A Personalized Approach for Oligometastatic Prostate Cancer: Current Understanding and Future Directions
<p>Metastatic niche and the seed and soil hypothesis of metastasis.</p> "> Figure 2
<p>Treatment strategies for OMPC. Abbreviation: ARPI = Androgen receptor pathway inhibitor; ADT = Androgen deprivation therapy; IMRT = Intensity-modulated radiotherapy; OMPC = Oligometastatic prostate cancer; SBRT = Stereotactic body radiotherapy.</p> ">
1. Introduction
2. Biologic and Molecular Basis of OMPC
3. Assessing OMPC
3.1. Circulating Tumor Cells (CTCs)
3.2. PSMA-Based Imaging
4. Current Treatment Strategies
4.1. Combination Systemic Therapy Alone
4.2. Castration-Resistant OMPC: Can We Take the Same Approach?
5. Future Directions
5.1. Diagnostic Accuracy
5.2. Novel Therapeutic Strategies
5.3. Artificial Intelligence
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADT | androgen deprivation therapy |
AI | artificial intelligence |
AR | androgen receptor |
ARTA | androgen receptor targeting agent |
ASCO | American Society of Clinical Oncology |
BCD | biochemically recurrent disease |
BST | best systemic therapy |
cfDNA | cell-free DNA |
CI | confidence interval |
CRP | cytoreductive prostatectomy |
CRPC | castration-resistant prostate cancer |
CT | computed tomography |
CTCs | circulating tumor cells |
ctDNA | circulating tumor DNA |
DDSB | DNA double-strand break |
DTCs | disseminated tumor cells |
EBRT | external beam radiotherapy |
EMT | epithelial–mesenchymal transition |
ESTRO | European Society for Radiotherapy and Oncology |
HR | hazard ratio |
HSPC | hormone sensitive prostate cancer |
mCRPC | metastatic castration-resistant prostate cancer |
MDT | metastasis directed therapy |
mHSPC | metastatic hormone-sensitive prostate cancer |
MMR | mismatch repair |
MRI | magnetic resonance imaging |
MSI-H | microsatellite instability high |
NCDB | National Cancer Database |
NGS | next-generation sequencing |
nmCRPC | non-metastatic castration resistant prostate cancer |
OM | oligometastatic |
OMPC | oligometastatic prostate cancer |
OR | odds ratio |
OS | overall survival |
PET | Positron Emission Tomography |
PFS | progression-free survival |
PSMA | prostate-specific membrane antigen |
PTEN | phosphatase and tensin homolog |
rPFS | radiographic progression-free survival |
RIPK2 | receptor-interacting protein kinase 2 |
RP | radical prostatectomy |
RT | radiotherapy |
SABR | stereotactive ablative radiotherapy |
SBRT | stereotactic body radiotherapy |
SEER | Surveillance Epidemiology and End Results |
SLND | salvage lymph node dissection |
SOC | standard of care |
STAMPEDE | Systemic Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy |
SUV | standardized uptake value |
Treatment escalation-free survival | TE-FS |
TTR | tumor reactive effector T-cells |
VEGFR1 | vascular endothelial growth factor receptor 1 |
References
- Schatten, H. Brief Overview of Prostate Cancer Statistics, Grading, Diagnosis and Treatment Strategies. Adv. Exp. Med. Biol. 2018, 1095, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics.html (accessed on 1 August 2023).
- Perera, M.; Papa, N.; Roberts, M.; Williams, M.; Udovicich, C.; Vela, I.; Christidis, D.; Bolton, D.; Hofman, M.S.; Lawrentschuk, N.; et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer—Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur. Urol. 2019, 77, 403–417. [Google Scholar] [CrossRef]
- Mapelli, P.; Incerti, E.; Ceci, F.; Castellucci, P.; Fanti, S.; Picchio, M. 11C- or 18F-Choline PET/CT for Imaging Evaluation of Biochemical Recurrence of Prostate Cancer. J. Nucl. Med. 2016, 57, 43S–48S. [Google Scholar] [CrossRef]
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Loh, J.; Davis, I.D.; Martin, J.M.; Siva, S. Extracranial Oligometastatic Renal Cell Carcinoma: Current Management and Future Directions. Futur. Oncol. 2014, 10, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Pitroda, S.P.; Khodarev, N.N.; Huang, L.; Uppal, A.; Wightman, S.C.; Ganai, S.; Joseph, N.; Pitt, J.; Brown, M.; Forde, M.; et al. Integrated molecular subtyping defines a curable oligometastatic state in colorectal liver metastasis. Nat. Commun. 2018, 9, 1793. [Google Scholar] [CrossRef]
- Joice, G.A.; Rowe, S.P.; Pienta, K.J.; Gorin, M.A. Oligometastatic prostate cancer. Curr. Opin. Urol. 2017, 27, 533–541. [Google Scholar] [CrossRef]
