Usefulness of Serum Biomarkers in Predicting Anastomotic Leakage After Gastrectomy
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Endpoints
2.4. Data Analysis
3. Results
3.1. Cohort Characteristics
3.2. Dynamics of the Inflammatory Markers
3.3. Predictive Accuracy and Cutoffs
3.4. Comparison of Predictive Accuracy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lang, H.; Piso, P.; Stukenborg, C.; Raab, R.; Jähne, J. Management and results of proximal anastomotic leaks in a series of 1114 total gastrectomies for gastric carcinoma. Eur. J. Surg. Oncol. 2000, 26, 168–171. [Google Scholar] [CrossRef]
- Makuuchi, R.; Irino, T.; Tanizawa, Y.; Bando, E.; Kawamura, T.; Terashima, M. Esophagojejunal anastomotic leakage following gastrectomy for gastric cancer. Surg. Today 2019, 49, 187–196. [Google Scholar] [CrossRef]
- Tokunaga, M.; Tanizawa, Y.; Bando, E.; Kawamura, T.; Terashima, M. Poor survival rate in patients with postoperative intra-abdominal infectious complications following curative gastrectomy for gastric cancer. Ann. Surg. Oncol. 2013, 20, 1575–1583. [Google Scholar] [CrossRef]
- Tsujimoto, H.; Ichikura, T.; Ono, S.; Sugasawa, H.; Hiraki, S.; Sakamoto, N.; Yaguchi, Y.; Yoshida, K.; Matsumoto, Y.; Hase, K. Impact of postoperative infection on long-term survival after potentially curative resection for gastric cancer. Ann. Surg. Oncol. 2009, 16, 311–318. [Google Scholar] [CrossRef]
- Sierzega, M.; Kolodziejczyk, P.; Kulig, J.; Polish Gastric Cancer Study Group. Impact of anastomotic leakage on long-term survival after total gastrectomy for carcinoma of the stomach. Br. J. Surg. 2010, 97, 1035–1042. [Google Scholar]
- Roh, C.K.; Choi, S.; Seo, W.J.; Cho, M.; Kim, H.-I.; Lee, S.-K.; Lim, J.S.; Hyung, W.J. Incidence and treatment outcomes of leakage after gastrectomy for gastric cancer: Experience of 14,075 patients from a large volume centre. Eur. J. Surg. Oncol. 2021, 47, 2304–2312. [Google Scholar] [CrossRef]
- Cananzi, F.C.M.; Biondi, A.; Agnes, A.; Ruspi, L.; Sicoli, F.; De Pascale, S.; Fumagalli, U.R.; D’ugo, D.; Quagliuolo, V.; Persiani, R. Optimal predictors of postoperative complications after gastrectomy: Results from the procalcitonin and C—Reactive protein for the early diagnosis of anastomotic leakage in esophagogastric surgery ( PEDALES ) study. J. Gastrointest. Surg. 2023, 27, 478–488. [Google Scholar] [CrossRef]
- Shishido, Y.; Fujitani, K.; Yamamoto, K.; Hirao, M.; Tsujinaka, T.; Sekimoto, M. C-reactive protein on postoperative day 3 as a predictor of infectious complications following gastric cancer resection. Gastric Cancer 2016, 19, 293–301. [Google Scholar] [CrossRef]
- van Winsen, M.; McSorley, S.T.; McLeod, R.; MacDonald, A.; Forshaw, M.J.; Shaw, M.; Puxty, K. Postoperative C-reactive protein concentrations to predict infective complications following gastrectomy for cancer. J. Surg. Oncol. 2021, 124, 1060–1069. [Google Scholar] [CrossRef]
