Circulating Tumor DNA Reflects Uveal Melanoma Responses to Protein Kinase C Inhibition
<p>Relationship between uveal melanoma ctDNA (copies/mL), tumor burden and LDH. Spearman’s rank correlation between ctDNA copies/mL and (<b>A</b>) LDH (U/L), <span class="html-italic">p</span> < 0.001, (<b>B</b>) SPOD (mm<sup>2</sup>), <span class="html-italic">p</span> < 0.01, (<b>C</b>) Longest liver lesion (mm), <span class="html-italic">p</span> = 0.11, (<b>D</b>) Liver SPOD (mm2), <span class="html-italic">p</span> = 0.06. Graph shows ctDNA+1 data.</p> "> Figure 2
<p>Predictive performance of ctDNA. (<b>A</b>) ctDNA changes from baseline to EDT in clinical benefit group (<span class="html-italic">n</span> = 6) and no clinical benefit group (<span class="html-italic">n</span> = 10) patients. Patient matched PRE-EDT ctDNA levels were compared using Wilcoxon matched-pairs signed rank test, and unpaired PRE or EDT ctDNA levels between clinical benefit and no clinical benefit patients were compared using the Mann–Whitney test. (<b>B</b>) ROC curve analysis determined a negative predictive cut-off value (i.e., value providing maximum sensitivity and specificity) for ctDNA > 16.35 copies/mL at EDT for no clinical benefit. ns, not significant; AUC, area under the curve.</p> "> Figure 3
<p>Monitoring of ctDNA in patients treated with PKCi in metastatic UM. ctDNA levels were collected longitudinally during treatment and correlated to CT imaging during baseline, whilst on treatment and on progression. Longitudinal ctDNA monitoring is shown for (<b>A</b>) clinical benefit patients, (<b>B</b>) no clinical benefit patients and (<b>C</b>) CT images and corresponding ctDNA data are shown for clinical benefit patient #1. Only patients #2, #3, #4, #5, #9 and #16 had undetectable ctDNA for the driver oncogene in at least one on-therapy plasma sample. SD, stable disease; PR, partial response; PD, progressive disease.</p> "> Figure 4
<p>Treatment response in target lesions and ctDNA detectability in UM patients treated with PKCi. Percentage change in target lesions as per RECIST1.1 from 17 patients. Bars are aligned according to decreasing percentage in the sum of target lesions. Positive bars show growth in target lesions and negative bars indicate shrinkage. The dotted line corresponds to a 20% increase or 30% reduction in size of the target lesions. Patients were classified as ctDNA undetectable if at least one on-therapy plasma sample was undetectable for the driver oncogene. Patient IDs are shown above or below bars. # progression of disease with new non-target lesions.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Treatment
2.2. Patient and Disease Characteristics and Response Assessment
2.3. Plasma Preparation
2.4. Purification of Circulating Free DNA from Plasma
2.5. ddPCR Analysis of ctDNA from Plasma
2.6. Custom Melanoma Gene Panel for Targeted NGS of Circulating Free DNA
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Baseline ctDNA Levels Are Associated with Tumor Volume and LDH Level
3.3. Prognostic Value of Early during Treatment (EDT) ctDNA
3.4. Longitudinal ctDNA Monitoring and Disease Progression
