AI-Driven Enhancement of Skin Cancer Diagnosis: A Two-Stage Voting Ensemble Approach Using Dermoscopic Data
<p>Research flow chart.</p> "> Figure 2
<p>Model architecture.</p> "> Figure 3
<p>Confusion matrix of the CSMUH dataset: (<b>a</b>) three-class training set; (<b>b</b>) three-class test set.</p> "> Figure 4
<p>Confusion matrix of the ISIC dataset: (<b>a</b>) three-class training set; (<b>b</b>) three-class test set.</p> "> Figure 5
<p>Confusion matrix of the CSMUH test set: (<b>a</b>) the three-class model; (<b>b</b>) the three-class model converted to binary classification; (<b>c</b>) binary classification after identifying benign cases in the three-class model; (<b>d</b>) binary classification of the two-stage model.</p> "> Figure 6
<p>Confusion matrix of the ISIC test set: (<b>a</b>) the three-class model; (<b>b</b>) the three-class model converted to binary classification; (<b>c</b>) binary classification after identifying benign cases in the three-class model; (<b>d</b>) binary classification of the two-stage model.</p> ">
1. Introduction
2. Materials
2.1. CSMUH Dataset
2.2. ISIC Dataset
3. Methods
3.1. Research Structure
3.2. Data Preprocessing
3.3. Transfer Learning
3.4. Ensemble Learning
3.5. Model Architecture
4. Results
4.1. Step 1: Three-Class Classification
4.1.1. CSMUH Dataset
4.1.2. ISIC Dataset
4.2. Step 2: Two-Stage Strategy
4.2.1. CSMUH Dataset
4.2.2. ISIC Dataset
4.2.3. Comparison of Performance Improvement Using the Two-Stage Strategy
5. Discussion
6. Conclusions
7. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garbe, C.; Keim, U.; Gandini, S.; Amaral, T.; Katalinic, A.; Hollezcek, B.; Martus, P.; Flatz, L.; Leiter, U.; Whiteman, D. Epidemiology of Cutaneous Melanoma and Keratinocyte Cancer in White Populations 1943–2036. Eur. J. Cancer 2021, 152, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Karimkhani, C.; Boyers, L.N.; Dellavalle, R.P.; Weinstock, M.A. It’s time for “keratinocyte carcinoma” to replace the term “nonmelanoma skin cancer”. J. Am. Acad. Dermatol. 2015, 72, 186–187. [Google Scholar] [CrossRef] [PubMed]
- Mahbod, A.; Schaefer, G.; Wang, C.; Dorffner, G.; Ecker, R.; Ellinger, I. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Comput. Methods Programs Biomed. 2020, 193, 105475. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-L.; Lu, C.-T.; Karmakar, R.; Nampalley, K.; Mukundan, A.; Hsiao, Y.-P.; Hsieh, S.-C.; Wang, H.-C. Assessing the efficacy of the spectrum-aided vision enhancer (SAVE) to detect acral lentiginous melanoma, melanoma in situ, nodular melanoma, and superficial spreading melanoma. Diagnostics 2024, 14, 1672. [Google Scholar] [CrossRef]
- Adjed, F.; Gardezi, S.J.S.; Ababsa, F.; Faye, I.; Dass, S.C. Fusion of structural and textural features for melanoma recognition. IET Comput. Vis. 2018, 12, 185–195. [Google Scholar] [CrossRef]
- Salido JAA, J.C. Using deep learning for melanoma detection in dermoscopy images. Int. J. Mach. Learn. Comput. 2018, 8, 61–68. [Google Scholar] [CrossRef]