- Chadi, S.A.; Fingerhut, A.; Berho, M.; DeMeester, S.R.; Fleshman, J.W.; Hyman, N.H.; Margolin, D.A.; Martz, J.E.; McLemore, E.C.; Molena, D.; et al. Emerging trends in the etiology, prevention, and treatment of gastrointestinal anastomotic leakage. J. Gastrointest. Surg. 2016, 20, 2035–2051. [Google Scholar] [CrossRef]
- de Mooij, C.M.; van den Brink, M.M.; Merry, A.; Tweed, T.; Stoot, J. Systematic review of the role of biomarkers in predicting anastomotic leakage following gastroesophageal cancer surgery. J. Clin. Med. 2019, 8, 18–20. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Dripps, R.D. New classification of physical status. Anesthesiology 1963, 24, 111. [Google Scholar]
- Kim, E.Y.; Yim, H.W.; Park, C.H.; Song, K.Y. C-reactive protein can be an early predictor of postoperative complications after gastrectomy for gastric cancer. Surg. Endosc. 2017, 31, 445–454. [Google Scholar] [CrossRef]
- Nam, J.H.; Noh, G.T.; Chung, S.S.; Kim, K.H.; Lee, R.A. Validity of C-reactive protein as a surrogate marker for infectious complications after surgery for colorectal cancer. Surg. Infect. 2023, 24, 488–494. [Google Scholar] [CrossRef]
- Bona, D.; Danelli, P.; Sozzi, A.; Sanzi, M.; Cayre, L.; Lombardo, F.; Bonitta, G.; Cavalli, M.; Campanelli, G.; Aiolfi, A. C-reactive protein and procalcitonin levels to predict anastomotic leak after colorectal surgery: Systematic review and meta-analysis. J. Gastrointest. Surg. 2023, 27, 166–179. [Google Scholar] [CrossRef]
- Imai, Y.; Tanaka, R.; Honda, K.; Matsuo, K.; Taniguchi, K.; Asakuma, M.; Lee, S.-W. The usefulness of prepepsin in the diagnosis of postoperative complications after gastrectomy for gastric cancer: A prospective cohort study. Sci. Rep. 2022, 12, 21289. [Google Scholar] [CrossRef]
- Gordon, A.C.; Cross, A.J.; Foo, E.W.; Roberts, R.H. C-reactive protein is a useful negative predictor of anastomotic leak in oesophago-gastric resection. ANZ J. Surg. 2018, 88, 223–227. [Google Scholar] [CrossRef]
- Kano, K.; Tamagawa, H.; Sawazaki, S.; Ohshima, T.; Yukawa, N.; Rino, Y.; Masuda, M. The postoperative C-reactive protein level is an early predictor of infectious complications after gastric cancer resection. Gan Kagaku Ryoho. 2015, 42, 1256–1258. [Google Scholar]
- Ji, L.; Wang, T.; Tian, L.; Gao, M. The early diagnostic value of C-reactive protein for anastomotic leakage post radical gastrectomy for esophagogastric junction carcinoma: A retrospective study of 97 patients. Int. J. Surg. 2016, 27, 182–186. [Google Scholar] [CrossRef]
- Shi, J.; Wu, Z.; Wang, Q.; Zhang, Y.; Shan, F.; Hou, S.; Ying, X.; Huangfu, L.; Li, Z.; Ji, J. Clinical predictive efficacy of C-reactive protein for diagnosing infectious complications after gastric surgery. Ther. Adv. Gastroenterol. 2020, 13, 1756284820936542. [Google Scholar] [CrossRef]
