PROTAC-Mediated GSPT1 Degradation Impairs the Expression of Fusion Genes in Acute Myeloid Leukemia
<p>GU3341 PROTAC induces stronger anti-AML activity in RUNX1::RUNX1T1 cell lines compared to palbociclib. (<b>A</b>) The chemical structure of CDK6-PROTACs: BSJ-03-123, CST651, and GU3341. (<b>B</b>) Quantitative PCR analysis of the expression levels of CRBN and VHL in Kasumi-1 and SKNO-1 cell lines (<span class="html-italic">n</span> = 1 biologically independent sample). (<b>C</b>) Proliferation curve of Kasumi-1 cell line treated with palbociclib, BSJ-03-123, CST651, and GU3341 for 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>D</b>) Viability of Kasumi-1 and SKNO-1 cell lines treated with palbociclib, BSJ-03-123, CST651, GU3341, and DMSO for 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). Significant <span class="html-italic">p</span>-values were plotted to compare differences between drug-treatment groups at the same dose. (<b>E</b>) Number of colonies of Kasumi-1 cell line treated with palbociclib, BSJ-03-123, CST651, GU3341, and DMSO for 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>F</b>) Images of colony formation assay of Kasumi-1 cell line treated with 1000 nM palbociclib, BSJ-03-123, CST651, GU3341, and DMSO for 72 h. * (<span class="html-italic">p</span> < 0.05), ** (<span class="html-italic">p</span> < 0.01), *** (<span class="html-italic">p</span> < 0.001), **** (<span class="html-italic">p</span> < 0.0001) indicate differences between treatment groups.</p> "> Figure 2
<p>CDK6-PROTACs preferentially reduce CDK6 protein levels. (<b>A</b>) Western blotting of CDK6, CDK4, and GAPDH in Kasumi-1 cell line treated with BSJ-03-123 or DMSO for 24, 48, and 72 h. (<b>B</b>) Western blotting of CDK6, CDK4, and vinculin in Kasumi-1 cells treated with CST651 or DMSO for 24, 48, and 72 h. (<b>C</b>) Western blotting of CDK6, CDK4, and vinculin in Kasumi-1 cells treated with GU3341 or DMSO for 24, 48, and 72 h. (<b>D</b>) Western blotting of P-Rb (Ser780) and vinculin in Kasumi-1 cells treated with CST651 or DMSO for 6 and 24 h. (<b>E</b>) Western blotting of P-Rb (Ser780) and vinculin in Kasumi-1 cells treated with GU3341 or DMSO for 6 and 24 h.</p> "> Figure 3
<p>GU3341 reduces GSPT1 and Ikaros protein levels in RUNX1::RUNX1T1 AML cells. (<b>A</b>) Percentage of cells in subG1 phase of the cell cycle in Kasumi-1 cells after treatment with palbociclib or GU3341 or DMSO for 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). Significant <span class="html-italic">p</span>-values were plotted to compare differences between drug-treatment groups at the same dose. (<b>B</b>) Percentage of cells in G1/S/G2M phases of cell cycle in Kasumi-1 cells after treatment with palbociclib or GU3341 or DMSO for 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>C</b>) Apoptosis assay Sytox Red in Kasumi-1 cells after treatment with palbociclib or GU3341 or DMSO for 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). Significant <span class="html-italic">p</span>-values were plotted to compare differences between drug-treatment groups at the same dose. (<b>D</b>) Western blotting of GSPT1, Ikaros, β-tubulin, vinculin in Kasumi-1 cells treated with BSJ-03-123, CST651, GU3341, or DMSO for 24 h. * (<span class="html-italic">p</span> < 0.05) and ** (<span class="html-italic">p</span> < 0.01) indicate differences between treatment groups.</p> "> Figure 4