3.5. Detection of Driver and Additional Mutations through Ion Torrent NGS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLaughlin, C.C.; Wu, X.C.; Jemal, A.; Martin, H.J.; Roche, L.M.; Chen, V.W. Incidence of noncutaneous melanomas in the U.S. Cancer 2005, 103, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Furuta, M.; Thangappan, A.; Nagori, S.; Mashayekhi, A.; Lally, D.R.; Kelly, C.C.; Rudich, D.S.; Nagori, A.V.; Wakade, O.A.; et al. Metastasis of uveal melanoma millimeter-by-millimeter in 8033 consecutive eyes. Arch. Ophthalmol. 2009, 127, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Vajdic, C.M.; Kricker, A.; Giblin, M.; McKenzie, J.; Aitken, J.; Giles, G.G.; Armstrong, B.K. Incidence of ocular melanoma in Australia from 1990 to 1998. Int. J. Cancer 2003, 105, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.E.; Karnell, L.H.; Menck, H.R. The national cancer data base report on cutaneous and noncutaneous melanoma. Cancer 1998, 83, 1664–1678. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.D.; Turell, M.E.; Topham, A.K. Uveal melanoma: Trends in incidence, treatment, and survival. Ophthalmology 2011, 118, 1881–1885. [Google Scholar] [CrossRef]
- Kujala, E.; Makitie, T.; Kivela, T. Very long-term prognosis of patients with malignant uveal melanoma. Invest. Ophthalmol. Vis. Sci. 2003, 44, 4651–4659. [Google Scholar] [CrossRef] [Green Version]
- COMS. Assessment of metastatic disease status at death in 435 patients with large choroidal melanoma in the Collaborative Ocular Melanoma Study (COMS): COMS report no. 15. Arch. Ophthalmol. 2001, 119, 670–676. [Google Scholar] [CrossRef]
- Khoja, L.; Atenafu, E.G.; Suciu, S.; Leyvraz, S.; Sato, T.; Marshall, E.; Keilholz, U.; Zimmer, L.; Patel, S.; Piperno-Neumann, S.; et al. Meta-analysis in metastatic uveal melanoma to determine progression free and overall survival benchmarks: An international rare cancers initiative (IRCI) ocular melanoma study. Ann. Oncol. 2019, 30, 1370–1380. [Google Scholar] [CrossRef]
- Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 2017, 32, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Johansson, P.; Aoude, L.G.; Wadt, K.; Glasson, W.J.; Warrier, S.K.; Hewitt, A.W.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 2016, 7, 4624–4631. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.R.; Ceraudo, E.; Sher, J.J.; Guan, Y.; Shoushtari, A.N.; Chang, M.T.; Zhang, J.Q.; Walczak, E.G.; Kazmi, M.A.; Taylor, M.T.C.B.S.; et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 2016, 48, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Van Raamsdonk, C.D.; Bezrookove, V.; Green, G.; Bauer, J.; Gaugler, L.; O’Brien, J.M.; Simpson, E.M.; Barsh, G.S.; Bastian, B.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009, 457, 599–602. [Google Scholar] [CrossRef] [Green Version]
- Van Raamsdonk, C.D.; Griewank, K.G.; Crosby, M.B.; Garrido, M.C.; Vemula, S.; Wiesner, T.; Obenauf, A.C.; Wackernagel, W.; Green, G.; Bouvier, N.; et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 2010, 363, 2191–2199. [Google Scholar] [CrossRef] [Green Version]
- Johansson, P.A.; Brooks, K.; Newell, F.; Palmer, J.M.; Wilmott, J.S.; Pritchard, A.L.; Broit, N.; Wood, S.; Carlino, M.S.; Leonard, C.; et al. Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours. Nat. Commun. 2020, 11, 2408. [Google Scholar] [CrossRef]
- Vichitvejpaisal, P.; Dalvin, L.A.; Mazloumi, M.; Ewens, K.G.; Ganguly, A.; Shields, C.L. Genetic analysis of uveal melanoma in 658 patients using the cancer genome atlas classification of uveal melanoma as A, B, C, and D. Ophthalmology 2019, 126, 1445–1453. [Google Scholar] [CrossRef]
- Field, M.G.; Durante, M.A.; Anbunathan, H.; Cai, L.Z.; Decatur, C.L.; Bowcock, A.M.; Kurtenbach, S.; Harbour, J.W. Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat. Commun. 2018, 9, 116. [Google Scholar] [CrossRef]
- Onken, M.D.; Worley, L.A.; Ehlers, J.P.; Harbour, J.W. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res. 2004, 64, 7205–7209. [Google Scholar] [CrossRef] [Green Version]
