic microparticles. *** <span class="html-italic">p</span> < 0.001, Mann–Whitney U Test. (<b>D</b>) Mean alignment coefficient of collagen in the matrix. *** <span class="html-italic">p</span> < 0.001, Mann–Whitney U Test.</p> "> Figure 10
<p>T-cell migration in the 3D collagen matrix. (<b>A</b>) Representative determination of T-cell migration in non-aligned, partially aligned, and aligned collagen matrices; 0.95 mg/mL collagen. Fluorescence collagen fibers (green), activated T-cells (red). (<b>B</b>) Angular distribution of collagen fibers (0.95 mg/mL collagen matrix) and (<b>C</b>) axial map of T-cell migration. (<b>D</b>,<b>E</b>) Axial orientation of T-cell migration in the matrix using 0.95 (<b>D</b>) or 1.5 mg/mL (<b>E</b>) collagen without chemokines. No relationship was detected between the alignment coefficient and axial orientation. r, Pearson’s coefficient.</p> "> Figure 11
<p>T-cell transmigration and haptokinesis in the presence of chemokines. (<b>A</b>) T-cell transmigration in a transwell assay using different concentrations of chemokines. T-cell transmigration showed high concentration-dependent sensitivity to chemokine stimulation. (<b>B</b>) T-cell haptokinesis in 3D-aligned collagen matrix model in the presence of chemokines. No effect of any chemokine and collagen alignment was found on T-cell velocity; 0.95 mg/mL collagen. (<b>C</b>,<b>D</b>) Axial orientation of T-cell migration in the matrix using 0.95 (<b>C</b>) or 1.5 mg/mL (<b>D</b>) collagen and SDF-1α (100 ng/ml). There was no relationship between the alignment coefficient and axial orientation. r, Pearson’s coefficient.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Patients and Tissue Samples
2.2. Immunofluorescence Staining
2.3. Multiphoton and Second Harmonic Generation (SHG) Microscopy
2.4. Pre-Processing and Computerized Analysis of Multiphoton and SHG Images
2.4.1. Segmentation of SHG and Multiphoton Images, CT-FIRE, and CurveAlign
2.4.2. Definition of the Individual Peritumoral PDAC Stroma Regions
2.4.3. Detailed Analysis of Collagen and T-Cells in Different PDAC Stroma Regions
2.4.4. T-Cell Distribution in PDAC Stroma
2.5. Cell Culture and Activation of PBMLs
2.6. T-Cell Migration in Collagen Matrix with Various Alignments
2.7. Statistics
3. Results
3.1. Collagen Organization and T-Cell Infiltration in the Stroma of Normal Pancreas, Chronic Pancreatitis, and Pancreatic Cancer
3.1.1. Normal Pancreas
3.1.2. Chronic Pancreatitis
3.1.3. PDAC
3.1.4. Acinar Cell Carcinoma (ACC)
3.2. Quantitative Comparison of Collagen Organization between Different Tissue Types
3.3. Collagen Organization and T-Cell Infiltration in Peritumoral and Tumor-Cell-Distant Stroma Regions in Pancreatic Cancer
3.4. Collagen Alignment Does Not Influence the Directionality of Activated T-Cell Migration in the Collagen Matrix
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strobel, O.; Neoptolemos, J.; Jager, D.; Buchler, M.W. Optimizing the outcomes of pancreatic cancer surgery. Nat. Rev. Clin. Oncol. 2019, 16, 11–26. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Weniger, M.; Honselmann, K.C.; Liss, A.S. The Extracellular Matrix and Pancreatic Cancer: A Complex Relationship. Cancers 2018, 10, 316. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Masugi, Y.; Abe, T.; Yamazaki, K.; Ueno, A.; Fujii-Nishimura, Y.; Hori, S.; Yagi, H.; Abe, Y.; Kitago, M.; et al. Three Distinct Stroma Types in Human Pancreatic Cancer Identified by Image Analysis of Fibroblast Subpopulations and Collagen. Clin. Cancer Res. 2021, 27, 107–119. [Google Scholar] [CrossRef]