- Hoeboer, S.H.; Groeneveld, A.B.J.; Engels, N.; van Genderen, M.; Wijnhoven, B.P.L.; van Bommel, J. Rising C-reactive protein and procalcitonin levels precede early complications after esophagectomy. J. Gastrointest. Surg. 2015, 19, 613–624. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, P.; Xiao, Y.; Xiao, H.; Ma, M.; Lin, C.; Luo, J.; Quan, H.; Tao, K.; Huang, G. Diagnostic accuracy of procalcitonin as an early predictor of infection after radical gastrectomy for gastric cancer: A prospective bicenter cohort study. Int. J. Surg. 2020, 75, 3–10. [Google Scholar] [CrossRef]
- Yang, W.; Chen, X.; Zhang, P.; Li, C.; Liu, W.; Wang, Z.; Yin, Y.; Tao, K. Procalcitonin as an early predictor of intra-abdominal infections following gastric cancer resection. J. Surg. Res. 2021, 258, 352–361. [Google Scholar] [CrossRef]
- Mohri, Y.; Tanaka, K.; Toiyama, Y.; Ohi, M.; Yasuda, H.; Inoue, Y.; Kusunoki, M. Impact of preoperative neutrophil to lymphocyte ratio and postoperative infectious complications on survival after curative gastrectomy for gastric cancer: A single institutional cohort study. Medicine 2016, 95, e3125. [Google Scholar] [CrossRef]
- Mungan, İ.; Bay, Ç.; Bekta, Ş.; Sar, S.; Yamanyar, S.; Çavu, M. Does the preoperative platelet-to-lymphocyte ratio and neutrophil-to- lymphocyte ratio predict morbidity after gastrectomy for gastric cancer? Mil. Med. Res. 2020, 7, 9. [Google Scholar] [CrossRef]
- Clemente-Gutiérrez, U.; Sarre-Lazcano, C.; Casanueva-Pérez, E.; Sánchez-Morales, G.; Mier y Terán-Ellis, S.; Contreras-Jiménez, E.; Santes, O.; Alfaro-Goldaracena, A.; Cortés, R.; Medina-Franco, H. Usefulness of inflammatory markers in detecting esophagojejunostomy leakage. Rev. Gastroenterol. Mex. (Engl. Ed.) 2020, 86, 229–235. [Google Scholar] [CrossRef]
- Çetin, D.A.; Gündeş, E.; Çiyiltepe, H.; Aday, U.; Uzun, O.; Değer, K.C.; Duman, M. Risk factors and laboratory markers used to predict leakage in esophagojejunal anastomotic leakage after total gastrectomy. Turk. J. Surg. 2019, 35, 6–12. [Google Scholar] [CrossRef]
- Giaccaglia, V.; Salvi, P.F.; Antonelli, M.S.; Nigri, G.R.; Corcione, F.; Pirozzi, F.; de Manzini, N.; Casagranda, B.; Balducci, G.; Ziparo, V. Procalcitonin reveals early dehiscence in colorectal surgery: The PREDICS study. Ann. Surg. 2016, 263, 967–972. [Google Scholar] [CrossRef]
- Li, S.; Rong, H.; Guo, Q.; Chen, Y.; Zhang, G.; Yang, J. Serum procalcitonin levels distinguish Gram-negative bacterial sepsis from Gram-positive bacterial and fungal sepsis. J. Res. Med. Sci. 2016, 21, 39. [Google Scholar]
- Nora, D.; Salluh, J.; Martin-Loeches, I.; Póvoa, P. Biomarker-guided antibiotic therapy-strengths and limitations. Ann. Transl. Med. 2017, 5, 208. [Google Scholar] [CrossRef] [PubMed]
- Póvoa, P.; Salluh, J.I.F. Biomarker-guided antibiotic therapy in adult critically ill patients: A critical review. Ann. Intensive Care 2012, 2, 32. [Google Scholar] [CrossRef] [PubMed]
- D’Ugo, D.; Agnes, A.; Grieco, M.; Biondi, A.; Persiani, R. Global updates in the treatment of gastric cancer: A systematic review. Part 2: Perioperative management, multimodal therapies, new technologies, standardization of the surgical treatment and educational aspects. Updates Surg. 2020, 72, 355–378. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.; Mathai, A.; Parikh, S.; Chandra Sekhar, G.; Thomas, R. Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 2008, 56, 45–50. [Google Scholar] [CrossRef]