- Ascierto, P.A.; Minor, D.; Ribas, A.; Lebbe, C.; O’Hagan, A.; Arya, N.; Guckert, M.; Schadendorf, D.; Kefford, R.F.; Grob, J.-J.; et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J. Clin. Oncol. 2013, 31, 3205–3211. [Google Scholar] [CrossRef]
- Gray, E.S.; Rizos, H.; Reid, A.L.; Boyd, S.C.; Pereira, M.R.; Lo, J.; Tembe, V.; Freeman, J.; Lee, J.H.; Scolyer, R.A.; et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget 2015, 6, 42008–42018. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Long, G.; Boyd, S.; Lo, S.; Menzies, A.; Tembe, V.; Guminski, A.; Jakrot, V.; Scolyer, R.A.; Mann, G.J.; et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann. Oncol. 2017, 28, 1130–1136. [Google Scholar] [CrossRef]
- Bidard, F.C.; Madic, J.; Mariani, P.; Piperno-Neumann, S.; Rampanou, A.; Servois, V.; Cassoux, N.; Desjardins, L.; Milder, M.; Vaucher, I.; et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. Int. J. Cancer 2014, 134, 1207–1213. [Google Scholar] [CrossRef]
- Beasley, A.; Isaacs, T.; Khattak, M.; Freeman, J.; Allcock, R.; Chen, F.; Pereira, M.R.; Yau, K.; Bentel, J.; Vermeulen, T.; et al. Clinical application of circulating tumor cells and circulating tumor DNA in uveal melanoma. JCO Precis. Oncol. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Diefenbach, R.J.; Lee, J.H.; Menzies, A.M.; Carlino, M.S.; Long, G.V.; Saw, R.P.M.; Howle, J.R.; Spillane, A.J.; Scolyer, R.A.; Kefford, R.F.; et al. Design and testing of a custom melanoma next generation sequencing panel for analysis of circulating tumor DNA. Cancers 2020, 12, 2228. [Google Scholar] [CrossRef]
- Petitjean, A.; Achatz, M.I.; Borresen-Dale, A.L.; Hainaut, P.; Olivier, M. TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes. Oncogene 2007, 26, 2157–2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schank, T.E.; Hassel, J.C. Immunotherapies for the treatment of uveal melanoma-history and future. Cancers 2019, 11, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croce, M.; Ferrini, S.; Pfeffer, U.; Gangemi, R. Targeted therapy of uveal melanoma: Recent failures and new perspectives. Cancers 2019, 11, 846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martel, A.; Baillif, S.; Nahon-Esteve, S.; Gastaud, L.; Bertolotto, C.; Romeo, B.; Mograbi, B.; Lassalle, S.; Hofman, P. Liquid biopsy for solid ophthalmic malignancies: An updated review and perspectives. Cancers 2020, 12, 3284. [Google Scholar] [CrossRef] [PubMed]
- Cabel, L.; Riva, F.; Servois, V.; Livartowski, A.; Daniel, C.; Rampanou, A.; Lantz, O.; Romano, E.; Milder, M.; Buecher, B.; et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: A proof-of-concept study. Ann. Oncol. 2017, 28, 1996–2001. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, A.C.; Warburton, L.; Al-Ogaili, Z.; Celliers, L.; Calapre, L.; Pereira, M.R.; Khattak, M.A.; Meniawy, T.M.; Millward, M.; Ziman, M.; et al. Correlation between circulating tumour DNA and metabolic tumour burden in metastatic melanoma patients. BMC Cancer 2018, 18, 726. [Google Scholar] [CrossRef] [Green Version]
- Chapeau, E.A.; Gembarska, A.; Durand, E.Y.; Mandon, E.; Estadieu, C.; Romanet, V.; Wiesmann, M.; Tiedt, R.; Lehar, J.; de Weck, A.; et al. Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf(-/-) mouse model. Proc. Natl. Acad. Sci. USA 2017, 114, 3151–3156. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Patients (n = 17) |
---|---|
Age, Median (range) | 56 (45–73) |
Sex, n (%) | |
Male | 10 (59%) |
Female | 7 (41%) |