- Whatcott, C.; Han, H.; Posner, R.G.; Von Hoff, D.D. Tumor-stromal interactions in pancreatic cancer. Crit. Rev. Oncog. 2013, 18, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, B.C.; Pentcheva-Hoang, T.; Carstens, J.L.; Zheng, X.; Wu, C.C.; Simpson, T.R.; Laklai, H.; Sugimoto, H.; Kahlert, C.; Novitskiy, S.V.; et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 2014, 25, 719–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedl, P.; Borgmann, S.; Brocker, E.B. Amoeboid leukocyte crawling through extracellular matrix: Lessons from the Dictyostelium paradigm of cell movement. J. Leukoc. Biol. 2001, 70, 491–509. [Google Scholar] [PubMed]
- Lammermann, T.; Germain, R.N. The multiple faces of leukocyte interstitial migration. Semin. Immunopathol. 2014, 36, 227–251. [Google Scholar] [CrossRef] [PubMed]
- Lammermann, T.; Bader, B.L.; Monkley, S.J.; Worbs, T.; Wedlich-Soldner, R.; Hirsch, K.; Keller, M.; Forster, R.; Critchley, D.R.; Fassler, R.; et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 2008, 453, 51–55. [Google Scholar] [CrossRef]
- Wolf, K.; Muller, R.; Borgmann, S.; Brocker, E.B.; Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 2003, 102, 3262–3269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmon, H.; Franciszkiewicz, K.; Damotte, D.; Dieu-Nosjean, M.C.; Validire, P.; Trautmann, A.; Mami-Chouaib, F.; Donnadieu, E. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Investig. 2012, 122, 899–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas-Boluda, A.; Donnadieu, E. Obstacles to T cell migration in the tumor microenvironment. Comp. Immunol. Microbiol. Infect. Dis. 2019, 63, 22–30. [Google Scholar] [CrossRef]
- Mahajan, U.M.; Langhoff, E.; Goni, E.; Costello, E.; Greenhalf, W.; Halloran, C.; Ormanns, S.; Kruger, S.; Boeck, S.; Ribback, S.; et al. Immune Cell and Stromal Signature Associated With Progression-Free Survival of Patients With Resected Pancreatic Ductal Adenocarcinoma. Gastroenterology 2018, 155, 1625–1639.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orhan, A.; Vogelsang, R.P.; Andersen, M.B.; Madsen, M.T.; Holmich, E.R.; Raskov, H.; Gogenur, I. The prognostic value of tumour-infiltrating lymphocytes in pancreatic cancer: A systematic review and meta-analysis. Eur. J. Cancer 2020, 132, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Carstens, J.L.; Correa de Sampaio, P.; Yang, D.; Barua, S.; Wang, H.; Rao, A.; Allison, J.P.; LeBleu, V.S.; Kalluri, R. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 2017, 8, 15095. [Google Scholar] [CrossRef]
- von Bernstorff, W.; Voss, M.; Freichel, S.; Schmid, A.; Vogel, I.; Johnk, C.; Henne Bruns, D.; Kremer, B.; Kalthoff, H. Systemic and local immunosuppression in pancreatic cancer patients. Clin. Cancer Res. 2001, 7, 925s–932s. [Google Scholar]
- Ryschich, E.; Noetzel, T.; Hinz, U.; Autschbach, F.; Ferguson, D.; Simon, I.; Weitz, J.; Froelich, B.; Klar, E.; Buchler, M.W.; et al. Control of T-cell mediated immune response by HLA class I in human pancreatic carcinoma. Clin. Cancer Res. 2005, 11, 498–504. [Google Scholar]
- Hartmann, N.; Giese, N.A.; Giese, T.; Poschke, I.; Offringa, R.; Werner, J.; Ryschich, E. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin. Cancer Res. 2014, 20, 3422–3433. [Google Scholar] [CrossRef] [Green Version]
- Ryschich, E.; Khamidjanov, A.; Kerkadze, V.; Büchler, M.W.; Zöller, M.; Schmidt, J. Promotion of tumor cell migration by extracellular matrix proteins in human pancreatic cancer. Pancreas 2009, 38, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Santha, P.; Lenggenhager, D.; Finstadsveen, A.; Dorg, L.; Tondel, K.; Amrutkar, M.; Gladhaug, I.P.; Verbeke, C. Morphological Heterogeneity in Pancreatic Cancer Reflects Structural and Functional Divergence. Cancers 2021, 13, 895. [Google Scholar] [CrossRef]
