Mesothelial-to-Mesenchymal Transition Contributes to the Generation of Carcinoma-Associated Fibroblasts in Locally Advanced Primary Colorectal Carcinomas
<p>Deeply invasive colon carcinoma. (<b>A</b>) Haematoxylin-Eosin (H&E) staining of malignant neoplastic glands invading the adipose tissue and reaching the visceral peritoneal layer; (<b>B</b>) At higher magnification, CAFs surround a tumor gland. T: Tumor; CAFs: Carcinoma-associated fibroblasts.</p> "> Figure 2
<p>MMT is frequently observed in deeply invasive colon carcinomas. Serial sections from the same area. (<b>A</b>) Tumoral glands and stroma at the serosa surface (H&E); (<b>B</b>) Stromal myofibroblasts showing α-SMA expression; (<b>C</b>) Calretinin expression is present in CAFs and absent in tumor cells; (<b>D</b>) Pancytokeratin is expressed by neoplastic cells and myofibroblasts; (<b>E</b>) CK7 expression is limited to CAFs; (<b>F</b>) CK20 staining is limited to neoplastic cells. T: Tumor; CAFs: Carcinoma-associated fibroblasts.</p> "> Figure 3
<p>Infiltrative neoplastic glands reach a well-preserved mesothelial layer. Serial sections from the same area. (<b>A</b>) Pancytokeratin is expressed by mesothelium, stromal fibroblasts, and neoplastic glands; (<b>B</b>) CK7 is evident in the mesothelium and stromal fibroblasts, but absent in tumoral cells; (<b>C</b>) Mesothelin is expressed by MCs and stromal fibroblasts, while neoplastic cells are negative; (<b>D</b>) CK20 is present in tumor cells and absent in MCs and myofibroblasts. T: Tumor; CAFs: Carcinoma-associated fibroblasts; MCs: Mesothelial cells.</p> "> Figure 4
<p>Gradient of expression of mesothelial markers between the deepest and most superficial CAFs. Serial sections from the same area. (<b>A</b>) Tumoral glands and CAFs located near the visceral mesothelial layer (submesothelium) show pancytokeratin expression; (<b>B</b>) Expression of calretinin is limited to CAFs of submesothelial location; (<b>C</b>) Similarly, CK7 expression is limited to submesothelial CAFs. Tumoral glands show no CK7 expression; (<b>D</b>) As opposed to CK7, CK20 is expressed by tumor cells and not by CAFs. Arrows point to the presence of ink routinely used during sample processing for limit recognition during microscopic analysis.</p> "> Figure 5
<p>Mesothelial-derived CAFs co-express mesothelial and mesenchymal markers in colon carcinomas reaching the serosa layer. (<b>A</b>) Representative stromal areas surrounding deeply invasive cancer nodules show overlapped staining for calretinin and α-SMA (<b>a</b>–<b>f</b>). (<b>B</b>) CAFs co-expressing pancytokeratin and Fsp-1 are adjacent to pancytokeratin-positive tumor glands (<b>a</b>–<b>c</b>). At higher magnification, Fsp-1 positive fibroblasts closely surround a deep tumor nodule (<b>d</b>–<b>f</b>). Activated MCs forming a monolayer co-express pancytokeratin and Fsp-1 (<b>g</b>–<b>i</b>). T: Tumor; CAFs: Carcinoma-associated fibroblasts; MCs: Mesothelial cells.</p> "> Figure 6
<p>Superficially invasive colon carcinoma. (<b>A</b>) H&E staining of a superficially invasive intestinal adenocarcinoma with neoplastic growth limited to the submucosa; (<b>B</b>) CAFs show expression of α-SMA; (<b>C</b>) Pancytokeratin is expressed by cancer cells and absent in fibroblasts; (<b>D</b>) Calretinin-negative myofibroblasts and tumor cells.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Deeply Invasive Colon Carcinomas Show Numerous Carcinoma-Associated Fibroblasts (CAFs) Expressing Mesothelial Cell Markers
2.2. CAFs From Superficially Invasive Colon Carcinomas Do Not Express Mesothelial Cell Markers
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Immunohistochemical Analysis
4.3. Dual-Immunofluoresecence Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef] [Green Version]
- Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. Emt: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, R.C.; Pastar, I.; Ojeh, N.; Chen, V.; Liu, S.; Garzon, K.I.; Tomic-Canic, M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016, 365, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Duffield, J.S.; Lupher, M.; Thannickal, V.J.; Wynn, T.A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 2013, 8, 241–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanez-Mo, M.; Lara-Pezzi, E.; Selgas, R.; Ramirez-Huesca, M.; Dominguez-Jimenez, C.; Jimenez-Heffernan, J.A.; Aguilera, A.; Sanchez-Tomero, J.A.; Bajo, M.A.; Alvarez, V.; et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 2003, 348, 403–413. [Google Scholar] [CrossRef]
- Yang, A.H.; Chen, J.Y.; Lin, J.K. Myofibroblastic conversion of mesothelial cells. Kidney Int. 2003, 63, 1530–1539. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Carpio, V.; Sandoval, P.; Aguilera, A.; Albar-Vizcaino, P.; Perez-Lozano, M.L.; Gonzalez-Mateo, G.T.; Acuna-Ruiz, A.; Garcia-Cantalejo, J.; Botias, P.; Bajo, M.A.; et al. Genomic reprograming analysis of the Mesothelial to Mesenchymal Transition identifies biomarkers in peritoneal dialysis patients. Sci. Rep. 2017, 7, 44941. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, P.; Jimenez-Heffernan, J.A.; Guerra-Azcona, G.; Perez-Lozano, M.L.; Rynne-Vidal, A.; Albar-Vizcaino, P.; Gil-Vera, F.; Martin, P.; Coronado, M.J.; Barcena, C.; et al. Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. J. Pathol. 2016, 239, 48–59. [Google Scholar] [CrossRef]
- Desmouliere, A.; Guyot, C.; Gabbiani, G. The stroma reaction myofibroblast: A key player in the control of tumor cell behavior. Int. J. Dev. Biol. 2004, 48, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Orimo, A.; Weinberg, R.A. Stromal fibroblasts in cancer: A novel tumor-promoting cell type. Cell Cycle 2006, 5, 1597–1601. [Google Scholar] [CrossRef]
- Shimoda, M.; Mellody, K.T.; Orimo, A. Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin. Cell Dev. Biol. 2010, 21, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Cirri, P.; Chiarugi, P. Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012, 31, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Shiga, K.; Hara, M.; Nagasaki, T.; Sato, T.; Takahashi, H.; Takeyama, H. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers 2015, 7, 2443–2458. [Google Scholar] [CrossRef]
- Rynne-Vidal, A.; Jimenez-Heffernan, J.A.; Fernandez-Chacon, C.; Lopez-Cabrera, M.; Sandoval, P. The Mesothelial Origin of Carcinoma Associated-Fibroblasts in Peritoneal Metastasis. Cancers 2015, 7, 1994–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopmans, T.; Rinkevich, Y. Mesothelial to mesenchyme transition as a major developmental and pathological player in trunk organs and their cavities. Commun. Biol. 2018, 1, 170. [Google Scholar] [CrossRef] [Green Version]
- Calon, A.; Espinet, E.; Palomo-Ponce, S.; Tauriello, D.V.; Iglesias, M.; Cespedes, M.V.; Sevillano, M.; Nadal, C.; Jung, P.; Zhang, X.H.; et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 2012, 22, 571–584. [Google Scholar] [CrossRef] [Green Version]
- Rynne-Vidal, A.; Au-Yeung, C.L.; Jimenez-Heffernan, J.A.; Perez-Lozano, M.L.; Cremades-Jimeno, L.; Barcena, C.; Cristobal-Garcia, I.; Fernandez-Chacon, C.; Yeung, T.L.; Mok, S.C.; et al. Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J. Pathol. 2017, 242, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, P.; Jimenez-Heffernan, J.A.; Rynne-Vidal, A.; Perez-Lozano, M.L.; Gilsanz, A.; Ruiz-Carpio, V.; Reyes, R.; Garcia-Bordas, J.; Stamatakis, K.; Dotor, J.; et al. Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J. Pathol. 2013, 231, 517–531. [Google Scholar] [CrossRef] [Green Version]
- Shahid, S.; Iman, A.; Matti, U.; Rachid, K.; Assaf, A.; Eveno, C.; Marc, P.; Massoud, M. Fibrin Deposit on the Peritoneal Surface Serves as a Niche for Cancer Expansion in Carcinomatosis Patients. Neoplasia 2019, 21, 1091–1101. [Google Scholar] [CrossRef]
- Mutsaers, S.E.; Birnie, K.; Lansley, S.; Herrick, S.E.; Lim, C.B.; Prele, C.M. Mesothelial cells in tissue repair and fibrosis. Front. Pharmacol. 2015, 6, 113. [Google Scholar] [CrossRef] [Green Version]
- Tot, T. The value of cytokeratins 20 and 7 in discriminating metastatic adenocarcinomas from pleural mesotheliomas. Cancer 2001, 92, 2727–2732. [Google Scholar] [CrossRef]