Overall (n = 107) | Patients Without AL (n = 85) | Patients with AL (n = 22) | p-Value | ||
---|---|---|---|---|---|
Age (years) | 73 (64–79) | 73 (64–78) | 74 (68–80) | 0.20 | |
Gender | |||||
Male | 50 (46.73%) | 37 (43.53%) | 13 (59.09%) | 0.19 | |
Female | 57 (53.27%) | 48 (56.47%) | 9 (40.91%) | ||
ASA score | |||||
I | 6 (5.61%) | 6 (7.06%) | 0 (0.00%) | 0.64 | |
II | 46 (38.32%) | 32 (37.65%) | 9 (40.91%) | ||
III | 36 (52.34%) | 44 (51.76%) | 12 (54.55%) | ||
IV | 4 (6.54%) | 3 (3.53%) | 1 (4.55%) | ||
Histology | |||||
ADC | 96 (89.72%) | 76 (89.41%) | 30 (90.91%) | 0.83 | |
GIST | 3 (2.80%) | 2 (2.35%) | 1 (4.55%) | ||
PUD | 2 (1.87%) | 2 (2.35%) | 0 (0.00%) | ||
Other | 6 (5.61%) | 5 (5.88%) | 1 (4.55%) | ||
NAT | 41 (38.32%) | 37 (43.53%) | 4 (18.18%) | 0.029 | |
Type of gastrectomy | |||||
Total | 44 (41.12%) | 31 (36.47%) | 13 (59.09%) | 0.28 | |
Near-total (95%) | 13 (12.15%) | 11 (12.94%) | 2 (9.09%) | ||
Subtotal | 49 (45.79%) | 42 (49.41%) | 7 (31.82%) | ||
Proximal | 1 (0.93%) | 1 (1.18%) | 0 (0.00%) | ||
Surgical approach | |||||
Open | 28 (26.17%) | 22 (25.88%) | 6 (27.27%) | 0.002 | |
Laparoscopic | 72 (67.29%) | 61 (71.76%) | 11 (50.00%) | ||
LCO | 7 (6.54%) | 2 (2.35%) | 5 (22.73%) | ||
Procedure duration (min) | 290 (246–334) | 280 (240–324) | 320 (263–370) | 0.010 | |
Other complications | 66 (61.68%) | 49 (57.65%) | 17 (77.27%) | 0.091 | |
Clavien–Dindo score | |||||
I | 19 (26.03%) | 19 (22.35%) | 0 (0.00%) | <0.001 | |
II | 33 (45.21%) | 26 (30.59%) | 7 (31.82%) | ||
III | 8 (10.96%) | 2 (2.35%) | 6 (27.27%) | ||
IV | 4 (5.48%) | 2 (2.35%) | 2 (9.09%) | ||
V | 9 (12.33%) | 2 (2.35%) | 7 (31.82%) | ||
Postoperative stay (days) | 10 (7–17) | 9 (7–12) | 25 (17–39) | <0.001 | |
Mortality | 9 (8.41%) | 2 (2.35%) | 7 (31.82%) | <0.001 |
CRP | PCT | NLR | |||||||
---|---|---|---|---|---|---|---|---|---|
Coefficient | 95% CI | p | Coefficient | 95% CI | p | Coefficient | 95% CI | p | |
POD1 | BL | BL | NA | BL | BL | NA | BL | BL | NA |
POD2 | 77.60 | 63.34–91.87 | <0.001 | NA | NA | NA | 0.49 | (−)1.46–1.56 | 0.949 |
POD3 | 86.94 | 72.72–101.17 | <0.001 | 0.22 | (−)1.70–2.15 | 0.821 | −1.61 | (−)3.11–(−)0.10 | 0.036 |
POD4 | 61.65 | 47.31–74.99 | <0.001 | NA | NA | NA | −2.82 | (−)4.34–(−)1.30 | <0.001 |
POD5 | 37.38 | 22.92–51.85 | <0.001 | 1.45 | (−)0.49–3.39 | 0.145 | −3.52 | (−)5.04–(−)1.99 | <0.001 |
POD6 | 31.44 | 16.13–46.75 | <0.001 | NA | NA | NA | −3.41 | (−)5.02–(−)1.79 | <0.001 |
POD7 | 21.21 | 6.68–36.73 | 0.007 | 0.46 | (−)1.61–2.53 | 0.663 | −3.31 | (−)4.96–(−)1.67 | <0.001 |
AL | 115.37 | 92.87–137.88 | <0.001 | 3.43 | 1.72–5.15 | <0.001 | 4.27 | 2.43–6.12 | <0.001 |
PLR | Fibrinogen | MPV | |||||||
Coefficient | 95% CI | p | Coefficient | 95% CI | p | Coefficient | 95% CI | p | |
POD1 | BL | BL | NA | BL | BL | NA | BL | BL | NA |