- Warsi, F.; Khanam, R.; Kamya, S.; Suárez-Araujo, C.P. An efficient 3D color-texture feature and neural network technique for melanoma detection. Inform. Med. 2019, 17, 100176. [Google Scholar] [CrossRef]
- El-Khatib, H.; Popescu, D.; Ichim, L. Deep learning-based methods for automatic diagnosis of skin lesions. Sensors 2020, 20, 1753. [Google Scholar] [CrossRef]
- Al-Masni, M.A.; Kim, D.H.; Kim, T.S. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput. Methods Programs Biomed. 2020, 190, 105351. [Google Scholar] [CrossRef]
- Iqbal, I.; Younus, M.; Walayat, K.; Kakar, M.U.; Ma, J. Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images. Comput. Med. Imaging Graph. 2021, 88, 101843. [Google Scholar] [CrossRef]
- Li, Y.; Shen, L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors 2018, 18, 556. [Google Scholar] [CrossRef] [PubMed]
- Almaraz-Damian, J.A.; Ponomaryov, V.; Sadovnychiy, S.; Castillejos-Fernandez, H. Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures. Entropy 2020, 22, 484. [Google Scholar] [CrossRef] [PubMed]
- Bissoto, A.; Perez, F.; Ribeiro, V.; Fornaciali, M.; Avila, S.; Valle, E. Deep-learning ensembles for skin-lesion segmentation, analysis, classification: RECOD titans at ISIC challenge 2018. arXiv 2018, arXiv:1808.08480. [Google Scholar]
- Gessert, N.; Sentker, T.; Madesta, F.; Schmitz, R.; Kniep, H.; Baltruschat, I.; Werner, R.; Schlaefer, A. Skin lesion diagnosis using ensembles, unscaled multi-crop evaluation and loss weighting. arXiv 2018, arXiv:1808.01694. [Google Scholar]
- Gong, A.; Yao, X.; Lin, W. Classification for dermoscopy images using convolutional neural networks based on the ensemble of individual advantage and group decision. IEEE Access 2020, 8, 155337–155351. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Jiang, H.; Chen, E.Z.; Dong, X.; Rong, R. Skin lesion classification via combining deep learning features and clinical criteria representations. bioRxiv 2018. [Google Scholar] [CrossRef]
- Lucius, M.; De All, J.; De All, J.A.; Belvisi, M.; Radizza, L.; Lanfranconi, M.; Lorenzatti, V.; Galmarini, C.M. Deep Neural Frameworks Improve the Accuracy of General Practitioners in the Classification of Pigmented Skin Lesions. Diagnostics 2020, 10, 969. [Google Scholar] [CrossRef]
- Wu, H.C.; Tu, Y.C.; Chen, P.H.; Tseng, M.H. An interpretable hierarchical semantic convolutional neural network to diagnose melanoma in skin lesions. Electron. Res. Arch. 2023, 31, 1822–1839. [Google Scholar] [CrossRef]
- Zhuang, J.; Li, W.; Manivannan, S.; Wang, R.; Zhang, J.J.G.; Pan, J.; Jiang, G.; Yin, Z. Skin lesion analysis towards melanoma detection using deep neural network ensemble. ISIC Chall. 2018, 2, 1–6. [Google Scholar]
- Adegun, A.; Viriri, S. Deep learning model for skin lesion segmentation: Fully convolutional network. In Image Analysis and Recognition, Proceedings of the 2019 International Conference on Image Analysis and Recognition, Waterloo, ON, Canada, 27–29 August 2019; Karray, F., Campilho, A., Yu, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 232–242. [Google Scholar]
