Function of p21 (Cip1/Waf1/CDKN1A) in Migration and Invasion of Cancer and Trophoblastic Cells
<p>Knockdown of p21 barely impacts proliferation and cell cycle distribution of choriocarcinoma or trophoblastic cells. (<b>A</b>) Real-time PCR of <span class="html-italic">CDKN1A</span> (p21) and <span class="html-italic">TP53</span> (p53). The results are presented as RQ with minimum and maximum range. RQ: relative quantification of gene expression by setting p21 of HTR cells as 1 or p53 of Jar cells, respectively. (<b>B</b>) Western blot analysis of HTR, BeWo, Jar, and JEG-3 cells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as loading control. (<b>C</b>) HTR cells were treated with control small interferingRNA (siRNA) (sicon) or siRNA against p21 (sip21 #1) for 0, 24, 48, and 72 h. Cell viability was measured via CellTiter-Blue<sup>®</sup> assay (Promega, Mannheim, Germany). The results are presented as mean ± standard error of the mean (SEM) (<span class="html-italic">n</span> = 2, each experiment in triplicates) and statistically analyzed compared to sicon. All differences were not significant. (<b>D</b>) Cell viability assay of BeWo cells treated as in (C). (<b>E</b>) Fluorescence-activated cell scanning (FACS) measurements of HTR cells for cell cycle distribution. The results are presented as mean ± SEM from three independent experiments. (<b>F</b>) Cellular extracts from HTR cells were prepared for Western blot analyses with indicated antibodies. GAPDH served as loading control. (<b>G</b>) FACS measurements of BeWo cells as in (<b>E</b>). (<b>H</b>) Cellular extracts from BeWo cells were prepared for Western blot analyses with indicated antibodies. GAPDH served as loading control.</p> "> Figure 2
<p>Suppression of p21 affects chromosome segregation in BeWo cells. (<b>A</b>) Western blot control for small interfering RNA (siRNA) transfection efficiency. BeWo cells were treated with scrambled siRNA (sicon) or siRNA against the untranslated region (UTR) of p21 (sip21 #1) or mixed siRNAs against the coding region of p21 (sip21 #2) for 48 h. (<b>B</b>) Quantification of defects in chromosome congression in metaphase cells treated as in (A) (<span class="html-italic">n</span> = 3, 100 metaphase cells per experiment and condition). The results are presented as mean ± standard error of the mean (SEM) and statistically analyzed. (<b>C</b>) Quantification of defects in chromosome segregation in anaphase cells treated as in (A) (<span class="html-italic">n</span> = 3, 100 anaphase cells per experiment and condition). The results are presented as mean ± SEM and statistically analyzed. ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001. (<b>D</b>) Representative images of confocal laser scanning microscopy are shown. Cells were stained for tubulin, pericentrin, anti-centromere antibody (ACA), and DNA. Scale bar: 7.5 µm. Arrow: Indicating either chromosome congression/segregation defect (4’,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining) or failure of centrosome integrity (pericentrin staining).</p> "> Figure 3
<p>p21 is required for cell motility. Single-cell tracking using time-lapse microscopy was performed with treated HTR cells. (<b>A</b>–<b>C</b>) Representative trajectories of individual cells (<span class="html-italic">n</span> = 30) treated with sicon (A), sip21 #1 (<b>B</b>), or sip21 #2 (C) are shown. (<b>D</b>) Control Western blot analysis shows the efficient knockdown of endogenous p21 in HTR cells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as loading control. (<b>E</b>–<b>G</b>) Accumulated distance (E), velocity (F), and directionality (<b>G</b>) of these cells were analyzed and statistically evaluated from three independent experiments. The results are shown as scatter plots. *** <span class="html-italic">p</span> < 0.001. (<b>H</b>–<b>J</b>) Representative trajectories are shown for individual HeLa cells (<span class="html-italic">n</span> = 30) with sicon (<b>H</b>), sip21 #1 (<b>I</b>), and sip21 #2 (J). (<b>K</b>) Control Western blot analysis of HeLa cells. GAPDH served as loading control. (<b>L</b>–<b>N</b>) Accumulated distance (L), velocity (M), and directionality (N) were evaluated. The data are derived from three independent experiments and shown as scatter plots. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 4
