Prospective Assessment of Systemic MicroRNAs as Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer
<p>Levels of indicated miRNAs in the specified breast cancer subtypes. No significant association between the target miRNA level and any breast cancer subtype was found. Luminal, <span class="html-italic">n</span> = 57; Luminal B Her2, <span class="html-italic">n</span> = 20; Her2+, <span class="html-italic">n</span> = 14; Triple negative, <span class="html-italic">n</span> = 23.</p> "> Figure 2
<p>Relationship between the target miRNAs levels and tumour bed response to NACT in responders compared to non-responders. Responders <span class="html-italic">n</span> = 51, Non-responders <span class="html-italic">n</span> = 58. <span class="html-italic">p</span> < 0.05 considered significant.</p> "> Figure 3
<p>Univariate analysis of miRNA-21 and miRNA-195 level as an independent predictor of response. (<b>A</b>) For miRNA-21 every unit increase miRNA-21, the odds ratio of being a non-responder relative to a responder is 1.86 (1/0.538) times higher. (<b>B</b>) miRNA-195—with every unit increase in miRNA-195, the odds ratio of being a non-responder relative to a responder is 1.78 (1/0.561) times higher. Observations = <span class="html-italic">n</span> (indicated for each).</p> "> Figure 4
<p>Variation in levels of each target miRNA by response to NACT was assessed in the four breast cancer subtypes. (<b>A</b>) miRNA-21 patients with low levels had a higher response rate in Luminal cancers. (<b>B</b>) miRNA-145 patients with low levels had a higher response rate in Luminal cancers. Luminal (responders <span class="html-italic">n</span> = 15, non-responders <span class="html-italic">n</span> = 41), Luminal B Her2 (responders <span class="html-italic">n</span> = 12, non-responders <span class="html-italic">n</span> = 7), Her2+ (non-luminal) (responders <span class="html-italic">n</span> = 10, non-responders <span class="html-italic">n</span> = 3), Triple negative (responders <span class="html-italic">n</span> = 14, non-responders <span class="html-italic">n</span> = 9). <span class="html-italic">p</span> < 0.05 considered significant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort and Disease Classification
2.2. Breast Cancer Subtypes
2.3. Blood Collection and Analysis Cohort Details
2.4. miRNA Panel
2.5. RNA Isolation
2.6. RQ-PCR
2.7. Analysis of miRNA Expression/Levels
2.8. Statistical Analysis
2.9. Ethical Approval
2.10. Data Availability Statement
3. Results
3.1. Patient Demographics
3.2. Relationship of Circulating miRNA Levels to Clinicopathological Parameters
3.3. Relationship of Circulating miRNA in Responders versus Non-Responders
3.4. Relationship of Individual Target miRNA Response to NACT in Different Breast Cancer Subtypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Battisti, N.M.L.; True, V.; Chaabouni, N.; Chopra, N.; Lee, K.; Shepherd, S.; Shapira-Rotenberg, T.; Joshi, R.; McGrath, S.; Okines, A.; et al. Pathological complete response to neoadjuvant systemic therapy in 789 early and locally advanced breast cancer patients: The Royal Marsden experience. Breast Cancer Res. Treat. 2019, 179, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Fayanju, O.M.; Ren, Y.; Thomas, S.M.; Greenup, R.A.; Plichta, J.K.; Rosenberger, L.H.; Tamirisa, N.; Force, J.; Boughey, J.C.; Hyslop, T.; et al. The Clinical Significance of Breast-only and Node-only Pathologic Complete Response (pCR) After Neoadjuvant Chemotherapy (NACT): A Review of 20,000 Breast Cancer Patients in the National Cancer Data Base (NCDB). Ann. Surg. 2018, 268, 591–601. [Google Scholar] [CrossRef]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; A Rees, C.; Pollack, J.R.; Ross, U.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thürlimann, B.; Senn, H.-J.; Members, P. Strategies for subtypes—Dealing with the diversity of breast cancer: Highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. 2011, 22, 1736–1747. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.-J.; Albain, K.S.; Andre, F.; Bergh, J.; et al. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Gianni, L.; Eiermann, W.; Semiglazov, V.F.; Manikhas, A.; Lluch, A.; Tjulandin, S.; Zambetti, M.; Vazquez, F.; Byakhow, M.; Lichinitser, M.; et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): A randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 2010, 375, 377–384. [Google Scholar]
- Buzdar, A.U.; Ibrahim, N.K.; Francis, D.; Booser, D.; Thomas, E.S.; Theriault, R.L.; Pusztai, L.; Green, M.C.; Arun, B.; Giordano, S.H.; et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: Results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J. Clin. Oncol. 2005, 23, 3676–3685. [Google Scholar] [CrossRef]
- Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer. Res. 2007, 13, 2329–2334. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Chen, K.; Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 2007, 8, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.P.; Khan, S.; Gilligan, K.; Zafar, H.; Lalor, P.; Glynn, C.; O’Flatharta, C.; Ingoldsby, H.; Dockery, P.; De Bhulbh, A.; et al. Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene 2018, 37, 2137–2149. [Google Scholar] [CrossRef] [Green Version]
- Iorio, M.V.; Ferracin, M.; Liu, C.-G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65, 7065–7070. [Google Scholar] [CrossRef] [Green Version]
- Si, M.-L.; Zhu, S.; Wu, H.; Lu, Z.; Wu, F.; Mo, Y.-Y. miR-21-mediated tumor growth. Oncogene 2007, 26, 2799–2803. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.-X.; Huang, X.-F.; Shao, Q.; Huang, M.-Y.; Deng, L.; Wu, Q.-L.; Zeng, Y.-X.; Shao, J.-Y. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008, 14, 2348–2360. [Google Scholar] [CrossRef] [Green Version]
- Heneghan, H.; Miller, N.; Kelly, R.; Newell, J.; Kerin, M.J. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 2010, 15, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Heneghan, H.; Miller, N.; Lowery, A.J.; Sweeney, K.J.; Newell, J.; Kerin, M.J. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg. 2010, 251, 499–505. [Google Scholar] [CrossRef]
- Ma, L.; Teruya-Feldstein, J.; Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007, 449, 682–688. [Google Scholar] [CrossRef]
- Ng, E.K.-O.; Li, R.; Shin, V.; Jin, H.; Leung, C.P.H.; Ma, E.S.K.; Pang, R.; Chua, D.; Chu, K.-M.; Law, W.L.; et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS ONE 2013, 8, e53141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowery, A.J.; Miller, N.; Devaney, A.; E McNeill, R.; A Davoren, P.; Lemetre, C.; Benes, V.; Schmidt, S.; Blake, J.; Ball, G.; et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009, 11, R27. [Google Scholar] [CrossRef] [PubMed]
- Mattie, M.D.; Benz, S.C.; Bowers, J.; Sensinger, K.; Wong, L.; Scott, G.K.; Fedele, V.; Ginzinger, D.; Getts, R.C.; Haqq, C. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer 2006, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahlberg, K.K.; Bottai, G.; Naume, B.; Burwinkel, B.; Calin, A.G.A.; Borresen-Dale, A.-L.; Santarpia, L. A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin. Cancer Res. 2015, 21, 1207–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andorfer, C.A.; Necela, B.M.; Thompson, E.A.; Perez, E.A. MicroRNA signatures: Clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol. Med. 2011, 17, 313–319. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Appierto, V.; Pizzamiglio, S.; Tiberio, P.; Iorio, M.V.; Hilbers, F.; de Azambuja, E.; de la Peña, L.; Izquierdo, M.; Huober, J.; et al. Plasma miRNA Levels for Predicting Therapeutic Response to Neoadjuvant Treatment in HER2-positive Breast Cancer: Results from the NeoALTTO Trial. Clin. Cancer Res. 2019, 25, 3887–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Davoren, P.; E McNeill, R.; Lowery, A.J.; Kerin, M.; Miller, N. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol. Biol. 2008, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Si, H.; Sun, X.; Chen, Y.; Cao, Y.; Chen, S.; Wang, H.; Hu, C. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J. Cancer Res. Clin. Oncol. 2013, 139, 223–229. [Google Scholar] [CrossRef] [Green Version]
- McAnena, P.; Tanriverdi, K.; Curran, C.; Gilligan, K.; Freedman, J.E.; Brown, J.; Kerin, M. Circulating microRNAs miR-331 and miR-195 differentiate local luminal a from metastatic breast cancer. BMC Cancer 2019, 19, 436. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Somlo, G.; Yü, Y.; Palomares, M.R.; Li, A.; Zhou, W.; Chow, A.; Yen, Y.; Rossi, J.J.; Gao, H.; et al. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J. Transl. Med. 2012, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Frères, P.; Josse, C.; Bovy, N.; Boukerroucha, M.; Struman, I.; Bours, V.; Jerusalem, G. Neoadjuvant Chemotherapy in Breast Cancer Patients Induces miR-34a and miR-122 Expression. J. Cell. Physiol. 2015, 230, 473–481. [Google Scholar] [CrossRef]
- Bourguignon, L.; Spevak, C.C.; Wong, G.; Xia, W.; Gilad, E. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J. Biol. Chem. 2009, 284, 26533–26546. [Google Scholar] [PubMed] [Green Version]