- Bachem, M.G.; Schunemann, M.; Ramadani, M.; Siech, M.; Beger, H.; Buck, A.; Zhou, S.; Schmid-Kotsas, A.; Adler, G. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 2005, 128, 907–921. [Google Scholar] [CrossRef]
- Korc, M. Pancreatic cancer-associated stroma production. Am. J. Surg. 2007, 194, S84–S86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, C.P.; Hinz, B.; Swartz, M.A. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 2005, 118, 4731–4739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijeratne, P.A.; Hipwell, J.H.; Hawkes, D.J.; Stylianopoulos, T.; Vavourakis, V. Multiscale biphasic modelling of peritumoural collagen microstructure: The effect of tumour growth on permeability and fluid flow. PLoS ONE 2017, 12, e0184511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provenzano, P.P.; Inman, D.R.; Eliceiri, K.W.; Trier, S.M.; Keely, P.J. Contact Guidance Mediated Three-Dimensional Cell Migration is Regulated by Rho/ROCK-Dependent Matrix Reorganization. Biophys. J. 2008, 95, 5374–5384. [Google Scholar] [CrossRef] [Green Version]
- Alkmin, S.; Brodziski, R.; Simon, H.; Hinton, D.; Goldsmith, R.H.; Patankar, M.; Campagnola, P.J. Role of Collagen Fiber Morphology on Ovarian Cancer Cell Migration Using Image-Based Models of the Extracellular Matrix. Cancers 2020, 12, 1390. [Google Scholar] [CrossRef]
- Drifka, C.R.; Loeffler, A.G.; Esquibel, C.R.; Weber, S.M.; Eliceiri, K.W.; Kao, W.J. Human pancreatic stellate cells modulate 3D collagen alignment to promote the migration of pancreatic ductal adenocarcinoma cells. Biomed. Microdevices 2016, 18, 105. [Google Scholar] [CrossRef]
- Drifka, C.R.; Loeffler, A.G.; Mathewson, K.; Keikhosravi, A.; Eickhoff, J.C.; Liu, Y.M.; Weber, S.M.; Kao, W.J.; Eliceiri, K.W. Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection. Oncotarget 2016, 7, 76197–76213. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.H.; Ji, C.D.; Xiao, H.L.; Zhao, H.B.; Cui, Y.H.; Bian, X.W. Reorganized Collagen in the Tumor Microenvironment of Gastric Cancer and Its Association with Prognosis. J. Cancer 2017, 8, 1466–1476. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K.; Te, L.M.; Krause, M.; Alexander, S.; Te, R.J.; Willis, A.L.; Hoffman, R.M.; Figdor, C.G.; Weiss, S.J.; Friedl, P. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 2013, 201, 1069–1084. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K.; Friedl, P. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol. 2011, 21, 736–744. [Google Scholar] [CrossRef]
- Fan, J.Q.; Wang, M.F.; Chen, H.L.; Shang, D.; Das, J.K.; Song, J. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol. Cancer 2020, 19, 32. [Google Scholar] [CrossRef] [Green Version]
- Stromnes, I.M.; DelGiorno, K.E.; Greenberg, P.D.; Hingorani, S.R. Stromal reengineering to treat pancreas cancer. Carcinogenesis 2014, 35, 1451–1460. [Google Scholar] [CrossRef]
- Bredfeldt, J.S.; Liu, Y.; Pehlke, C.A.; Conklin, M.W.; Szulczewski, J.M.; Inman, D.R.; Keely, P.J.; Nowak, R.D.; Mackie, T.R.; Eliceiri, K.W. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. J. Biomed. Opt. 2014, 19, 16007. [Google Scholar] [CrossRef]
- Drifka, C.R.; Loeffler, A.G.; Mathewson, K.; Mehta, G.; Keikhosravi, A.; Liu, Y.; Lemancik, S.; Ricke, W.A.; Weber, S.M.; Kao, W.J.; et al. Comparison of Picrosirius Red Staining With Second Harmonic Generation Imaging for the Quantification of Clinically Relevant Collagen Fiber Features in Histopathology Samples. J. Histochem. Cytochem. 2016, 64, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.X.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M.; et al. ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 2019, 16, 1226–1232. [Google Scholar] [CrossRef]