- Alfi, I.A.; Rahman, M.M.; Shorfuzzaman, M.; Nazir, A. A non-invasive interpretable diagnosis of melanoma skin cancer using deep learning and ensemble stacking of machine learning models. Diagnostics 2022, 12, 726. [Google Scholar] [CrossRef]
- Collenne, J.; Monnier, J.; Iguernaissi, R.; Nawaf, M.; Richard, M.A.; Grob, J.J.; Gaudy-Marqueste, C.; Dubuisson, S.; Merad, D. Fusion between an algorithm based on the characterization of melanocytic lesions’ asymmetry with an ensemble of convolutional neural networks for melanoma detection. J. Investig. Dermatol. 2024, 144, 1600–1607.e2. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Q.; Celebi, M.E. DermoDeep-A classification of melanoma-nevus skin lesions using multi-feature fusion of visual features and deep neural network. Multimed. Tools Appl. 2019, 78, 23559–23580. [Google Scholar] [CrossRef]
- Abbes, W.; Sellami, D. Deep neural network for fuzzy automatic melanoma diagnosis. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), Prague, Czech Republic, 25–27 February 2019; pp. 47–56. [Google Scholar]
- Chang, C.C.; Li, Y.Z.; Wu, H.C.; Tseng, M.H. Melanoma detection using XGB classifier combined with feature extraction and K-means SMOTE techniques. Diagnostics 2022, 12, 1747. [Google Scholar] [CrossRef] [PubMed]
- Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.M.R.; Jafari, M.H.; Ward, K.; Najarian, K. Melanoma detection by analysis of clinical images using convolutional neural network. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: Orlando, FL, USA, 2016; pp. 1373–1376. [Google Scholar]
- Harangi, B. Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 2018, 86, 25–32. [Google Scholar] [CrossRef]
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef]
- Berseth, M. ISIC 2017—Skin lesion analysis towards melanoma detection. arXiv 2017, arXiv:1703.00523. [Google Scholar]
- Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; et al. Skin lesion analysis toward melanoma detection A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 168–172. [Google Scholar]
- Combalia, M.; Codella, N.C.; Rotemberg, V.; Helba, B.; Vilaplana, V.; Reiter, O.; Carrera, C.; Barreiro, A.; Halpern, A.C.; Puig, S.; et al. BCN20000: Dermoscopic Lesions in the Wild. arXiv 2019, arXiv:1908.02288. [Google Scholar]
- Rotemberg, V.; Kurtansky, N.; Betz-Stablein, B.; Caffery, L.; Chousakos, E.; Codella, N.; Combalia, M.; Dusza, S.; Guitera, P.; Gutman, D.; et al. A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci. Data 2021, 8, 34. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Mingxing Tan, Q.V.L. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Mingxing Tan, Q.V.L. EfficientNetV2: Smaller Models and Faster Training. In Proceedings of the 38th International Conference on Machine Learning (ICML), Virtual, 18–24 July 2021. [Google Scholar]