- Tot, T. Adenocarcinomas metastatic to the liver: The value of cytokeratins 20 and 7 in the search for unknown primary tumors. Cancer 1999, 85, 171–177. [Google Scholar] [CrossRef]
- Liao, T.T.; Yang, M.H. Revisiting epithelial-mesenchymal transition in cancer metastasis: The connection between epithelial plasticity and stemness. Mol. Oncol. 2017, 11, 792–804. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.F.; Dai, H.P. Type 2 epithelial mesenchymal transition in vivo: Truth or pitfalls? Chin. Med. J. 2012, 125, 3312–3317. [Google Scholar]
- Husain, A.N.; Colby, T.V.; Ordonez, N.G.; Allen, T.C.; Attanoos, R.L.; Beasley, M.B.; Butnor, K.J.; Chirieac, L.R.; Churg, A.M.; Dacic, S.; et al. Guidelines for Pathologic Diagnosis of Malignant Mesothelioma 2017 Update of the Consensus Statement From the International Mesothelioma Interest Group. Arch. Pathol. Lab. Med. 2018, 142, 89–108. [Google Scholar] [CrossRef] [Green Version]
- Ordonez, N.G. The immunohistochemical diagnosis of mesothelioma: A comparative study of epithelioid mesothelioma and lung adenocarcinoma. Am. J. Surg. Pathol. 2003, 27, 1031–1051. [Google Scholar] [CrossRef]
- Bolen, J.W.; Hammar, S.P.; McNutt, M.A. Reactive and neoplastic serosal tissue. A light-microscopic, ultrastructural, and immunocytochemical study. Am. J. Surg. Pathol 1986, 10, 34–47. [Google Scholar] [CrossRef]
- Seidal, T. Immunoreactivity to cytokeratins in non-epithelial cells in deep gastric ulcer. APMIS 1993, 101, 607–613. [Google Scholar] [CrossRef]
- Chen, J.H.; Borges, M. Histopathology and enhanced detection of tumor invasion of peritoneal membranes. PLoS ONE 2017, 12, e0173833. [Google Scholar] [CrossRef]
- Zeisberg, M.; Neilson, E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Investig. 2009, 119, 1429–1437. [Google Scholar] [CrossRef] [Green Version]
- Michailova, K.; Wassilev, W.; Wedel, T. Scanning and transmission electron microscopic study of visceral and parietal peritoneal regions in the rat. Ann. Anat. 1999, 181, 253–260. [Google Scholar] [CrossRef]
- Mutsaers, S.E.; Wilkosz, S. Structure and function of mesothelial cells. Cancer Treat. Res. 2007, 134, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Aroeira, L.S.; Aguilera, A.; Sanchez-Tomero, J.A.; Bajo, M.A.; del Peso, G.; Jimenez-Heffernan, J.A.; Selgas, R.; Lopez-Cabrera, M. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: Pathologic significance and potential therapeutic interventions. J. Am. Soc. Nephrol. 2007, 18, 2004–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Cabrera, M. Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Adv. Med. 2014, 2014, 473134. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordillo, C.H.; Sandoval, P.; Muñoz-Hernández, P.; Pascual-Antón, L.; López-Cabrera, M.; Jiménez-Heffernan, J.A. Mesothelial-to-Mesenchymal Transition Contributes to the Generation of Carcinoma-Associated Fibroblasts in Locally Advanced Primary Colorectal Carcinomas. Cancers 2020, 12, 499. https://doi.org/10.3390/cancers12020499
Gordillo CH, Sandoval P, Muñoz-Hernández P, Pascual-Antón L, López-Cabrera M, Jiménez-Heffernan JA. Mesothelial-to-Mesenchymal Transition Contributes to the Generation of Carcinoma-Associated Fibroblasts in Locally Advanced Primary Colorectal Carcinomas. Cancers. 2020; 12(2):499. https://doi.org/10.3390/cancers12020499
Chicago/Turabian StyleGordillo, Carlos H., Pilar Sandoval, Patricia Muñoz-Hernández, Lucía Pascual-Antón, Manuel López-Cabrera, and José A. Jiménez-Heffernan. 2020. "Mesothelial-to-Mesenchymal Transition Contributes to the Generation of Carcinoma-Associated Fibroblasts in Locally Advanced Primary Colorectal Carcinomas" Cancers 12, no. 2: 499. https://doi.org/10.3390/cancers12020499
APA StyleGordillo, C. H., Sandoval, P., Muñoz-Hernández, P., Pascual-Antón, L., López-Cabrera, M., & Jiménez-Heffernan, J. A. (2020). Mesothelial-to-Mesenchymal Transition Contributes to the Generation of Carcinoma-Associated Fibroblasts in Locally Advanced Primary Colorectal Carcinomas. Cancers, 12(2), 499. https://doi.org/10.3390/cancers12020499