<p>The invasion capacity is impaired in cells with reduced p21 levels. (<b>A</b>) Schedule of invasion assay. Different cell lines were treated with control small interfering RNA (siRNA) (sicon) or two distinct siRNA against p21 (sip21 #1 or #2). (<b>B</b>) Quantification of invaded HTR cells. The total number of invaded cells in the control group was assigned as 100%. (<b>C</b>) Representatives of invaded HTR cells are shown. Scale bar: 20 μm. (<b>D</b>) Control Western blot analysis showing the efficient knockdown of endogenous p21 in HTR cells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as loading control. (<b>E</b>) Quantification of invaded Jar cells. (<b>F</b>) Representatives of invaded Jar cells are shown. Scale bar: 20 μm. (<b>G</b>) Control Western blot analysis of Jar cells. GAPDH served as loading control. (<b>H</b>) Quantification of invaded SGHPL-4 cells. (<b>I</b>) Representatives of invaded SGHPL-4 cells are shown. Scale bar: 20 μm. (<b>J</b>) Control Western blot analysis of SGHPL-4 cells. GAPDH served as loading control. (<b>K</b>) Quantification of invaded HIPEC-65 cells. (<b>L</b>) Representatives of invaded HIPEC-65 cells. Scale bar: 20 μm. (<b>M</b>) Control Western blot analysis of HIPEC-65 cells. GAPDH served as loading control. The results from each cell line are presented as mean ± standard error of the mean (SEM) from three independent experiments. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Extracellular signal-regulated kinase 3 (ERK3) is reduced in p21-depleted cell lines. (<b>A</b>–<b>C</b>) Microarray analysis. HTR cells were treated with sicon or sip21 #1 for 48 h and the RNA from three independent experiments was extracted. (<b>A</b>) Western blot control of HTR cells with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as loading control. (<b>B</b>) The effects of sip21 #1 on different pathways were determined by gene ontology enrichment analysis using Database for Annotation, Visualization and Integrated Discovery (DAVID) [<a href="#B37-cancers-11-00989" class="html-bibr">37</a>]. (<b>C</b>) Heatmap of the most differently expressed genes. Gene expression was analyzed using HumanHT-12 v4 beadchip array (Illumina, San Diego, CA, USA). Genes with a <span class="html-italic">p</span>-value < 0.01, and a fold change greater than 2 (red color code) and below 0.5 (blue color code), respectively, are included. (<b>D</b>) Western Blot of HTR cells treated with control siRNA (sicon) or two distinct siRNA against p21 (sip21 #1 or #2) for 48 h. Ratio of ERK3/GAPDH is shown. GAPDH served as loading control. (<b>E</b>,<b>F</b>) The gene levels of p21 (E) and ERK3 (F) were measured. (<b>G</b>) Western blot analyses of Jar cells treated as in (D). (<b>H</b>,<b>I</b>) The gene levels of p21 (H) and ERK3 (I). (<b>J</b>) Western blot analyses of HeLa cells treated as in (D). (<b>K</b>,<b>L</b>) The gene levels of p21 (K) and ERK3 (L). The mRNA data are based on three experiments and presented as RQ with minimum and maximum range. RQ: relative quantification of gene expression. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 6