- Lievens, Y.; Guckenberger, M.; Gomez, D.; Hoyer, M.; Iyengar, P.; Kindts, I.; Romero, A.M.; Nevens, D.; Palma, D.; Park, C.; et al. Defining Oligometastatic Disease from a Radiation Oncology perspective: An ESTRO-ASTRO Consensus Document. Radiother. Oncol. 2020, 148, 157–166. [Google Scholar] [CrossRef]
- Ryan, C.J.; Elkin, E.P.; Small, E.J.; Duchane, J.; Carroll, P. Reduced incidence of bony metastasis at initial prostate cancer diagnosis: Data from CaPSURE™. Urol. Oncol. Semin. Orig. Investig. 2006, 24, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Deek, M.P.; Phillips, R.M.; Tran, P.T. Local Therapies in Oligometastatic and Oligoprogressive Prostate Cancer. Semin. Radiat. Oncol. 2021, 31, 242–249. [Google Scholar] [CrossRef]
- Parker, C.C.; James, N.D.; Brawley, C.D.; Clarke, N.W.; Hoyle, A.P.; Ali, A.; Ritchie, A.W.S.; Attard, G.; Chowdhury, S.; Cross, W.; et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): A randomised controlled phase 3 trial. Lancet 2018, 392, 2353–2366. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-M.; Kao, Y.-S. Metastases-Targeting Radiotherapy and ADT. JAMA Oncol. 2023, 9, 1587–1588. [Google Scholar] [CrossRef] [PubMed]
- Tosoian, J.J.; Gorin, M.A.; Ross, A.E.; Pienta, K.J.; Tran, P.T.; Schaeffer, E.M. Oligometastatic prostate cancer: Definitions, clinical outcomes, and treatment considerations. Nat. Rev. Urol. 2016, 14, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Berkovic, P.; De Meerleer, G.; Delrue, L.; Lambert, B.; Fonteyne, V.; Lumen, N.; Decaestecker, K.; Villeirs, G.; Vuye, P.; Ost, P. Salvage Stereotactic Body Radiotherapy for Patients with Limited Prostate Cancer Metastases: Deferring Androgen Deprivation Therapy. Clin. Genitourin. Cancer 2012, 11, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Zilli, T.; Achard, V.; Pra, A.D.; Schmidt-Hegemann, N.; Jereczek-Fossa, B.A.; Lancia, A.; Ingrosso, G.; Alongi, F.; Aluwini, S.; Arcangeli, S.; et al. Recommendations for radiation therapy in oligometastatic prostate cancer: An ESTRO-ACROP Delphi consensus. Radiother. Oncol. 2022, 176, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.J.; Su, M.; Saiduzzaman, B.M.; Tay, K.J.; Ho, H.S.S.; Tokas, T.; Somani, B.K.; Gauhar, V.; Yuen, J.S.P.; Chen, K. Oligometastatic Prostate Cancer—The Middle Child Syndrome. J. Clin. Med. 2023, 12, 7198. [Google Scholar] [CrossRef]
- Kleinclauss, F.; Thiery-Vuillemin, A. Prise en charge du cancer de la prostate oligo-métastatique. Progres En Urol. 2019, 29, S20–S34. [Google Scholar] [CrossRef] [PubMed]
- Jadvar, H.; Abreu, A.L.; Ballas, L.K.; Quinn, D.I. Oligometastatic Prostate Cancer: Current Status and Future Challenges. J. Nucl. Med. 2022, 63, 1628–1635. [Google Scholar] [CrossRef]
- Battaglia, A.; De Meerleer, G.; Tosco, L.; Moris, L.; Broeck, T.V.D.; Devos, G.; Everaerts, W.; Joniau, S. Novel Insights into the Management of Oligometastatic Prostate Cancer: A Comprehensive Review. Eur. Urol. Oncol. 2018, 2, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Juan, G.R.; Laura, F.H.; Javier, P.V.; Natalia, V.C.; Isabel, G.R.M.; Enrique, R.G.; Luis, S.P.J.; Pablo, A.L.; Noelia, S.S.; Roser, V.D.; et al. Where Do We Stand in the Management of Oligometastatic Prostate Cancer? A Comprehensive Review. Cancers 2022, 14, 2017. [Google Scholar] [CrossRef]
- Lussier, Y.A.; Xing, H.R.; Salama, J.K.; Khodarev, N.N.; Huang, Y.; Zhang, Q.; Khan, S.A.; Yang, X.; Hasselle, M.D.; Darga, T.E.; et al. MicroRNA Expression Characterizes Oligometastasis(es). PLoS ONE 2011, 6, e28650. [Google Scholar] [CrossRef] [PubMed]
- Paget, S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1989, 8, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Psaila, B.; Lyden, D. The metastatic niche: Adapting the foreign soil. Nat. Rev. Cancer 2009, 9, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.N.; Rafii, S.; Lyden, D. Preparing the “Soil”: The Premetastatic Niche. Cancer Res. 2006, 66, 11089–11093. [Google Scholar] [CrossRef]
- Demaria, S.; Ng, B.; Devitt, M.L.; Babb, J.S.; Kawashima, N.; Liebes, L.; Formenti, S.C. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. 2004, 58, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-Y.; Oskarsson, T.; Acharyya, S.; Nguyen, D.X.; Zhang, X.H.-F.; Norton, L.; Massagué, J. Tumor Self-Seeding by Circulating Cancer Cells. Cell 2009, 139, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Logotheti, S.; Papadaki, E.; Zolota, V.; Logothetis, C.; Vrahatis, A.G.; Soundararajan, R.; Tzelepi, V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated “Omics” Approaches to Explore Measurable Metrics. Cancers 2023, 15, 4357. [Google Scholar] [CrossRef] [PubMed]