ECOG PS, n (%) | |
0 | 13 (76%) |
≥1 | 4 (24%) |
Mutation, n (%) | |
GNAQQ209P | 6 (35%) |
GNA11Q209L | 8 (47%) |
GNAQR183Q | 2 (12%) |
CYSTLR2L129Q | 1 (6%) |
Number of organs involved by metastatic disease, n (%) | |
1 | 3 (17%) |
>1 | 14 (83%) |
Liver metastases, n (%) | 17 (100%) |
LDH, n (%) | |
≤ULN | 6 (35%) |
>ULN | 11 (65%) |
Prior Systemic Treatment a | |
Yes | 13 (76%) |
No | 4 (24%) |
Primary Tumor Type | |
Choroidal | 12 (70%) |
Iris | 1 (6%) |
Unknown | 4 (24%) |
Treatment | |
PKCi alone | 11 (65%) |
PKCi + HDM2i | 6 (35%) |
Best Response b, n (%) | |
PR | 2 (12%) |
SD ≥ 6 months | 4 (24%) |
SD < 6 months | 7 (41%) |
PD | 4 (23%) |
PFS (months), median (range) | 3.8 (1.7–13.1) |
Number of liver lesions, median (range) | 9 (1–49) |
Liver SPOD (mm2), median (range) | 3595 (200–15,525) |
SPOD (mm2), median (range) | 5986 (200–16,782) |
Largest diameter of liver lesion (mm), median (range) | 35 (11–110) |
Patient ID | Baseline Mutation (MAF %, LOD %) | On-Treatment Mutation (MAF %, LOD%) | Time from Baseline to on-Treatment Sample (Months) |
---|---|---|---|
1 | GNA11Q209L → (0.7, 0.6) | GNA11Q209L → (23.4, 0.3) TP53R248Q → (23.3, 0.3) TP53R342 * → (15.7, 0.3) | 8.2 |
2 | GNA11Q209L → (0.5, 0.3) | GNA11Q209L → (9.9, 0.6) | 8.5 |
3 | GNA11Q209L → (3.0, 0.3) SF3B1R625H → (1.3, 0.2) | GNA11Q209L → (2.0, 0.3) SF3B1R625H → (1.8, 0.3) | 10.0 |
4 | GNAQR183H → (8.5, 0.2) | GNAQR183H → (22.4, 0.2) | 6.0 |
5 | ND | GNA11Q209L → (4.8, 0.6) | 11.3 |
6 | GNAQQ209P → (32.3, 0.2) SF3B1R625C → (21.2, 0.1) | GNAQQ209P → (25.4, 0.2) SF3B1R625C → (12.8, 0.2) | 0.9 |
7 | GNA11Q209L → (22.7, 0.1) SF3B1R625L → (24.0, 0.1) | GNA11Q209L → (20.9, 0.2) SF3B1R625L → (20.5, 0.2) | 3.9 |
8 | GNAQQ209P → (4.4, 0.1) | GNAQQ209P → (0.3, 0.2) | 1.0 |
9 | ND | ND | 3.8 |
10 | CYSLTR2L129Q → (8.1, 0.3) | CYSLTR2L129Q → (0.5, 0.1) | 0.9 |
11 | GNA11Q209L → (13.3, 0.1) | GNA11Q209L → (29.5, 0.2) TP53G244D → (0.3, 0.2) | 4.0 |
12 | GNA11Q209L → (3.4, 0.3) TP53Y220C → (0.7, 0.3) TP53R248P → (0.3, 0.3) | GNA11Q209L → (14.1, 0.4) | 0.9 |
13 | GNAQQ209P → (0.8, 0.2) | GNAQQ209P → (1.0, 0.2) TP53R248G → (0.3, 0.2) | 5.4 |
14 | GNAQQ209P → (6.3, 0.2) SF3B1R625H → (8.6, 0.2) | GNAQQ209P → (3.1, 0.4) SF3B1R625H → (6.1, 0.3) | 3.8 |
15 | GNAQQ209P → (20.1, 0.2) | GNAQQ209P → (9.7, 0.2) | 3.8 |
16 | GNAQQ209P → (5.9, 0.2) | ND | 2.4 |
17 | GNAQR183Q → (4.2, 0.2) | GNAQR183Q → (11.6, 0.3) TP53S215G → (0.4, 0.3) | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.J.; Diefenbach, R.J.; Byrne, N.; Long, G.V.; Scolyer, R.A.; Gray, E.S.; Carlino, M.S.; Rizos, H. Circulating Tumor DNA Reflects Uveal Melanoma Responses to Protein Kinase C Inhibition. Cancers 2021, 13, 1740. https://doi.org/10.3390/cancers13071740
Park JJ, Diefenbach RJ, Byrne N, Long GV, Scolyer RA, Gray ES, Carlino MS, Rizos H. Circulating Tumor DNA Reflects Uveal Melanoma Responses to Protein Kinase C Inhibition. Cancers. 2021; 13(7):1740. https://doi.org/10.3390/cancers13071740
Chicago/Turabian StylePark, John J., Russell J. Diefenbach, Natalie Byrne, Georgina V. Long, Richard A. Scolyer, Elin S. Gray, Matteo S. Carlino, and Helen Rizos. 2021. "Circulating Tumor DNA Reflects Uveal Melanoma Responses to Protein Kinase C Inhibition" Cancers 13, no. 7: 1740. https://doi.org/10.3390/cancers13071740
APA StylePark, J. J., Diefenbach, R. J., Byrne, N., Long, G. V., Scolyer, R. A., Gray, E. S., Carlino, M. S., & Rizos, H. (2021). Circulating Tumor DNA Reflects Uveal Melanoma Responses to Protein Kinase C Inhibition. Cancers, 13(7), 1740. https://doi.org/10.3390/cancers13071740