<p>Matrix metalloproteinase 2 (MMP2) and tissue inhibitor of metalloproteinase 2 (TIMP2) are reduced upon p21-silencing. The gene levels of MMP2 (<b>A</b>–<b>C</b>) and TIMP2 (<b>D</b>–<b>F</b>) were evaluated from Jar (A and D), HeLa (B and E), and HTR (C and F) cell lines. The data are based on three independent experiments and presented as RQ with minimum and maximum range and statistically analyzed. RQ: relative quantification of the gene expression. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01. (<b>G</b>) Schematic illustration of the proposed working model.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Expression of p21 in Trophoblastic and Choriocarcinoma Cell Lines
2.2. Knockdown of p21 Does Not Change the Proliferation Capacity Neither Cell Cycle Distribution
2.3. Suppression of p21 Affects Chromosome Segregation of Choriocarcinoma and Trophoblastic Cell Lines
2.4. Motility and Invasion Capacity are Lowered in Cells Treated with siRNA Against p21
2.5. ERK3 Expression is Reduced Upon p21 Silencing
2.6. MMP2 and TIMP2 mRNA Are Reduced Upon p21 Depletion
3. Discussion
4. Materials and Methods
4.1. Cell Culture and siRNA Transfection
4.2. Western Blot Analysis
4.3. RNA Extraction, Real-Time PCR and Data Analysis
4.4. Cell Viability, Cell Cycle Measurements, and Invasion Assay
4.5. Cell Motility Evaluation via Time-Lapse Microscopy
4.6. Immunofluorescence Staining
4.7. Microarray Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science 2011, 331, 1559–1564. [Google Scholar] [CrossRef] [PubMed]
- Louwen, F.; Muschol-Steinmetz, C.; Reinhard, J.; Reitter, A.; Yuan, J. A lesson for cancer research: Placental microarray gene analysis in preeclampsia. Oncotarget 2012, 3, 759–773. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Pang, Z.J.; Yu, Y.H. Regulation of trophoblast invasion: The role of matrix metalloproteinases. Rev. Obstet. Gynecol. 2012, 5, e137–e143. [Google Scholar] [PubMed]
- Heazell, A.E.; Crocker, I.P. Live and let die-regulation of villous trophoblast apoptosis in normal and abnormal pregnancies. Placenta 2008, 29, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Sanchez-Aranguren, L.C.; Prada, C.E.; Riano-Medina, C.E.; Lopez, M. Endothelial dysfunction and preeclampsia: Role of oxidative stress. Front. Physiol. 2014, 5, 372. [Google Scholar] [CrossRef]
- Kreis, N.N.; Louwen, F.; Yuan, J. Less understood issues: p21(Cip1) in mitosis and its therapeutic potential. Oncogene 2015, 34, 1758–1767. [Google Scholar] [CrossRef]
- Abbas, T.; Dutta, A. p21 in cancer: Intricate networks and multiple activities. Nat. Rev. Cancer 2009, 9, 400–414. [Google Scholar] [CrossRef]
- Child, E.S.; Mann, D.J. The intricacies of p21 phosphorylation: Protein/protein interactions, subcellular localization and stability. Cell Cycle 2006, 5, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Yabuta, N.; Okada, N.; Torigata, K.; Aylon, Y.; Oren, M.; Nojima, H. Lats2 phosphorylates p21/CDKN1A after UV irradiation and regulates apoptosis. J. Cell Sci. 2013, 126, 4358–4368. [Google Scholar] [CrossRef] [Green Version]
- Unek, G.; Ozmen, A.; Isenlik, B.S.; Korgun, E.T. The proliferation mechanism of normal and pathological human placentas. Histol. Histopathol. 2017, 32, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Korgun, E.T.; Celik-Ozenci, C.; Acar, N.; Cayli, S.; Desoye, G.; Demir, R. Location of cell cycle regulators cyclin B1, cyclin A, PCNA, Ki67 and cell cycle inhibitors p21, p27 and p57 in human first trimester placenta and deciduas. Histochem. Cell Biol. 2006, 125, 615–624. [Google Scholar] [CrossRef]
- Genbacev, O.; McMaster, M.T.; Fisher, S.J. A repertoire of cell cycle regulators whose expression is coordinated with human cytotrophoblast differentiation. Am. J. Pathol. 2000, 157, 1337–1351. [Google Scholar] [CrossRef]