- Quintanal-Villalonga, Á.; Chan, J.M.; Yu, H.A.; Pe’er, D.; Sawyers, C.L.; Sen, T.; Rudin, C.M. Lineage plasticity in cancer: A shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 2020, 17, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Hugo, H.; Ackland, M.L.; Blick, T.; Lawrence, M.G.; Clements, J.A.; Williams, E.D.; Thompson, E.W. Epithelial—Mesenchymal and mesenchymal—Epithelial transitions in carcinoma progression. J. Cell. Physiol. 2007, 213, 374–383. [Google Scholar] [CrossRef]
- Kumar, S.; Park, S.H.; Cieply, B.; Schupp, J.; Killiam, E.; Zhang, F.; Rimm, D.L.; Frisch, S.M. A Pathway for the Control of Anoikis Sensitivity by E-Cadherin and Epithelial-to-Mesenchymal Transition. Mol. Cell. Biol. 2011, 31, 4036–4051. [Google Scholar] [CrossRef]
- Klarmann, G.J.; Hurt, E.M.; Mathews, L.A.; Zhang, X.; Duhagon, M.A.; Mistree, T.; Thomas, S.B.; Farrar, W.L. Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin. Exp. Metastasis 2009, 26, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Surcel, C.; Kretschmer, A.; Mirvald, C.; Sinescu, I.; Heidegger, I.; Tsaur, I. Molecular Mechanisms Related with Oligometastatic Prostate Cancer—Is It Just a Matter of Numbers? Cancers 2022, 14, 766. [Google Scholar] [CrossRef]
- Deek, M.P.; Van der Eecken, K.; Phillips, R.; Parikh, N.R.; Velho, P.I.; Lotan, T.L.; Kishan, A.U.; Maurer, T.; Boutros, P.C.; Hovens, C.; et al. The Mutational Landscape of Metastatic Castration-sensitive Prostate Cancer: The Spectrum Theory Revisited. Eur. Urol. 2021, 80, 632–640. [Google Scholar] [CrossRef]
- Mandel, P.C.; Huland, H.; Tiebel, A.; Haese, A.; Salomon, G.; Budäus, L.; Tilki, D.; Chun, F.; Heinzer, H.; Graefen, M.; et al. Enumeration and Changes in Circulating Tumor Cells and Their Prognostic Value in Patients Undergoing Cytoreductive Radical Prostatectomy for Oligometastatic Prostate Cancer—Translational Research Results from the Prospective ProMPT trial. Eur. Urol. Focus 2019, 7, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Hope, T.A.; Goodman, J.Z.; Allen, I.E.; Calais, J.; Fendler, W.P.; Carroll, P.R. Metaanalysis of 68Ga-PSMA-11 PET Accuracy for the Detection of Prostate Cancer Validated by Histopathology. J. Nucl. Med. 2018, 60, 786–793. [Google Scholar] [CrossRef]
- Dietlein, M.; Kobe, C.; Kuhnert, G.; Stockter, S.; Fischer, T.; Schomäcker, K.; Schmidt, M.; Dietlein, F.; Zlatopolskiy, B.D.; Krapf, P.; et al. Comparison of [18F]DCFPyL and [68Ga]Ga-PSMA-HBED-CC for PSMA-PET Imaging in Patients with Relapsed Prostate Cancer. Mol. Imaging Biol. 2015, 17, 575–584. [Google Scholar] [CrossRef]
- Kuten, J.; Fahoum, I.; Savin, Z.; Shamni, O.; Gitstein, G.; Hershkovitz, D.; Mabjeesh, N.J.; Yossepowitch, O.; Mishani, E.; Even-Sapir, E. Head-to-Head Comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in Staging Prostate Cancer Using Histopathology and Immunohistochemical Analysis as a Reference Standard. J. Nucl. Med. 2019, 61, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.-A. Flotufolastat F 18: Diagnostic First Approval. Mol. Diagn. Ther. 2023, 27, 631–636. [Google Scholar] [CrossRef]
- Schweizer, M.T.; Zhou, X.C.; Wang, H.; Yang, T.; Shaukat, F.; Partin, A.W.; Eisenberger, M.A.; Antonarakis, E.S. Metastasis-free survival is associated with overall survival in men with PSA-recurrent prostate cancer treated with deferred androgen deprivation therapy. Ann. Oncol. 2013, 24, 2881–2886. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Yi, W.S.; A Brasacchio, R.; Muhs, A.G.; Smudzin, T.; Williams, J.P.; Messing, E.; Okunieff, P. Is there a favorable subset of patients with prostate cancer who develop oligometastases? Int. J. Radiat. Oncol. 2004, 58, 3–10. [Google Scholar] [CrossRef]
- Diao, W.; Cao, Y.; Su, D.; Jia, Z. Impact of 68Gallium prostate-specific membrane antigen tracers on the management of patients with prostate cancer who experience biochemical recurrence. BJU Int. 2020, 127, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Connor, M.J.; Shah, T.T.; Horan, G.; Bevan, C.L.; Winkler, M.; Ahmed, H.U. Cytoreductive treatment strategies for de novo metastatic prostate cancer. Nat. Rev. Clin. Oncol. 2019, 17, 168–182. [Google Scholar] [CrossRef]