<p>CC-90009 induces anti-AML activity in a RUNX1::RUNX1T1 cell line. (<b>A</b>) The chemical structure of CC-90009. (<b>B</b>) Proliferation curve of Kasumi-1 cell line treated with CC-90009 or DMSO for 24, 48, and 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>C</b>) Western blotting of GSPT1, Ikaros, and β-tubulin in Kasumi-1 cells treated with CC-90009 or DMSO for 72 h. (<b>D</b>) Western blotting of RUNX1::RUNX1T1, RUNX1 and β-tubulin in Kasumi-1 cells treated with CC-90009 or DMSO for 24 and 48 h. (<b>E</b>) Quantitative PCR analysis of the expression levels of RUNX1::RUNX1T1 transcripts in Kasumi-1 cells treated with CC-90009 or DMSO for 24 and 48 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>F</b>) Quantitative PCR analysis of the expression levels of RUNX1 transcripts in Kasumi-1 cells treated with CC-90009 or DMSO for 24 and 48 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>G</b>) Quantitative PCR analysis of the expression levels of ERG transcripts in Kasumi-1 cells treated with CC-90009 or DMSO for 24 and 48 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>H</b>) Western blotting of ERG and GAPDH in Kasumi-1 cells treated with CC-90009 or DMSO for 24 and 48 h. * (<span class="html-italic">p</span> < 0.05), ** (<span class="html-italic">p</span> < 0.01), *** (<span class="html-italic">p</span> < 0.001), **** (<span class="html-italic">p</span> < 0.0001) indicate differences between controls and treatment groups.</p> "> Figure 5
<p>CC-90009 treatment reduces RUNX1::RUNX1T1 expression in PDX and primary AML cells. (<b>A</b>) Proliferation curve of RUNX1::RUNX1T1 PDX cells treated with CC-90009 or DMSO. Cells were counted and treatment was refreshed every 3 days (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>B</b>) Proliferation curve of primary RUNX1::RUNX1T1 AML cells treated with CC-90009 or DMSO. Cells were counted and treatment was refreshed every 3 days (<span class="html-italic">n</span> = 2 biologically independent samples). (<b>C</b>) Cell cycle analysis after treatment with CC-90009 or DMSO for 3 days (<span class="html-italic">n</span> = 1 biologically independent samples). (<b>D</b>) Proliferation curve of RUNX1::RUNX1T1 PDX cells treated with CC-90009 or DMSO for 24 and 48 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>E</b>) Western blotting of RUNX1::RUNX1T1, RUNX1, and vinculin in RUNX1::RUNX1T1 PDX cells treated with CC-900009 or DMSO for 24 and 48 h. (<b>F</b>) Quantitative PCR analysis of the expression level of RUNX1::RUNX1T1 transcripts in RUNX1::RUNX1T1 PDX cells treated with CC-90009 or DMSO for 24 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>G</b>) Quantitative PCR analysis of the expression of RUNX1 transcript in RUNX1::RUNX1T1 PDX cells treated with CC-900009 or DMSO for 24 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>H</b>) Quantitative PCR analysis of the expression of ERG transcript in RUNX1::RUNX1T1 PDX cells treated with CC-900009 or DMSO for 24 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). * (<span class="html-italic">p</span> < 0.05), ** (<span class="html-italic">p</span> < 0.01), *** (<span class="html-italic">p</span> < 0.001), **** (<span class="html-italic">p</span> < 0.0001) indicate differences between controls and treatment groups.</p> "> Figure 6