- Conklin, M.W.; Eickhoff, J.C.; Riching, K.M.; Pehlke, C.A.; Eliceiri, K.W.; Provenzano, P.P.; Friedl, A.; Keely, P.J. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 2011, 178, 1221–1232. [Google Scholar] [CrossRef]
- Provenzano, P.P.; Eliceiri, K.W.; Campbell, J.M.; Inman, D.R.; White, J.G.; Keely, P.J. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Best, S.L.; Liu, Y.; Keikhosravi, A.; Drifka, C.R.; Woo, K.M.; Mehta, G.S.; Altwegg, M.; Thimm, T.N.; Houlihan, M.; Bredfeldt, J.S.; et al. Collagen organization of renal cell carcinoma differs between low and high grade tumors. BMC Cancer 2019, 19, 490. [Google Scholar] [CrossRef] [Green Version]
- Takeichi, T.; Mocevicius, P.; Deduchovas, O.; Salnikova, O.; Castro-Santa, E.; Buchler, M.W.; Schmidt, J.; Ryschich, E. α(L) β(2) integrin is indispensable for CD8+ T-cell recruitment in experimental pancreatic and hepatocellular cancer. Int. J. Cancer 2011, 130, 2067–2076. [Google Scholar] [CrossRef] [Green Version]
- Renkawitz, J.; Kopf, A.; Stopp, J.; de Vries, I.; Driscoll, M.K.; Merrin, J.; Hauschild, R.; Welf, E.S.; Danuser, G.; Fiolka, R.; et al. Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature 2019, 568, 546–550. [Google Scholar] [CrossRef]
- Nuhn, J.A.M.; Perez, A.M.; Schneider, I.C. Contact guidance diversity in rotationally aligned collagen matrices. Acta Biomater. 2018, 66, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, H.C.; Lewis, D.; Ciccaglione, M.; Connor, S.; Smith, Q.; Hickey, J.W.; Schneck, J.P.; Gerecht, S. Collagen fiber structure guides 3D motility of cytotoxic T lymphocytes. Matrix Biol. 2019, 85, 147–159. [Google Scholar] [CrossRef]
- Ray, A.; Morford, R.K.; Provenzano, P.P. Cancer Stem Cell Migration in Three-Dimensional Aligned Collagen Matrices. Curr. Protoc. Stem Cell Biol. 2018, 46, e57. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhao, G.; Wang, C.; Zhang, J.; Fu, L. Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues. PLoS ONE 2012, 7, e37962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokarz, D.; Cisek, R.; Joseph, A.; Golaraei, A.; Mirsanaye, K.; Krouglov, S.; Asa, S.L.; Wilson, B.C.; Barzda, V. Characterization of Pancreatic Cancer Tissue Using Multiphoton Excitation Fluorescence and Polarization-Sensitive Harmonic Generation Microscopy. Front. Oncol. 2019, 9, 272. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamionka, E.-M.; Qian, B.; Gross, W.; Bergmann, F.; Hackert, T.; Beretta, C.A.; Dross, N.; Ryschich, E. Collagen Organization Does Not Influence T-Cell Distribution in Stroma of Human Pancreatic Cancer. Cancers 2021, 13, 3648. https://doi.org/10.3390/cancers13153648
Kamionka E-M, Qian B, Gross W, Bergmann F, Hackert T, Beretta CA, Dross N, Ryschich E. Collagen Organization Does Not Influence T-Cell Distribution in Stroma of Human Pancreatic Cancer. Cancers. 2021; 13(15):3648. https://doi.org/10.3390/cancers13153648
Chicago/Turabian StyleKamionka, Eva-Maria, Baifeng Qian, Wolfgang Gross, Frank Bergmann, Thilo Hackert, Carlo A. Beretta, Nicolas Dross, and Eduard Ryschich. 2021. "Collagen Organization Does Not Influence T-Cell Distribution in Stroma of Human Pancreatic Cancer" Cancers 13, no. 15: 3648. https://doi.org/10.3390/cancers13153648
APA StyleKamionka, E. -M., Qian, B., Gross, W., Bergmann, F., Hackert, T., Beretta, C. A., Dross, N., & Ryschich, E. (2021). Collagen Organization Does Not Influence T-Cell Distribution in Stroma of Human Pancreatic Cancer. Cancers, 13(15), 3648. https://doi.org/10.3390/cancers13153648