- Grinis, G.; Targonski, P.; Shaw, M.; Rubenstein, M.; Guinan, P.D. Cytoreductive surgery impedes metastasis and enhances the immune response: A preliminary report. J. Surg. Oncol. 1991, 48, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Callahan, M.K.; Barker, C.A.; Yamada, Y.; Yuan, J.; Kitano, S.; Mu, Z.; Rasalan, T.; Adamow, M.; Ritter, E.; et al. Immunologic Correlates of the Abscopal Effect in a Patient with Melanoma. N. Engl. J. Med. 2012, 366, 925–931. [Google Scholar] [CrossRef]
- Culp, S.H.; Schellhammer, P.F.; Williams, M.B. Might Men Diagnosed with Metastatic Prostate Cancer Benefit from Definitive Treatment of the Primary Tumor? A SEER-Based Study. Eur. Urol. 2014, 65, 1058–1066. [Google Scholar] [CrossRef]
- Gratzke, C.; Engel, J.; Stief, C.G. Role of Radical Prostatectomy in Metastatic Prostate Cancer: Data from the Munich Cancer Registry. Eur. Urol. 2014, 66, 602–603. [Google Scholar] [CrossRef]
- Sooriakumaran, P.; Karnes, J.; Stief, C.; Copsey, B.; Montorsi, F.; Hammerer, P.; Beyer, B.; Moschini, M.; Gratzke, C.; Steuber, T.; et al. A Multi-institutional Analysis of Perioperative Outcomes in 106 Men Who Underwent Radical Prostatectomy for Distant Metastatic Prostate Cancer at Presentation. Eur. Urol. 2016, 69, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, A.; Fossati, N.; Pfister, D.; Suardi, N.; Montorsi, F.; Shariat, S.; Grubmüller, B.; Gandaglia, G.; Briganti, A.; Karnes, R.J. Cytoreductive Radical Prostatectomy in Men with Prostate Cancer and Skeletal Metastases. Eur. Urol. Oncol. 2018, 1, 46–53. [Google Scholar] [CrossRef]
- Steuber, T.; Berg, K.D.; Røder, M.A.; Brasso, K.; Iversen, P.; Huland, H.; Tiebel, A.; Schlomm, T.; Haese, A.; Salomon, G.; et al. Does Cytoreductive Prostatectomy Really Have an Impact on Prognosis in Prostate Cancer Patients with Low-volume Bone Metastasis? Results from a Prospective Case-Control Study. Eur. Urol. Focus 2017, 3, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Rusthoven, C.G.; Jones, B.L.; Flaig, T.W.; Crawford, E.D.; Koshy, M.; Sher, D.J.; Mahmood, U.; Chen, R.C.; Chapin, B.F.; Kavanagh, B.D.; et al. Improved Survival with Prostate Radiation in Addition to Androgen Deprivation Therapy for Men with Newly Diagnosed Metastatic Prostate Cancer. J. Clin. Oncol. 2016, 34, 2835–2842. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Cho, Y.; Chang, J.S.; Chang, J.S.; Rha, K.H.; Rha, K.H.; Hong, S.J.; Hong, S.J.; Choi, Y.D.; Choi, Y.D.; et al. Does Radiotherapy for the Primary Tumor Benefit Prostate Cancer Patients with Distant Metastasis at Initial Diagnosis? PLoS ONE 2016, 11, e0147191. [Google Scholar] [CrossRef]
- Ost, P.; Bossi, A.; Decaestecker, K.; De Meerleer, G.; Giannarini, G.; Karnes, R.J.; Roach, M., 3rd; Briganti, A. Metastasis-directed Therapy of Regional and Distant Recurrences After Curative Treatment of Prostate Cancer: A Systematic Review of the Literature. Eur. Urol. 2015, 67, 852–863. [Google Scholar] [CrossRef] [PubMed]
- Ost, P.; Jereczek-Fossa, B.A.; Van As, N.; Zilli, T.; Muacevic, A.; Olivier, K.; Henderson, D.; Casamassima, F.; Orecchia, R.; Surgo, A.; et al. Progression-free Survival Following Stereotactic Body Radiotherapy for Oligometastatic Prostate Cancer Treatment-naive Recurrence: A Multi-institutional Analysis. Eur. Urol. 2016, 69, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Steuber, T.; Jilg, C.; Tennstedt, P.; De Bruycker, A.; Tilki, D.; Decaestecker, K.; Zilli, T.; Jereczek-Fossa, B.; Wetterauer, U.; Grosu, A.; et al. Standard of Care Versus Metastases-directed Therapy for PET-detected Nodal Oligorecurrent Prostate Cancer Following Multimodality Treatment: A Multi-institutional Case-control Study. Eur. Urol. Focus 2018, 5, 1007–1013. [Google Scholar] [CrossRef]
- De Bleser, E.; Tran, P.T.; Ost, P. Radiotherapy as metastasis-directed therapy for oligometastatic prostate cancer. Curr. Opin. Urol. 2017, 27, 587–595. [Google Scholar] [CrossRef]
- Lanfranchi, F.; Belgioia, L.; Marcenaro, M.; Zanardi, E.; Timon, G.; Riondato, M.; Giasotto, V.; Zawaideh, J.P.; Tomasello, L.; Mantica, G.; et al. Oligometastatic Prostate Cancer Treated with Metastasis-Directed Therapy Guided by Positron Emission Tomography: Does the Tracer Matter? Cancers 2023, 15, 323. [Google Scholar] [CrossRef] [PubMed]
- Rogowski, P.; Roach, M.; Schmidt-Hegemann, N.-S.; Trapp, C.; von Bestenbostel, R.; Shi, R.; Buchner, A.; Stief, C.; Belka, C.; Li, M. Radiotherapy of oligometastatic prostate cancer: A systematic review. Radiat. Oncol. 2021, 16, 50. [Google Scholar] [CrossRef]