- Li, Q.; Liu, M.; Ma, F.; Luo, Y.; Cai, R.; Wang, L.; Xu, N.; Xu, B. Circulating miR-19a and miR-205 in serum may predict the sensitivity of luminal A subtype of breast cancer patients to neoadjuvant chemotherapy with epirubicin plus paclitaxel. PLoS ONE 2014, 9, e104870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrami, A.; Aledavood, A.; Anvari, K.; Hassanian, S.M.; Maftouh, M.; Yaghobzade, A.; Salarzaee, O.; Shahidsales, S.; Avan, A.; Aledavoud, S.A. The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J. Cell. Physiol. 2018, 233, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Esserman, L.J.; Berry, D.A.; DeMichele, A.; Carey, L.; Davis, S.E.; Buxton, M.; Hudis, C.; Gray, J.W.; Perou, C.M.; Yau, C.; et al. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: Results from the I-SPY 1 TRIAL—CALGB 150007/150012, ACRIN 6657. J. Clin. Oncol. 2012, 30, 3242–3249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
miRNA of Interest | Previous Association with Breast Cancer |
---|---|
Let 7a | Elevated levels in circulation in breast cancer |
miR-21 | Increased levels in breast tumour tissue Moreover, increased in: colorectal, pancreatic, gastric, lymphomas |
miR-145 | Decreased levels in breast tumour tissue |
miR-155 | Increased levels in breast tumour tissue |
miR-195 | Increased levels in circulation in breast cancer |
miR-16 | Validated endogenous circulating control (in breast cancer patients) |
miR-425 | Validated endogenous circulating control (in breast cancer patients) |
Total Patients Analyzed | n = 114 | |
---|---|---|
Median age (range) | 55 years (25–76) | |
Grade: | n = (%) | |
1 | 1 | (0.9%) |
2 | 62 | (54.4%) |
3 | 50 | (43.8%) |
Unknown (at time of analysis) | 1 | (0.9%) |
Lymph node (pre op): | n = (%) | |
Positive | 72 | (63.2%) |
Negative | 41 | (36.8%) |
Surgery: | n = (%) | |
WLE | 63 | (55.2%) |
Mastectomy | 50 | (43.9%) |
NA | 1 | (0.9%) |
Subtype: | n = (%) | |
Luminal | 57 | (49.2%) |
Luminal HER2 | 20 | (17.7%) |
HER2+ | 14 | (12.9%) |
Triple negative | 23 | (20.2%) |
Pathological complete response: | No. (%) | |
Yes | 51 | (44.7%) |
No | 60 | (52.6%) |
Unknown | 3 | (2.6%) |
Target miRNA | Grade | Lymph Node Status | OR Status | PR Status | HER2 Status | |||||
---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | +Ve | −Ve | +Ve | −Ve | +Ve | −Ve | +Ve | −Ve | |
Let 7a | p = 0.112 | p = 0.443 | p = 0.242 | p = 0.545 | p = 0.407 | |||||
(n = 59, n = 50) | (n = 70, n = 40) | (n = 71, n = 39) | (n = 59, n = 52) | (n = 32, n = 79) | ||||||
miR-21 | p = 0.124 | p = 0.752 | p = 0.090 | p = 0.164 | p = 0.783 | |||||
(n = 61, n = 49) | (n = 71, n = 40) | (n = 73, n = 39) | (n = 59, n = 53) | (n = 34, n = 78) | ||||||
miR-145 | p = 0.968 | p = 0.075 | p = 0.406 | p = 0.063 | p = 0.877 | |||||
(n = 60, n = 48) | (n = 71, n = 38) | (n = 71, n = 39) | (n = 58, n = 52) | (n = 32, n = 78) | ||||||
miR-155 | p = 0.217 | p = 0.621 | p = 0.483 | p = 0.986 | p = 0.593 | |||||
(n = 60, n = 50) | (n = 71, n = 40) | (n = 73, n = 39) | (n = 59, n = 53) | (n = 34, n = 78) | ||||||
miR-195 | p = 0.016 | p = 0.252 | p = 0.014 | p = 0.580 | p = 0.477 | |||||
(n = 61, n = 49) | (n = 71, n = 40) | (n = 74, n = 38) | (n = 59, n = 53) | (n = 32, n = 80) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGuire, A.; Casey, M.-C.; Waldron, R.M.; Heneghan, H.; Kalinina, O.; Holian, E.; McDermott, A.; Lowery, A.J.; Newell, J.; Dwyer, R.M.; et al. Prospective Assessment of Systemic MicroRNAs as Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers 2020, 12, 1820. https://doi.org/10.3390/cancers12071820
McGuire A, Casey M-C, Waldron RM, Heneghan H, Kalinina O, Holian E, McDermott A, Lowery AJ, Newell J, Dwyer RM, et al. Prospective Assessment of Systemic MicroRNAs as Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers. 2020; 12(7):1820. https://doi.org/10.3390/cancers12071820
Chicago/Turabian StyleMcGuire, Andrew, Maire-Caitlin Casey, Ronan M. Waldron, Helen Heneghan, Olga Kalinina, Emma Holian, Ailbhe McDermott, Aoife J. Lowery, John Newell, Róisín M. Dwyer, and et al. 2020. "Prospective Assessment of Systemic MicroRNAs as Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer" Cancers 12, no. 7: 1820. https://doi.org/10.3390/cancers12071820
APA StyleMcGuire, A., Casey, M.-C., Waldron, R. M., Heneghan, H., Kalinina, O., Holian, E., McDermott, A., Lowery, A. J., Newell, J., Dwyer, R. M., Miller, N., Keane, M., Brown, J. A. L., & Kerin, M. J. (2020). Prospective Assessment of Systemic MicroRNAs as Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers, 12(7), 1820. https://doi.org/10.3390/cancers12071820