<p>CC-90009 and GU3341 PROTACs induce anti-AML activity in FUS::ERG cell lines. (<b>A</b>) Quantitative PCR analysis of the expression levels of CRBN in TSU-1621-MT and YNH-1 cell lines (<span class="html-italic">n</span> = 1 independent experiment). (<b>B</b>) Proliferation curve of TSU-1621-MT cell line treated with CC-90009 and DMSO for 24 and 48 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>C</b>) Viability of TSU-1621-MT cells treated with CC-90009 and DMSO for 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>D</b>) Quantitative PCR analysis of the expression level of FUS::ERG transcripts in TSU-1621-MT cells treated with CC-90009 or DMSO for 24 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>E</b>) Western blotting of GSPT1, Ikaros, β-tubulin, vinculin in TSU-1621-MT and YNH-1 cells treated with BSJ-03-123, CST651, GU3341, or DMSO for 24 h. (<b>F</b>) Proliferation curve of TSU-1621-MT and YNH-1 cell lines treated with GU3341 and DMSO for 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>G</b>) Viability of TSU-1621-MT cells treated with GU3341 and DMSO for 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). (<b>H</b>) Viability of YNH-1 cells treated with GU3341 and DMSO for 72 h (mean ± SD, <span class="html-italic">n</span> = 3 biologically independent samples). * (<span class="html-italic">p</span> < 0.05), ** (<span class="html-italic">p</span> < 0.01), *** (<span class="html-italic">p</span> < 0.001), **** (<span class="html-italic">p</span> < 0.0001) indicate differences between controls and treatment groups.</p> ">
1. Introduction
2. Materials and Methods
2.1. Cell Lines Culture
2.2. PDX and Primary Culture
2.3. Drug Treatment
2.4. Colony Formation Assay
2.5. RNA Isolation and RT-qPCR
2.6. Immunoblot Analysis
2.7. Cell Cycle Analysis
2.8. Apoptosis Assay
2.9. Statistical Analysis
3. Results
3.1. GU3341 PROTAC Induces Stronger Anti-AML Activity in RUNX1::RUNX1T1 Cell Lines Compared to Palbociclib
3.2. CDK6-PROTACs Preferentially Reduce CDK6 Protein Levels
3.3. GU3341 Reduces GSPT1 and Ikaros Protein Levels in AML Cells
3.4. Degradation of GSPT1 Impairs RUNX1::RUNX1T1 Expression
3.5. CC-90009 Treatment Impairs RUNX1::RUNX1T1 Expression in Primary AML Cells
3.6. CC-90009 and GU3341 PROTACs Induce Anti-AML Activity in FUS::ERG Cell Lines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Garcia-Manero, G.; Konopleva, M.; Ravandi, F. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J. 2021, 11, 41. [Google Scholar] [CrossRef]
- Zwaan, C.M.; Kolb, E.A.; Reinhardt, D.; Abrahamsson, J.; Adachi, S.; Aplenc, R.; De Bont, E.S.; De Moerloose, B.; Dworzak, M.; Gibson, B.E.; et al. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia. J. Clin. Oncol. 2015, 33, 2949–2962. [Google Scholar] [CrossRef]
- Elgarten, C.W.; Aplenc, R. Pediatric acute myeloid leukemia: Updates on biology, risk stratification, and therapy. Curr. Opin. Pediatr. 2020, 32, 57–66. [Google Scholar] [CrossRef]
- Meyers, R.M.; Bryan, J.G.; McFarland, J.M.; Weir, B.A.; Sizemore, A.E.; Xu, H.; Dharia, N.V.; Montgomery, P.G.; Cowley, G.S.; Pantel, S.; et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 2017, 49, 1779–1784. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell. Biochem. Funct. 2019, 37, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Sosic, I.; Bricelj, A.; Steinebach, C. E3 ligase ligand chemistries: From building blocks to protein degraders. Chem. Soc. Rev. 2022, 51, 3487–3534. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Zhou, H.; Xu, R.; Zhao, Y.; Chinnaswamy, K.; McEachern, D.; Chen, J.; Yang, C.Y.; Liu, Z.; Wang, M.; et al. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell 2019, 36, 498–511.e17. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Zhang, X.; Lv, D.; Zhang, Q.; He, Y.; Zhang, P.; Liu, X.; Thummuri, D.; Yuan, Y.; Janet, S.; et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 2019, 25, 1938–1947. [Google Scholar] [CrossRef]