- Siva, S.; Bressel, M.; Murphy, D.G.; Shaw, M.; Chander, S.; Violet, J.; Tai, K.H.; Udovicich, C.; Lim, A.; Selbie, L.; et al. Stereotactic Abative Body Radiotherapy (SABR) for Oligometastatic Prostate Cancer: A Prospective Clinical Trial. Eur. Urol. 2018, 74, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, P.G.B.; Yaremko, B.P.; et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): A randomised, phase 2, open-label trial. Lancet 2019, 393, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- Ost, P.; Reynders, D.; Decaestecker, K.; Fonteyne, V.; Lumen, N.; De Bruycker, A.; Lambert, B.; Delrue, L.; Bultijnck, R.; Claeys, T.; et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J. Clin. Oncol. 2018, 36, 446–453. [Google Scholar] [CrossRef]
- Ost, P.; Reynders, D.; Decaestecker, K.; Fonteyne, V.; Lumen, N.; De Bruycker, A.; Lambert, B.; Delrue, L.; Bultijnck, R.; Goetghebeur, E.; et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence (STOMP): Five-year results of a randomized phase II trial. J. Clin. Oncol. 2020, 38, 6. [Google Scholar] [CrossRef]
- Phillips, R.; Shi, W.Y.; Deek, M.; Radwan, N.; Lim, S.J.; Antonarakis, E.S.; Rowe, S.P.; Ross, A.E.; Gorin, M.A.; Deville, C.; et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer. JAMA Oncol. 2020, 6, 650–659. [Google Scholar] [CrossRef]
- Glicksman, R.M.; Metser, U.; Vines, D.; Valliant, J.; Liu, Z.; Chung, P.W.; Bristow, R.G.; Finelli, A.; Hamilton, R.; Fleshner, N.E.; et al. Curative-intent Metastasis-directed Therapies for Molecularly-defined Oligorecurrent Prostate Cancer: A Prospective Phase II Trial Testing the Oligometastasis Hypothesis. Eur. Urol. 2021, 80, 374–382. [Google Scholar] [CrossRef]
- See, A.W.; Conway, P.; Frydenberg, M.; Haxhimolla, H.; Costello, A.J.; Moon, D.; Ruljancich, P.; Grummet, J.; Pranavan, G.; Peters, J.; et al. Five-year outcomes of fractionated stereotactic body radiotherapy for oligometastatic prostate cancer from the TRANSFORM phase II trial. Int. J. Cancer 2024, 155, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Supiot, S.; Vaugier, L.; Pasquier, D.; Buthaud, X.; Magné, N.; Peiffert, D.; Sargos, P.; Crehange, G.; Pommier, P.; Loos, G.; et al. OLIGOPELVIS GETUG P07, a Multicenter Phase II Trial of Combined High-dose Salvage Radiotherapy and Hormone Therapy in Oligorecurrent Pelvic Node Relapses in Prostate Cancer. Eur. Urol. 2021, 80, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Sherry, A.D.; Haymaker, C.; Bathala, T.; Liu, S.; Fellman, B.; Cohen, L.; Aparicio, A.; Zurita, A.J.; Reuben, A.; et al. Addition of Metastasis-Directed Therapy to Intermittent Hormone Therapy for Oligometastatic Prostate Cancer. JAMA Oncol. 2023, 9, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Virgo, K.S.; Rumble, R.B.; de Wit, R.; Mendelson, D.S.; Smith, T.J.; Taplin, M.-E.; Wade, J.L.; Bennett, C.L.; Scher, H.I.; Nguyen, P.L.; et al. Initial Management of Noncastrate Advanced, Recurrent, or Metastatic Prostate Cancer: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 1274–1305. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.W.; Ali, A.; Ingleby, F.C.; Hoyle, A.; Amos, C.L.; Attard, G.; Brawley, C.D.; Calvert, J.; Chowdhury, S.; Cook, A.; et al. Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: Long-term survival results from the STAMPEDE trial. Ann. Oncol. 2019, 30, 1992–2003. [Google Scholar] [CrossRef]
- Kyriakopoulos, C.E.; Chen, Y.-H.; Carducci, M.A.; Liu, G.; Jarrard, D.F.; Hahn, N.M.; Shevrin, D.H.; Dreicer, R.; Hussain, M.; Eisenberger, M.; et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J. Clin. Oncol. 2018, 36, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Hussain, M.; Saad, F.; Fizazi, K.; Sternberg, C.N.; Crawford, E.D.; Kopyltsov, E.; Park, C.H.; Alekseev, B.; Montesa-Pino, Á.; et al. Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2022, 386, 1132–1142. [Google Scholar] [CrossRef]