- Alexey Dosovitskiy, L.B.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; Uszkoreit, J.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations (ICLR), Vienna, Austria, 4 May 2021. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021. [Google Scholar]
- Tseng, M.H. GA-based weighted ensemble learning for multi-label aerial image classification using convolutional neural networks and vision transformers. Mach. Learn. Sci. Technol. 2023, 4, 045045. [Google Scholar] [CrossRef]
- Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Raza, R.; Zulfiqar, F.; Tariq, S.; Anwar, G.B.; Sargano, A.B.; Habib, Z. Melanoma classification from dermoscopy images using ensemble of convolutional neural networks. Mathematics 2021, 10, 26. [Google Scholar] [CrossRef]
- Roshni Thanka, M.; Bijolin Edwin, E.; Ebenezer, V.; Martin Sagayam, K.; Jayakeshav Reddy, B.; Günerhan, H.; Emadifar, H. A hybrid approach for melanoma classification using ensemble machine learning techniques with deep transfer learning. Comput. Methods Programs Biomed. Update 2023, 3, 100103. [Google Scholar] [CrossRef]
- Azeem, M.; Kiani, K.; Mansouri, T.; Topping, N. SkinLesNet: Classification of Skin Lesions and Detection of Melanoma Cancer Using a Novel Multi-Layer Deep Convolutional Neural Network. Cancers 2023, 16, 108. [Google Scholar] [CrossRef] [PubMed]
- Qasim Gilani, S.; Syed, T.; Umair, M.; Marques, O. Skin Cancer Classification Using Deep Spiking Neural Network. J Digit Imaging 2023, 36, 1137–1147. [Google Scholar] [CrossRef]
- Hossain, M.M.; Hossain, M.M.; Arefin, M.B.; Akhtar, F.; Blake, J. Combining State-of-the-Art Pre-Trained Deep Learning Models: A Noble Approach for Skin Cancer Detection Using Max Voting Ensemble. Diagnostics 2023, 14, 89. [Google Scholar] [CrossRef]
- Thwin, S.M.; Park, H.-S. Skin Lesion Classification Using a Deep Ensemble Model. Appl. Sci. 2024, 14, 5599. [Google Scholar] [CrossRef]
- Faghihi, A.; Fathollahi, M.; Rajabi, R. Diagnosis of skin cancer using VGG16 and VGG19 based transfer learning models. Multimed. Tools Appl. 2024, 83, 57495–57510. [Google Scholar] [CrossRef]
Authors | Dataset | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|
[5,6,7] | PH2 | NA | 0.861~0.975 | 0.790~0.981 | 0.925~0.938 |
[8] | Subset of PH2 | NA | 0.950 | 0.925 | 0.966 |
[9] | ISIC 2016 | 0.766 | 0.818 | 0.818 | 0.714 |
[9,10,11] | ISIC 2017 | 0.870~0.964 | 0.857~0.933 | 0.490~0.933 | 0.872~0.961 |
[10,12,13,14,15,16,17,18,19] | ISIC 2018 | 0.847~0.989 | 0.803~0.938 | 0.484~0.888 | 0.957~0.978 |
[20,21] | Subset of ISIC 2018 | 0.970 | 0.880~0.910 | 0.920~0.960 | NA |
[10,15] | ISIC 2019 | 0.919~0.991 | 0.896~0.924 | 0.483~0.896 | 0.976~0.977 |
[8,22] | Subset of ISIC 2019 | 0.942 | 0.870~0.930 | 0.920~0.925 | 0.820~0.933 |
[13,14,23,24] | Combined | 0.880~0.960 | 0.803~0.950 | 0.851~0.930 | 0.844~0.950 |
[25] | Subset of combining ISIC 2018 and ISIC 2019 | 0.981 | 0.965 | 0.878 | 0.993 |
[26] | MED-NODE | 0.810 | NA | 0.810 | 0.800 |
[27] | Subset of ISBI 2017 | 0.891 | 0.866 | 0.556 | 0.785 |
Class | Num | Label | Image |
---|---|---|---|
Melanoma (mel) | 111 | 2 | |