- Quenby, S.; Brazeau, C.; Drakeley, A.; Lewis-Jones, D.I.; Vince, G. Oncogene and tumour suppressor gene products during trophoblast differentiation in the first trimester. Mol. Hum. Reprod. 1998, 4, 477–481. [Google Scholar] [CrossRef]
- Cobellis, L.; Mastrogiacomo, A.; Federico, E.; Schettino, M.T.; De Falco, M.; Manente, L.; Coppola, G.; Torella, M.; Colacurci, N.; De Luca, A. Distribution of Notch protein members in normal and preeclampsia-complicated placentas. Cell Tissue Res. 2007, 330, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Sharp, A.N.; Heazell, A.E.; Baczyk, D.; Dunk, C.E.; Lacey, H.A.; Jones, C.J.; Perkins, J.E.; Kingdom, J.C.; Baker, P.N.; Crocker, I.P. Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast. PLoS ONE 2014, 9, e87621. [Google Scholar] [CrossRef]
- Heazell, A.E.; Lacey, H.A.; Jones, C.J.; Huppertz, B.; Baker, P.N.; Crocker, I.P. Effects of oxygen on cell turnover and expression of regulators of apoptosis in human placental trophoblast. Placenta 2008, 29, 175–186. [Google Scholar] [CrossRef]
- Londero, A.P.; Orsaria, M.; Marzinotto, S.; Grassi, T.; Fruscalzo, A.; Calcagno, A.; Bertozzi, S.; Nardini, N.; Stella, E.; Lelle, R.J.; et al. Placental aging and oxidation damage in a tissue micro-array model: An immunohistochemistry study. Histochem. Cell Biol. 2016, 146, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.H.; Hawley, T.S.; Hawley, R.G.; MacDougall, J.R.; Kerbel, R.S.; Khoo, N.; Lala, P.K. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 1993, 206, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Gartel, A.L.; Radhakrishnan, S.K. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 2005, 65, 3980–3985. [Google Scholar] [CrossRef] [PubMed]
- Rydnert, J.; Pfeifer-Ohlsson, S.; Goustin, A.S.; Ohlsson, R. Temporal and spatial pattern of cellular myc oncogene expression during human placental development. Placenta 1987, 8, 339–345. [Google Scholar] [CrossRef]
- Rahat, B.; Hamid, A.; Ahmad Najar, R.; Bagga, R.; Kaur, J. Epigenetic mechanisms regulate placental c-myc and hTERT in normal and pathological pregnancies; c-myc as a novel fetal DNA epigenetic marker for pre-eclampsia. Mol. Hum. Reprod. 2014, 20, 1026–1040. [Google Scholar] [CrossRef] [PubMed]
- Gartel, A.L.; Tyner, A.L. Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp. Cell Res. 1999, 246, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Kreis, N.N.; Sanhaji, M.; Rieger, M.A.; Louwen, F.; Yuan, J. p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells. Oncogene 2014, 33, 5716–5728. [Google Scholar] [CrossRef]
- Dash, P.R.; Cartwright, J.E.; Whitley, G.S. Nitric oxide inhibits polyamine-induced apoptosis in the human extravillous trophoblast cell line SGHPL-4. Hum. Reprod. 2003, 18, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Duensing, A.; Ghanem, L.; Steinman, R.A.; Liu, Y.; Duensing, S. p21(Waf1/Cip1) deficiency stimulates centriole overduplication. Cell Cycle 2006, 5, 2899–2902. [Google Scholar] [CrossRef]
- Bunz, F.; Dutriaux, A.; Lengauer, C.; Waldman, T.; Zhou, S.; Brown, J.P.; Sedivy, J.M.; Kinzler, K.W.; Vogelstein, B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998, 282, 1497–1501. [Google Scholar] [CrossRef]
- Muschol-Steinmetz, C.; Friemel, A.; Kreis, N.N.; Reinhard, J.; Yuan, J.; Louwen, F. Function of survivin in trophoblastic cells of the placenta. PLoS ONE 2013, 8, e73337. [Google Scholar] [CrossRef] [PubMed]
- Ritter, A.; Friemel, A.; Kreis, N.N.; Louwen, F.; Yuan, J. Impact of Polo-like kinase 1 inhibitors on human adipose tissue-derived mesenchymal stem cells. Oncotarget 2016, 7, 84271–84285. [Google Scholar] [CrossRef] [PubMed]