- Bossi, A.; Foulon, S.; Maldonado, X.; Sargos, P.; McDermott, R.S.; Flechon, A.; Tombal, B.F.; Supiot, S.; Berthold, D.R.; Ronchin, P.; et al. Prostate irradiation in men with de novo, low-volume, metastatic, castration-sensitive prostate cancer (mCSPC): Results of PEACE-1, a phase 3 randomized trial with a 2 × 2 design. J. Clin. Oncol. 2023, 41, LBA5000. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Azad, A.; Alcaraz, A.; Alekseev, B.; Iguchi, T.; Shore, N.D.; et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy with Enzalutamide or Placebo in Men with Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. 2019, 37, 2974–2986. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, M.; Würnschimmel, C.; Nocera, L.; Ruvolo, C.C.; Tian, Z.; Shariat, S.F.; Saad, F.; Briganti, A.; Tilki, D.; Graefen, M.; et al. Overall Survival After Systemic Treatment in High-volume Versus Low-volume Metastatic Hormone-sensitive Prostate Cancer: Systematic Review and Network Meta-analysis. Eur. Urol. Focus 2021, 8, 399–408. [Google Scholar] [CrossRef]
- Menges, D.; Yebyo, H.G.; Sivec-Muniz, S.; Haile, S.R.; Barbier, M.C.; Tomonaga, Y.; Schwenkglenks, M.; Puhan, M.A. Treatments for Metastatic Hormone-sensitive Prostate Cancer: Systematic Review, Network Meta-analysis, and Benefit-harm assessment. Eur. Urol. Oncol. 2022, 5, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Alerasool, P.; Kishi, N.; Joshi, H.; Sahni, G.; Tsao, C.-K. Cardiovascular Toxicity Associated with Androgen Receptor Axis-Targeted Agents in Patients with Prostate Cancer: A Meta-analysis of Randomized Controlled Trials. Clin. Genitourin. Cancer 2024, 22, 102066. [Google Scholar] [CrossRef] [PubMed]
- Morgans, A.K.; Shore, N.D.; Khan, N.; Constantinovici, N.; Khan, J.; Chen, G.; Xu, J.; Ortiz, J.A.; George, D.J. Comparative real-world (RW) evidence on darolutamide (Daro), enzalutamide (Enza), and apalutamide (Apa) for patients (Pts) with nonmetastatic castration-resistant prostate cancer (nmCRPC) in the United States: DEAR. J. Clin. Oncol. 2023, 41, 5097. [Google Scholar] [CrossRef]
- Boevé, L.M.; Hulshof, M.C.; Vis, A.N.; Zwinderman, A.H.; Twisk, J.W.; Witjes, W.P.; Delaere, K.P.; van Moorselaar, R.J.A.; Verhagen, P.C.; van Andel, G. Effect on Survival of Androgen Deprivation Therapy Alone Compared to Androgen Deprivation Therapy Combined with Concurrent Radiation Therapy to the Prostate in Patients with Primary Bone Metastatic Prostate Cancer in a Prospective Randomised Clinical Trial: Data from the HORRAD Trial. Eur. Urol. 2018, 75, 410–418. [Google Scholar] [CrossRef]
- Nickols, N.G.; Tsai, S.; Kane, N.; Tran, S.; Ghayouri, L.; Diaz-Perez, S.; Thein, M.; Anderson-Berman, N.; Eason, J.; Kishan, A.U.; et al. Systemic and Tumor-directed Therapy for Oligometastatic Prostate Cancer: The SOLAR Phase 2 Trial in De Novo Oligometastatic Prostate Cancer. Eur. Urol. 2024, 86, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Tucci, M.; Leone, G.; Buttigliero, C.; Zichi, C.; Di Stefano, R.F.; Pignataro, D.; Vignani, F.; Scagliotti, G.V.; Di Maio, M. Hormonal treatment and quality of life of prostate cancer patients: New evidence. Minerva Urol. Nephrol. 2018, 70, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.; Hirst, C.; Crawford, E.D. Characterising the castration-resistant prostate cancer population: A systematic review. Int. J. Clin. Prac. 2011, 65, 1180–1192. [Google Scholar] [CrossRef] [PubMed]
- Halabi, S.; Lin, C.-Y.; Kelly, W.K.; Fizazi, K.S.; Moul, J.W.; Kaplan, E.B.; Morris, M.J.; Small, E.J. Updated Prognostic Model for Predicting Overall Survival in First-Line Chemotherapy for Patients with Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2014, 32, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Halabi, S.; Kelly, W.K.; Ma, H.; Zhou, H.; Solomon, N.C.; Fizazi, K.; Tangen, C.M.; Rosenthal, M.; Petrylak, D.P.; Hussain, M.; et al. Meta-Analysis Evaluating the Impact of Site of Metastasis on Overall Survival in Men with Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2016, 34, 1652–1659. [Google Scholar] [CrossRef]
- Alumkal, J.J.; Chowdhury, S.; Loriot, Y.; Sternberg, C.N.; de Bono, J.S.; Tombal, B.; Carles, J.; Flaig, T.W.; Dorff, T.B.; Phung, D.; et al. Effect of Visceral Disease Site on Outcomes in Patients with Metastatic Castration-resistant Prostate Cancer Treated with Enzalutamide in the PREVAIL Trial. Clin. Genitourin. Cancer 2017, 15, 610–617.e3. [Google Scholar] [CrossRef]