POD2 | 19.16 | (−)17.43–55.75 | 0.305 | 167.04 | 145.956–188.12 | <0.001 | −0.66 | (−)1.44–0.13 | 0.101 |
POD3 | 8.65 | (−)27.84–45.14 | 0.642 | 219.77 | 198.62–240.91 | <0.001 | −0.62 | (−)1.40–0.16 | 0.120 |
POD4 | 16.74 | (−)20.05–53.53 | 0.372 | 222.94 | 201.73–244.15 | <0.001 | −0.86 | (−)1.65–(-)0.07 | 0.033 |
POD5 | 14.15 | (−)22.85–51.14 | 0.454 | 215.92 | 194.57–237.27 | <0.001 | −0.85 | (−)1.66–(-)0.06 | 0.035 |
POD6 | 24.12 | (−)15.11–63.34 | 0.228 | 214.39 | 191.82–236.97 | <0.001 | −0.88 | (−)1.72–(−)0.04 | 0.040 |
POD7 | 1.91 | (−)37.92–41.73 | 0.925 | 181.87 | 158.96–204.77 | <0.001 | −0.97 | (−)1.82-(−)0.12 | 0.026 |
AL | 60.49 | 12.07–108.91 | 0.014 | 80.94 | 35.12–126.76 | 0.001 | −0.35 | (−)1.17–(+)0.46 | 0.398 |
CRP | PCT | NLR | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
POD1 | NA | NA | NA | NA | 1.039 (0.974–1.109) | 0.244 |
POD2 | 1.011 (1.005–1.017) | <0.001 | NA | NA | NA | NA |
POD3 | 1.018 (1.010–1.026) | <0.001 | 1.451 (1.030–2.043) | 0.033 | 1.076 (1.000–1.157) | 0.05 |
POD4 | 1.025 (1.015–1.035) | <0.001 | NA | NA | 1.161 (1.049–1.285) | 0.004 |
POD5 | 1.025 (1.015–1.035) | <0.001 | 6.831 (1.865–25.023) | 0.004 | 1.333 (1.160–1.533) | <0.001 |
POD6 | 1.032 (1.018–1.047) | <0.001 | NA | NA | 1.681 (1.326–2.130) | <0.001 |
POD7 | 1.030 (1.016–1.045) | <0.001 | 18.83 (2.45–144.51) | 0.005 | 1.585 (1.259–1.994) | <0.001 |
PLR | Fibrinogen | MPV | ||||
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
POD1 | 1.002 (0.999–1.005) | 0.229 | NA | NA | 0.589 (0.384–0.904) | 0.015 |
POD2 | NA | NA | 1.007 (1.002–1.012) | 0.006 | NA | NA |
POD3 | 1.005 (1.001–1.009) | 0.008 | 1.015 (1.003–1.028) | 0.018 | NA | NA |
POD4 | 1.007 (1.002–1.012) | 0.007 | 1.020 (1.001–1.039) | 0.036 | NA | NA |
POD5 | 1.007 (1.002–1.012) | 0.006 | 1.019 (1.002–1.035) | 0.027 | NA | NA |
POD6 | 1.006 (1.001–1.010) | 0.014 | 1.013 (1.001–1.025) | 0.029 | NA | NA |
POD7 | 1.005 (0.999–1.010) | 0.06 | 1.002 (0.998–1.006) | 0.286 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, D.; Gallego-Colón, E.; Mínguez, J.; Bodega, I.; Priego, P.; García-Moreno, F. Usefulness of Serum Biomarkers in Predicting Anastomotic Leakage After Gastrectomy. Cancers 2025, 17, 125. https://doi.org/10.3390/cancers17010125
Ramos D, Gallego-Colón E, Mínguez J, Bodega I, Priego P, García-Moreno F. Usefulness of Serum Biomarkers in Predicting Anastomotic Leakage After Gastrectomy. Cancers. 2025; 17(1):125. https://doi.org/10.3390/cancers17010125
Chicago/Turabian StyleRamos, Diego, Enrique Gallego-Colón, Javier Mínguez, Ignacio Bodega, Pablo Priego, and Francisca García-Moreno. 2025. "Usefulness of Serum Biomarkers in Predicting Anastomotic Leakage After Gastrectomy" Cancers 17, no. 1: 125. https://doi.org/10.3390/cancers17010125
APA StyleRamos, D., Gallego-Colón, E., Mínguez, J., Bodega, I., Priego, P., & García-Moreno, F. (2025). Usefulness of Serum Biomarkers in Predicting Anastomotic Leakage After Gastrectomy. Cancers, 17(1), 125. https://doi.org/10.3390/cancers17010125