Basal cell carcinoma (bcc) and actinic keratosis (ak) (and Bowen’s disease, keratoacanthoma, and squamous cell carcinoma) | 127 | 1 | |
Melanocytic Nevus (nv), benign keratosis (bkl), dermatofibroma (df), and vascular (vasc) | 428 | 0 |
Class | Num | Label | Image |
---|---|---|---|
Melanoma (mel), basal cell carcinoma (bcc), and actinic keratosis (ak) (and Bowen’s disease, keratoacanthoma, and squamous cell carcinoma) | 238 | 1 | |
Melanocytic nevus (nv), benign keratosis (bkl), dermatofibroma (df), and vascular (vasc) | 428 | 0 |
Class | Num | Label | Image |
---|---|---|---|
Melanoma (mel) | 5008 | 2 | |
Basal cell carcinoma (bcc) and Actinic keratosis/intraepithelial carcionma (akiec) | 4304 | 1 | |
Melanocytic nevus (nv), benign keratosis (bkl), dermatofibroma (df), and vascular (vasc) | 9851 | 0 |
Class | Num | Label | Image |
---|---|---|---|
Melanoma (mel), basal cell carcinoma (bcc), and actinic keratosis/intraepithelial carcinoma (akiec) | 9312 | 1 | |
Melanocytic nevus (nv), benign keratosis (bkl), dermatofibroma (df), and vascular (vasc) | 9851 | 0 |
Model | Train ACC | Test ACC |
---|---|---|
Swin Transformer | 0.9846 ± 0.0108 | 0.8985 ± 0.0224 |
Vision Transformer | 0.9947 ± 0.0030 | 0.9000 ± 0.0304 |
EfficientNetB2 | 0.9805 ± 0.0040 | 0.8776 ± 0.0421 |
EfficientNetB3 | 0.9850 ± 0.0106 | 0.8776 ± 0.0121 |
EfficientNetB4 | 0.9914 ± 0.0068 | 0.8687 ± 0.0180 |
EfficientNetB5 | 0.9936 ± 0.0019 | 0.8970 ± 0.0256 |
EfficientNetV2B2 | 0.9820 ± 0.0089 | 0.8701 ± 0.0342 |
EfficientNetV2B3 | 0.9594 ± 0.0307 | 0.8463 ± 0.0516 |
ResNet50 | 0.9872 ± 0.0025 | 0.8612 ± 0.0312 |
VGG16 | 0.7571 ± 0.2763 | 0.6836 ± 0.2280 |
Ensemble | 0.9977 ± 0.0022 | 0.9731 ± 0.0060 |
Model | Train ACC | Test ACC |
---|---|---|
Swin Transformer | 0.8705 ± 0.0392 | 0.7743 ± 0.0310 |
Vision Transformer | 0.7957 ± 0.2867 | 0.7103 ± 0.2442 |
EfficientNetB2 | 0.8329 ± 0.1079 | 0.7459 ± 0.0979 |
EfficientNetB3 | 0.6368 ± 0.2338 | 0.5845 ± 0.2033 |
EfficientNetB4 | 0.8563 ± 0.0810 | 0.7703 ± 0.0708 |
EfficientNetB5 | 0.9578 ± 0.0089 | 0.8509 ± 0.0072 |
EfficientNetV2B2 | 0.9062 ± 0.0529 | 0.8127 ± 0.0426 |
EfficientNetV2B3 | 0.8333 ± 0.2850 | 0.7539 ± 0.2452 |
Ensemble | 0.9586 ± 0.0079 | 0.8538 ± 0.0095 |
CSMUH Model | Accuracy (ACC) | Sensitivity | Specificity | False Negative Rate | False Positive Rate | |
---|---|---|---|---|---|---|
Three-class | Individual | 0.940 | 0.872 | 0.977 | 0.128 | 0.023 |
Ensemble | 0.978 | 0.979 | 0.977 | 0.021 | 0.023 | |
Two-stage | Ensemble | 0.985 | 1.000 | 0.977 | 0.000 | 0.023 |
ISIC Model | Accuracy (ACC) | Sensitivity | Specificity | False Negative Rate | False Positive Rate | |
---|---|---|---|---|---|---|
Three-class | Individual | 0.862 | 0.849 | 0.873 | 0.151 | 0.127 |
Ensemble | 0.900 | 0.926 | 0.880 | 0.074 | 0.120 | |
Two-stage | Ensemble | 0.969 | 0.976 | 0.963 | 0.024 | 0.037 |
Author, Year | Method | Validation | Dataset | Class | Test ACC |
---|---|---|---|---|---|