- Pavan, L.; Tarrade, A.; Hermouet, A.; Delouis, C.; Titeux, M.; Vidaud, M.; Therond, P.; Evain-Brion, D.; Fournier, T. Human invasive trophoblasts transformed with simian virus 40 provide a new tool to study the role of PPARgamma in cell invasion process. Carcinogenesis 2003, 24, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Coulombe, P.; Meloche, S. Atypical mitogen-activated protein kinases: Structure, regulation and functions. Biochim. Biophys. Acta 2007, 1773, 1376–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83. [Google Scholar] [CrossRef]
- Al-Mahdi, R.; Babteen, N.; Thillai, K.; Holt, M.; Johansen, B.; Wetting, H.L.; Seternes, O.M.; Wells, C.M. A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adh. Migr. 2015, 9, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Huang da, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef]
- Librach, C.L.; Werb, Z.; Fitzgerald, M.L.; Chiu, K.; Corwin, N.M.; Esteves, R.A.; Grobelny, D.; Galardy, R.; Damsky, C.H.; Fisher, S.J. 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J. Cell Biol. 1991, 113, 437–449. [Google Scholar] [CrossRef]
- Staun-Ram, E.; Goldman, S.; Gabarin, D.; Shalev, E. Expression and importance of matrix metalloproteinase 2 and 9 (MMP-2 and -9) in human trophoblast invasion. Reprod. Biol. Endocrinol. 2004, 2, 59. [Google Scholar] [CrossRef]
- Long, W.; Foulds, C.E.; Qin, J.; Liu, J.; Ding, C.; Lonard, D.M.; Solis, L.M.; Wistuba, I.; Qin, J.; Tsai, S.Y.; et al. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J. Clin. Investig. 2012, 122, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Juttermann, R.; Soloway, P.D. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem. 2000, 275, 26411–26415. [Google Scholar] [CrossRef] [PubMed]
- Kreis, N.N.; Louwen, F.; Zimmer, B.; Yuan, J. Loss of p21Cip1/CDKN1A renders cancer cells susceptible to Polo-like kinase 1 inhibition. Oncotarget 2015, 6, 6611–6626. [Google Scholar] [CrossRef] [PubMed]
- Wagener, J.; Yang, W.; Kazuschke, K.; Winterhager, E.; Gellhaus, A. CCN3 regulates proliferation and migration properties in Jeg3 trophoblast cells via ERK1/2, Akt and Notch signalling. Mol. Hum. Reprod. 2013, 19, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Kipkeew, F.; Kirsch, M.; Klein, D.; Wuelling, M.; Winterhager, E.; Gellhaus, A. CCN1 (CYR61) and CCN3 (NOV) signaling drives human trophoblast cells into senescence and stimulates migration properties. Cell Adh. Migr. 2016, 10, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Al-Odaini, A.A.; Arakelian, A.; Rabbani, S.A.; Ali, S.; Lebrun, J.J. A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFbeta-mediated breast cancer cell migration and invasion. Breast Cancer Res. 2012, 14, R127. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Hulit, J.; Suyama, K.; Eugenin, E.A.; Belbin, T.J.; Loudig, O.; Smirnova, T.; Zhou, Z.N.; Segall, J.; Locker, J.; et al. p21CIP1 mediates reciprocal switching between proliferation and invasion during metastasis. Oncogene 2013, 32, 2292–2303. [Google Scholar] [CrossRef]
- Lee, S.; Helfman, D.M. Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J. Biol. Chem. 2004, 279, 1885–1891. [Google Scholar] [CrossRef]
- Kim, E.M.; Jung, C.H.; Kim, J.; Hwang, S.G.; Park, J.K.; Um, H.D. The p53/p21 Complex Regulates Cancer Cell Invasion and Apoptosis by Targeting Bcl-2 Family Proteins. Cancer Res. 2017, 77, 3092–3100. [Google Scholar] [CrossRef] [Green Version]
- Okuma, A.; Hanyu, A.; Watanabe, S.; Hara, E. p16(Ink4a) and p21(Cip1/Waf1) promote tumour growth by enhancing myeloid-derived suppressor cells chemotaxis. Nat. Commun. 2017, 8, 2050. [Google Scholar] [CrossRef]