- Wei, X.X.; Ko, E.C.; Ryan, C.J. Treatment strategies in low-volume metastatic castration-resistant prostate cancer. Curr. Opin. Urol. 2017, 27, 596–603. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Schellhammer, P.F.; Chodak, G.; Whitmore, J.B.; Sims, R.; Frohlich, M.W.; Kantoff, P.W. Lower Baseline Prostate-specific Antigen Is Associated with a Greater Overall Survival Benefit From Sipuleucel-T in the Immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT) Trial. Urology 2013, 81, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Orme, J.J.; Abraha, F.; Stish, B.; Lowe, V.J.; Lucien, F.; Tryggestad, E.J.; Bold, M.S.; Pagliaro, L.C.; Choo, C.R.; et al. Phase II Evaluation of Stereotactic Ablative Radiotherapy (SABR) and Immunity in 11C-Choline-PET/CT–Identified Oligometastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2021, 27, 6376–6383. [Google Scholar] [CrossRef] [PubMed]
- Francolini, G.; Allegra, A.G.; Detti, B.; Di Cataldo, V.; Caini, S.; Bruni, A.; Ingrosso, G.; D’Angelillo, R.M.; Alitto, A.R.; Augugliaro, M.; et al. Stereotactic Body Radiation Therapy and Abiraterone Acetate for Patients Affected by Oligometastatic Castrate-Resistant Prostate Cancer: A Randomized Phase II Trial (ARTO). J. Clin. Oncol. 2023, 41, 5561–5568. [Google Scholar] [CrossRef] [PubMed]
- Vetrone, L.; Fortunati, E.; Castellucci, P.; Fanti, S. Future Imaging of Prostate Cancer: Do We Need More Than PSMA PET/CT? Semin. Nucl. Med. 2024, 54, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, K.A.; Saramäki, O.R.; Furusato, B.; Kimura, T.; Takahashi, H.; Egawa, S.; Suzuki, H.; Keiger, K.; Hahm, S.H.; Isaacs, W.B.; et al. Loss of PTEN Is Associated with Aggressive Behavior in ERG-Positive Prostate Cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2333–2344. [Google Scholar] [CrossRef] [PubMed]
- Ecke, T.H.; Schlechte, H.H.; Schiemenz, K.; Sachs, M.D.; Lenk, S.V.; Rudolph, B.D.; Loening, S.A. TP53 gene mutations in prostate cancer progression. Anticancer Res. 2010, 30, 1579–1586. [Google Scholar] [PubMed]
- Yoshimoto, M.; Cutz, J.-C.; Nuin, P.A.; Joshua, A.M.; Bayani, J.; Evans, A.J.; Zielenska, M.; Squire, J.A. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. Cancer Genet. Cytogenet. 2006, 169, 128–137. [Google Scholar] [CrossRef]
- Messina, C.; Cattrini, C.; Soldato, D.; Vallome, G.; Caffo, O.; Castro, E.; Olmos, D.; Boccardo, F.; Zanardi, E. BRCA Mutations in Prostate Cancer: Prognostic and Predictive Implications. J. Oncol. 2020, 2020, 4986365. [Google Scholar] [CrossRef]
- Loyfer, N.; Magenheim, J.; Peretz, A.; Cann, G.; Bredno, J.; Klochendler, A.; Fox-Fisher, I.; Shabi-Porat, S.; Hecht, M.; Pelet, T.; et al. A DNA methylation atlas of normal human cell types. Nature 2023, 613, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Annala, M.; Taavitsainen, S.; Khalaf, D.J.; Vandekerkhove, G.; Beja, K.; Sipola, J.; Warner, E.W.; Herberts, C.; Wong, A.; Fu, S.; et al. Evolution of Castration-Resistant Prostate Cancer in ctDNA during Sequential Androgen Receptor Pathway Inhibition. Clin. Cancer Res. 2021, 27, 4610–4623. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Liu, V.Y.; Selvaraju, R.R.; Chen, E.; Simko, J.; DeVries, S.; Sartor, A.O.; Sandler, H.M.; Mohamad, O.; Esteva, A.; et al. Development and validation of an AI-derived digital pathology-based biomarker to predict benefit of long-term androgen deprivation therapy with radiotherapy in men with localized high-risk prostate cancer across multiple phase III NRG/RTOG trials. J. Clin. Oncol. 2023, 41, 5001. [Google Scholar] [CrossRef]
- Cackowski, F.C.; Taichman, R.S. Minimal Residual Disease in Prostate Cancer. Adv. Exp. Med. Biol. 2018, 1100, 47–53. [Google Scholar] [CrossRef]
NCT | Acronym | Phase | Treatment | Primary Outcome |
---|---|---|---|---|
01446744 | SABR-COMET | 2 | SBRT + SOC ST | OS |
POPSTAR | 1 | SBRT | ADT-FS | |
01558427 | STOMP | 2 | Salvage (surgical or radiotherapy) of metastasis | ADT-FS |
02680587 | ORIOLE | 2 | SBRT | Progression at 6 months |
03784755 | OLIGOPELVIS GETUG P07 | 2 | High dose IMRT, Eligard | Biochemical or clinical relapse free survival (2y) |
SPMA-MRgRT | 2 | (18F) DCFPyL, PET/MRI | Biochemical response | |
03599765 | EXTEND | 2 | RT to all metastatic sites + hormonal therapy | Disease progression |
NCT | Phase | Enrollment | Experimental | Control | Primary Outcome |
---|---|---|---|---|---|
NCT04992026 | II | 128 | S + ADT + abi | ADT + abi | TT PSA progression TT Radiographic progression |
NCT02971358 | I/II | 200 | RP | None | The rate of complications 90 days after S |
NCT04610372 (PROMPT) | N/A | 168 | Br or SABR | 5500 cGy | Urinary symptoms |
NCT05183074 | II | 50 | MR—linac SBRT | None | The Incidence of Acute GU and GI toxicities |
NCT04190446 | II | 83 | PBRT or IMRT | None | Proportion of pts with >/=grade 3 GI and/or GU toxicity |