- He, Y.; Khan, S.; Huo, Z.; Lv, D.; Zhang, X.; Liu, X.; Yuan, Y.; Hromas, R.; Xu, M.; Zheng, G.; et al. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. J. Hematol. Oncol. 2020, 13, 103. [Google Scholar] [CrossRef]
- Bhansali, R.S.; Pratz, K.W.; Lai, C. Recent advances in targeted therapies in acute myeloid leukemia. J. Hematol. Oncol. 2023, 16, 29. [Google Scholar] [CrossRef]
- Liu, W.; Yi, J.M.; Liu, Y.; Chen, C.; Zhang, K.X.; Zhou, C.; Zhan, H.E.; Zhao, L.; Morales, S.; Zhao, X.L.; et al. CDK6 Is a Potential Prognostic Biomarker in Acute Myeloid Leukemia. Front. Genet. 2021, 11, 600227. [Google Scholar] [CrossRef]
- Guzman, M.L. CDK6 is a regulator of stem cells “Egr” to wake up. Blood 2015, 125, 7–9. [Google Scholar] [CrossRef]
- Clark, A.S.; Karasic, T.B.; DeMichele, A.; Vaughn, D.J.; O’Hara, M.; Perini, R.; Zhang, P.; Lal, P.; Feldman, M.; Gallagher, M.; et al. Palbociclib (PD0332991)-a Selective and Potent Cyclin-Dependent Kinase Inhibitor: A Review of Pharmacodynamics and Clinical Development. JAMA Oncol. 2016, 2, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Soria, N.; McKenzie, L.; Draper, J.; Ptasinska, A.; Issa, H.; Potluri, S.; Blair, H.J.; Pickin, A.; Isa, A.; Chin, P.S.; et al. The Oncogenic Transcription Factor RUNX1/ETO Corrupts Cell Cycle Regulation to Drive Leukemic Transformation. Cancer Cell 2019, 35, 705. [Google Scholar] [CrossRef]
- Placke, T.; Faber, K.; Nonami, A.; Putwain, S.L.; Salih, H.R.; Heidel, F.H.; Kramer, A.; Root, D.E.; Barbie, D.A.; Krivtsov, A.V.; et al. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood 2014, 124, 13–23. [Google Scholar] [CrossRef]
- Schmoellerl, J.; Barbosa, I.A.M.; Eder, T.; Brandstoetter, T.; Schmidt, L.; Maurer, B.; Troester, S.; Pham, H.T.T.; Sagarajit, M.; Ebner, J.; et al. CDK6 is an essential direct target of NUP98 fusion proteins in acute myeloid leukemia. Blood 2020, 136, 387–400. [Google Scholar] [CrossRef]
- Surka, C.; Jin, L.; Mbong, N.; Lu, C.C.; Jang, I.S.; Rychak, E.; Mendy, D.; Clayton, T.; Tindall, E.; Hsu, C.; et al. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 2021, 137, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Sellar, R.S.; Sperling, A.S.; Slabicki, M.; Gasser, J.A.; McConkey, M.E.; Donovan, K.A.; Mageed, N.; Adams, D.N.; Zou, C.; Miller, P.G.; et al. Degradation of GSPT1 causes TP53-independent cell death in leukemia while sparing normal hematopoietic stem cells. J. Clin. Investig. 2022, 132, e153514. [Google Scholar] [CrossRef] [PubMed]
- Noort, S.; Zimmermann, M.; Reinhardt, D.; Cuccuini, W.; Pigazzi, M.; Smith, J.; Ries, R.E.; Alonzo, T.A.; Hirsch, B.; Tomizawa, D.; et al. Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: A retrospective study by the I-BFM Study Group. Blood 2018, 132, 1584–1592. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, M.; Blair, H.; Troester, S.; Szoltysek, K.; Cameron, R.; Ashtiani, M.; Krippner-Heidenreich, A.; Grebien, F.; McGeehan, G.; Zwaan, C.M.; et al. The MLL-Menin Interaction is a Therapeutic Vulnerability in NUP98-rearranged AML. Hemasphere 2023, 7, e935. [Google Scholar] [CrossRef]