- Torgovnick, A.; Heger, J.M.; Liaki, V.; Isensee, J.; Schmitt, A.; Knittel, G.; Riabinska, A.; Beleggia, F.; Laurien, L.; Leeser, U.; et al. The Cdkn1a(SUPER) Mouse as a Tool to Study p53-Mediated Tumor Suppression. Cell Rep. 2018, 25, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Kostenko, S.; Dumitriu, G.; Moens, U. Tumour promoting and suppressing roles of the atypical MAP kinase signalling pathway ERK3/4-MK5. J. Mol. Signal. 2012, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Tanguay, P.L.; Rodier, G.; Meloche, S. C-terminal domain phosphorylation of ERK3 controlled by Cdk1 and Cdc14 regulates its stability in mitosis. Biochem. J. 2010, 428, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Kreis, N.N.; Friemel, A.; Zimmer, B.; Roth, S.; Rieger, M.A.; Rolle, U.; Louwen, F.; Yuan, J. Mitotic p21Cip1/CDKN1A is regulated by cyclin-dependent kinase 1 phosphorylation. Oncotarget 2016, 7, 50215–50228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deleris, P.; Trost, M.; Topisirovic, I.; Tanguay, P.L.; Borden, K.L.; Thibault, P.; Meloche, S. Activation loop phosphorylation of ERK3/ERK4 by group I p21-activated kinases (PAKs) defines a novel PAK-ERK3/4-MAPK-activated protein kinase 5 signaling pathway. J. Biol. Chem. 2011, 286, 6470–6478. [Google Scholar] [CrossRef] [PubMed]
- Elkhadragy, L.; Chen, M.; Miller, K.; Yang, M.H.; Long, W. A regulatory BMI1/let-7i/ERK3 pathway controls the motility of head and neck cancer cells. Mol. Oncol. 2017, 11, 194–207. [Google Scholar] [CrossRef]
- Alsaran, H.; Elkhadragy, L.; Shakya, A.; Long, W. L290P/V mutations increase ERK3’s cytoplasmic localization and migration/invasion-promoting capability in cancer cells. Sci. Rep. 2017, 7, 14979. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Liu, M.; Wang, Y.; Yang, T.; Li, D.; Ding, F.; Bai, G.; Li, Q. TIMP2 is a Poor Prognostic Factor and Predicts Metastatic Biological Behavior in Gastric Cancer. Sci. Rep. 2018, 8, 9629. [Google Scholar] [CrossRef]
- Valacca, C.; Tassone, E.; Mignatti, P. TIMP-2 Interaction with MT1-MMP Activates the AKT Pathway and Protects Tumor Cells from Apoptosis. PLoS ONE 2015, 10, e0136797. [Google Scholar] [CrossRef]
- Onogi, A.; Naruse, K.; Sado, T.; Tsunemi, T.; Shigetomi, H.; Noguchi, T.; Yamada, Y.; Akasaki, M.; Oi, H.; Kobayashi, H. Hypoxia inhibits invasion of extravillous trophoblast cells through reduction of matrix metalloproteinase (MMP)-2 activation in the early first trimester of human pregnancy. Placenta 2011, 32, 665–670. [Google Scholar] [CrossRef]
- Kreis, N.N.; Sommer, K.; Sanhaji, M.; Kramer, A.; Matthess, Y.; Kaufmann, M.; Strebhardt, K.; Yuan, J. Long-term downregulation of Polo-like kinase 1 increases the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). Cell Cycle 2009, 8, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Ritter, A.; Sanhaji, M.; Friemel, A.; Roth, S.; Rolle, U.; Louwen, F.; Yuan, J. Functional analysis of phosphorylation of the mitotic centromere-associated kinesin by Aurora B kinase in human tumor cells. Cell Cycle 2015, 14, 3755–3767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kreis, N.-N.; Friemel, A.; Ritter, A.; Roth, S.; Rolle, U.; Louwen, F.; Yuan, J. Function of p21 (Cip1/Waf1/CDKN1A) in Migration and Invasion of Cancer and Trophoblastic Cells. Cancers 2019, 11, 989. https://doi.org/10.3390/cancers11070989
Kreis N-N, Friemel A, Ritter A, Roth S, Rolle U, Louwen F, Yuan J. Function of p21 (Cip1/Waf1/CDKN1A) in Migration and Invasion of Cancer and Trophoblastic Cells. Cancers. 2019; 11(7):989. https://doi.org/10.3390/cancers11070989
Chicago/Turabian StyleKreis, Nina-Naomi, Alexandra Friemel, Andreas Ritter, Susanne Roth, Udo Rolle, Frank Louwen, and Juping Yuan. 2019. "Function of p21 (Cip1/Waf1/CDKN1A) in Migration and Invasion of Cancer and Trophoblastic Cells" Cancers 11, no. 7: 989. https://doi.org/10.3390/cancers11070989
APA StyleKreis, N. -N., Friemel, A., Ritter, A., Roth, S., Rolle, U., Louwen, F., & Yuan, J. (2019). Function of p21 (Cip1/Waf1/CDKN1A) in Migration and Invasion of Cancer and Trophoblastic Cells. Cancers, 11(7), 989. https://doi.org/10.3390/cancers11070989