Raza, R., et al. [40], 2021 | Ensemble with Xception, Inception-ResNet-V2, DenseNet121, DenseNet201 | Holdout (7:1:2) full: 724 | Dongsan Clinic in KeiMyung University Daegu, Korea | 2 | 0.979 |
Alfi IA, R.M., Shorfuzzaman M, Nazir A. [21], 2022 | Ensemble with MobileNet, Xception, ResNet50, ResNet50V2, and DenseNet121 | Holdout (8:2) full: 3297 | Subset of ISIC 2018 | 2 | 0.910 |
Chang C-C, L.Y.-Z., Wu H-C, Tseng M-H. [25], 2022 | InceptionResNetV2 + XGB + K-means SMOTE | Holdout (8:2) full: 2299 | Subset of combining ISIC 2018 and ISIC 2019 | 2 | 0.965 |
Wu H-C, T.Y.-C., Chen P-H, Tseng M-H. [18], 2023 | MEL-HSNet | Holdout (9:1) full: 4331 | ISIC 2018 | 2 | 0.938 |
Roshni Thanka, M., et al. [41], 2023 | VGG16 + XGBoost | 5-StratifiedKFold train: 1000 test: 416 | ISIC | 2 | 0.991 |
VGG16 + LightGBM | 2 | 0.972 | |||
Azeem, M., et al. [42], 2023 | SkinLesNet VGG16 ResNet50 | Holdout (8:2) full: 1314 | PAD-UFES-20-Modified dataset | 3 | 0.790 |
0.820 | |||||
0.960 | |||||
Qasim Gilani, S., et al. [43], 2023 | Spiking VGG-13 | Holdout (70:15:15) full: 6993 | ISIC 2019 | 2 | 0.896 |
Hossain, M.M., et al. [44], 2023 | Ensemble (max voting) with MobileNetV2, AlexNet, vgg16, ResNet50, DenseNet121, DenseNet201, InceptionV3, ResNet50V2, Inception, ResNetV2, Xception | Holdout train: 2597 validation: 100 test: 1000 | ISIC 2018 | 2 | 0.932 |
Thwin, S.M. and H.-S. Park [45], 2024 | Ensemble with VGG, ResNet-50, and Inception-V3. | Holdout (75:25) full: 995 | ISIC | 3 | 0.910 |
Faghihi, A.F., M.; Rajabi, R. [46], 2024 | VGG19 | 10-fold Cross Validation full: 2541 | ISIC | 2 | 0.987 |
Our approach, 2024 | Voting Ensemble with Swin, EfficientNetB5, and EfficientNetV2B2 | Holdout (8:2) full:19,163 | ISIC 2017~2020 | 3 | 0.900 |
Two-Stage Voting Ensemble with Swin, EfficientNetB5, and EfficientNetV2B2 | Holdout (8:2) full:19,163 | ISIC 2017~2020 | 2 | 0.969 | |
Voting Ensemble with Swin, ViT, and EfficientNetB5 | Holdout (8:2) full: 666 | CSMUH | 3 | 0.978 | |
Two-Stage Voting Ensemble with Swin, ViT, and EfficientNetB5 | Holdout (8:2) full: 666 | CSMUH | 2 | 0.985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, T.-M.; Li, Y.-C.; Chi, I.-C.; Tseng, M.-H. AI-Driven Enhancement of Skin Cancer Diagnosis: A Two-Stage Voting Ensemble Approach Using Dermoscopic Data. Cancers 2025, 17, 137. https://doi.org/10.3390/cancers17010137
Chiu T-M, Li Y-C, Chi I-C, Tseng M-H. AI-Driven Enhancement of Skin Cancer Diagnosis: A Two-Stage Voting Ensemble Approach Using Dermoscopic Data. Cancers. 2025; 17(1):137. https://doi.org/10.3390/cancers17010137
Chicago/Turabian StyleChiu, Tsu-Man, Yun-Chang Li, I-Chun Chi, and Ming-Hseng Tseng. 2025. "AI-Driven Enhancement of Skin Cancer Diagnosis: A Two-Stage Voting Ensemble Approach Using Dermoscopic Data" Cancers 17, no. 1: 137. https://doi.org/10.3390/cancers17010137
APA StyleChiu, T.-M., Li, Y.-C., Chi, I.-C., & Tseng, M.-H. (2025). AI-Driven Enhancement of Skin Cancer Diagnosis: A Two-Stage Voting Ensemble Approach Using Dermoscopic Data. Cancers, 17(1), 137. https://doi.org/10.3390/cancers17010137