- Brand, M.; Jiang, B.; Bauer, S.; Donovan, K.A.; Liang, Y.; Wang, E.S.; Nowak, R.P.; Yuan, J.C.; Zhang, T.; Kwiatkowski, N.; et al. Homolog-Selective Degradation as a Strategy to Probe the Function of CDK6 in AML. Cell Chem. Biol. 2019, 26, 300–306.e9. [Google Scholar] [CrossRef] [PubMed]
- Uras, I.Z.; Walter, G.J.; Scheicher, R.; Bellutti, F.; Prchal-Murphy, M.; Tigan, A.S.; Valent, P.; Heidel, F.H.; Kubicek, S.; Scholl, C.; et al. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6. Blood 2016, 127, 2890–2902. [Google Scholar] [CrossRef] [PubMed]
- Steinebach, C.; Ng, Y.L.D.; Sosic, I.; Lee, C.S.; Chen, S.; Lindner, S.; Vu, L.P.; Bricelj, A.; Haschemi, R.; Monschke, M.; et al. Systematic exploration of different E3 ubiquitin ligases: An approach towards potent and selective CDK6 degraders. Chem. Sci. 2020, 11, 3474–3486. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Handa, H. Molecular mechanisms of thalidomide and its derivatives. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2020, 96, 189–203. [Google Scholar] [CrossRef]
- Mandoli, A.; Singh, A.A.; Prange, K.H.M.; Tijchon, E.; Oerlemans, M.; Dirks, R.; Ter Huurne, M.; Wierenga, A.T.J.; Janssen-Megens, E.M.; Berentsen, K.; et al. The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs. Cell Rep. 2016, 17, 2087–2100. [Google Scholar] [CrossRef] [PubMed]
- Assi, S.A.; Imperato, M.R.; Coleman, D.J.L.; Pickin, A.; Potluri, S.; Ptasinska, A.; Chin, P.S.; Blair, H.; Cauchy, P.; James, S.R.; et al. Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nat. Genet. 2019, 51, 151–162. [Google Scholar] [CrossRef]
- Ptasinska, A.; Assi, S.A.; Martinez-Soria, N.; Imperato, M.R.; Piper, J.; Cauchy, P.; Pickin, A.; James, S.R.; Hoogenkamp, M.; Williamson, D.; et al. Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Rep. 2014, 8, 1974–1988. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.K.; Foster, S.D.; Wang, X.; Knezevic, K.; Schutte, J.; Kaimakis, P.; Chilarska, P.M.; Kinston, S.; Ouwehand, W.H.; Dzierzak, E.; et al. Combinatorial transcriptional control in blood stem/progenitor cells: Genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 2010, 7, 532–544. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perzolli, A.; Steinebach, C.; Krönke, J.; Gütschow, M.; Zwaan, C.M.; Barneh, F.; Heidenreich, O. PROTAC-Mediated GSPT1 Degradation Impairs the Expression of Fusion Genes in Acute Myeloid Leukemia. Cancers 2025, 17, 211. https://doi.org/10.3390/cancers17020211
Perzolli A, Steinebach C, Krönke J, Gütschow M, Zwaan CM, Barneh F, Heidenreich O. PROTAC-Mediated GSPT1 Degradation Impairs the Expression of Fusion Genes in Acute Myeloid Leukemia. Cancers. 2025; 17(2):211. https://doi.org/10.3390/cancers17020211
Chicago/Turabian StylePerzolli, Alicia, Christian Steinebach, Jan Krönke, Michael Gütschow, C. Michel Zwaan, Farnaz Barneh, and Olaf Heidenreich. 2025. "PROTAC-Mediated GSPT1 Degradation Impairs the Expression of Fusion Genes in Acute Myeloid Leukemia" Cancers 17, no. 2: 211. https://doi.org/10.3390/cancers17020211
APA StylePerzolli, A., Steinebach, C., Krönke, J., Gütschow, M., Zwaan, C. M., Barneh, F., & Heidenreich, O. (2025). PROTAC-Mediated GSPT1 Degradation Impairs the Expression of Fusion Genes in Acute Myeloid Leukemia. Cancers, 17(2), 211. https://doi.org/10.3390/cancers17020211