NCT05223803 | II | 122 | SABR + BST + PPRT | BST + PPRT | 2-year FFS |
NCT02563691 (CROP) | I/II | 90 | SABR | None | Incidence of late RT toxicities |
NCT03556904 | II | 13 | Ablative Radiation + SOC | SOC | mDOR |
NCT04037358 (RAVENS) | II | 64 | Radium-223 + SABR | SABR | PFS |
NCT04115007 (PRESTO) | III | 350 | SBRT + SOC | SOC | CRPC free survival |
NCT04983095 (METRO) | III | 114 | SBRT + SOC | SOC | FFS |
NCT04619069 | I/II | 30 | SBRT + SOC | SOC | Proportion of eligible patients |
NCT03304418 (RROPE) | II | 20 | Radium-223 + RT | None | Time to ADT use |
NCT04300673 (DETECT) | I/II | 20 | Radio-guided surgery | None | Feasibility of 111IN-PSMA-1&T radio-guided surgery |
NCT04141709 (OLI-CR-P) | II | 66 | Local ablative radiotherapy | Observation | Time to PSA progression |
NCT04599686 | N/A | 100 | SBRT | ADT | 1-year ADT-free survival |
NCT03630666 (OLIGOPELVIS2) | III | 256 | Radiotherapy + IADT | IADT | PFS |
NCT05209243 (START-MET) | III | 266 | SBRT + SOC | SOC | rPFS |
NCT05079698 | I | 6 | SBRT + 177Lu-PSMA-617 | None | Proportion of subjects with dose limiting toxicity |
NCT01558427 | II | 62 | S or RT to metastases | AS | ADT free survival |
NCT03525288 (PSMA-PETgRT) | II/III | 130 | PSMA-PETgRT | SOC RT | FFS |
NCT03569241 (STORM) | II | 196 | MDT + WPRT + ADT | MDT + ADT | MFS |
NCT05053152 NRG PROMETHEAN | II | 260 | Relugolix + SABR | Placebo + SABR | rPFS |
NCT03940235 RADIOSA | II | 150 | SBRT + ADT | SBRT | PFS |
NCT05404139 | II | 66 | Enzalutamide + SBRT + ADT | SBRT + ADT | PFS |
NCT03503344 PILLAR | II | 60 | Apalutamide + SBRT | SBRT | Proportion of patients with undetectable PSA |
NCT05352178 SPARKLE | III | 873 | MDT + 1 month ADT or MDT + 6 months ADT + enzalutamide | MDT | Polymetastatic free survival |
NCT04641078 (DART) | II | 124 | Darolutamide + SBRT | SBRT | MFS |
NCT04748042 | II | 29 | Abiraterone + ADT + radiation + olaparib | None | % pts without treatment failure at 24 months |
NCT02274779 OLIGOPELVIS | II | 70 | IMRT + ELIGARD | None | Biochemical or clinical relapse-free survival (2 years) |
NCT03902951 | II | 28 | Leuprolide + apalutamide + abiraterone +SBRT | None | % patients achieving a serum PSA of <0.05 ng/mL |
NCT04175431 | II | 100 | Fluciclovine PET/CT + abiraterone + prednisone | Fluciclovine PET/CT | Undetectable PSA (<0.2 ng/mL) rate |
NCT00544830 | II | 29 | ADT + RT | None | TT PSA Relapse |
NCT03361735 | II | 24 | Leuprolide acetate or goserelin acetate + SBRT + Ra 223 | None | 1. TT treatment failure 2. ORR |
NCT03298087 | II | 28 | Prostatectomy + SBRT + Leuprolide + apalutamide + abiraterone | None | PSA < 0.05 ng/mL (RP) or PSA <nadir + 2 ng/mL (PRBT) |
NCT05212857 | II | 160 | Systemic treatment + prostatectomy + SBRT | None | rPFS at 2 years |
NCT05496959 (LUNAR) | II | 100 | 177Lu-PNT2002 IV + SBRT | SBRT | PSMA PET/CT-based PFS |
NCT04011410 | II | 20 | Hydroxychloroquine | None | PAR-4 Level |
NCT04443062 (BULLSEYE) | II | 58 | 177Lu-PSMA radioligand therapy | SOC | Disease Progression (EOT1) |
NCT05146973 | II | 50 | 177Lu-DOTA-TLX591 | None | PSA PFS |
NCT03007732 | II | 23 | SD-101 + ADT + SBRT + Pembrolizumab | ADT + SBRT + Pembrolizumab | Change Rate of PSA < nadir + 2 ng/mL (up to 15 months) |
NCT03795207 (POSTCARD) | II | 96 | SBRT + DURVALUMAB | SBRT | Two-years PFS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alerasool, P.; Zhou, S.; Miller, E.; Anker, J.; Tsao, B.; Kyprianou, N.; Tsao, C.-K. A Personalized Approach for Oligometastatic Prostate Cancer: Current Understanding and Future Directions. Cancers 2025, 17, 147. https://doi.org/10.3390/cancers17010147
Alerasool P, Zhou S, Miller E, Anker J, Tsao B, Kyprianou N, Tsao C-K. A Personalized Approach for Oligometastatic Prostate Cancer: Current Understanding and Future Directions. Cancers. 2025; 17(1):147. https://doi.org/10.3390/cancers17010147
Chicago/Turabian StyleAlerasool, Parissa, Susu Zhou, Eric Miller, Jonathan Anker, Brandon Tsao, Natasha Kyprianou, and Che-Kai Tsao. 2025. "A Personalized Approach for Oligometastatic Prostate Cancer: Current Understanding and Future Directions" Cancers 17, no. 1: 147. https://doi.org/10.3390/cancers17010147
APA StyleAlerasool, P., Zhou, S., Miller, E., Anker, J., Tsao, B., Kyprianou, N., & Tsao, C.-K. (2025). A Personalized Approach for Oligometastatic Prostate Cancer: Current Understanding and Future Directions. Cancers, 17(1), 147. https://doi.org/10.3390/cancers17010147