The Impact of Socioeconomic Status and Comorbidities on Non-Melanoma Skin Cancer Recurrence After Image-Guided Superficial Radiation Therapy
<p>Freedom from recurrence over time of non-melanoma skin cancer treated with image-guided superficial radiation therapy by Area Deprivation Index (ADI) score. ADI ≤ 50 represents advantaged neighborhoods (high SES), and ADI > 50 represents disadvantaged neighborhoods. The “At Risk” value represents the sample size at the corresponding year of follow-up. The “Events” value represents the number of NMSC lesions that have recurred by the corresponding year of follow-up. The <span class="html-italic">p</span> value of 0.2 indicates that freedom from recurrence of the ADI > 50 group compared with the ADI ≤ 50 is not statistically significant.</p> "> Figure 2
<p>Freedom from recurrence over time of non-melanoma skin cancer treated with image-guided superficial radiation therapy by Charlson Comorbidity Index (CCI) score. Higher CCI scores represent higher comorbidity burdens. The “At Risk” value represents the sample size at the corresponding year of follow-up. The “Events” value represents the number of NMSC lesions that have recurred by the corresponding year of follow-up. The <span class="html-italic">p</span> value of 0.9 indicates that the differences in freedom from recurrence between CCI groups are not statistically significant.</p> "> Figure 3
<p>Freedom from recurrence over time of non-melanoma skin cancer treated with image-guided superficial radiation therapy by Charlson Comorbidity Index (CCI) scores 0–6+. Higher CCI scores represent higher comorbidity burdens. The “At Risk” value represents the sample size at the corresponding year of follow-up. The “Events” value represents the number of NMSC lesions that have recurred by the corresponding year of follow-up. The <span class="html-italic">p</span> value of 0.9 indicates that the differences in freedom from recurrence between CCI groups are not statistically significant.</p> ">
1. Introduction
2. Materials and Methods
2.1. IGSRT Treatment Methodology and Energy/Dose Selection Process
2.2. Tumor Configuration and Depth Determination
2.3. Data Collection
2.4. Area Deprivation Index
2.5. Rural–Urban Continuum Codes
2.6. Charlson Comorbidity Index
2.7. Statistical Analysis
2.8. Ethics
3. Results
3.1. Patient and Disease Characteristics
3.2. Freedom from Recurrence Rates by Neighborhood Deprivation
3.3. Freedom from Recurrence Rates by Comorbidity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogers, H.W.; Weinstock, M.A.; Feldman, S.R.; Coldiron, B.M. Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the U.S. Population, 2012. JAMA Dermatol. 2015, 151, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Guy, G.P., Jr.; Machlin, S.R.; Ekwueme, D.U.; Yabroff, K.R. Prevalence and costs of skin cancer treatment in the U.S., 2002–2006 and 2007–2011. Am. J. Prev. Med. 2015, 48, 183–187. [Google Scholar] [CrossRef]
- Aggarwal, P.; Knabel, P.; Fleischer, A.B., Jr. United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. J. Am. Acad. Dermatol. 2021, 85, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Leiter, U.; Keim, U.; Eigentler, T.; Katalinic, A.; Holleczek, B.; Martus, P.; Garbe, C. Incidence, Mortality, and Trends of Nonmelanoma Skin Cancer in Germany. J. Investig. Dermatol. 2017, 137, 1860–1867. [Google Scholar] [CrossRef] [PubMed]
- Barton, V.; Armeson, K.; Hampras, S.; Ferris, L.K.; Visvanathan, K.; Rollison, D.; Alberg, A.J. Nonmelanoma skin cancer and risk of all-cause and cancer-related mortality: A systematic review. Arch. Dermatol. Res. 2017, 309, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-L.; Lu, C.-T.; Karmakar, R.; Nampalley, K.; Mukundan, A.; Hsiao, Y.-P.; Hsieh, S.-C.; Wang, H.-C. Assessing the efficacy of the spectrum-aided vision enhancer (SAVE) to detect acral lentiginous melanoma, melanoma in situ, nodular melanoma, and superficial spreading melanoma. Diagnostics 2024, 14, 1672. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-Y.; Hsiao, Y.-P.; Karmakar, R.; Mukundan, A.; Chaudhary, P.; Hsieh, S.-C.; Wang, H.-C. A Review of Recent Advances in Computer-Aided Detection Methods Using Hyperspectral Imaging Engineering to Detect Skin Cancer. Cancers 2023, 15, 5634. [Google Scholar] [CrossRef] [PubMed]
- Alberg, A.J.; Fischer, A.H. Is a personal history of nonmelanoma skin cancer associated with increased or decreased risk of other cancers? Cancer Epidemiol. Biomark. Prev. 2014, 23, 433–436. [Google Scholar] [CrossRef]
- Small, J.; Barton, V.; Peterson, B.; Alberg, A.J. Keratinocyte Carcinoma as a Marker of a High Cancer-Risk Phenotype. Adv. Cancer Res. 2016, 130, 257–291. [Google Scholar] [CrossRef]
- Wheless, L.; Black, J.; Alberg, A.J. Nonmelanoma skin cancer and the risk of second primary cancers: A systematic review. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1686–1695. [Google Scholar] [CrossRef]
- Prickett, K.A.; Ramsey, M.L. Mohs Micrographic Surgery; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441833/ (accessed on 25 July 2023).
- National Comprehensive Cancer Network. Basal Cell Skin Cancer, NCCN Guidelines Version 3.2024; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2024. [Google Scholar]
- National Comprehensive Cancer Network. Squamous Cell Skin Cancer, NCCN Guidelines Version 1.2024; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2024. [Google Scholar]
- Yu, L.; Oh, C.; Shea, C.R. The Treatment of Non-Melanoma Skin Cancer with Image-Guided Superficial Radiation Therapy: An Analysis of 2917 Invasive and in Situ Keratinocytic Carcinoma Lesions. Oncol. Ther. 2021, 9, 153–166. [Google Scholar] [CrossRef] [PubMed]
- McClure, E.M.; Sedor, G.; Jin, Y.; Kattan, M.W. Image-guided superficial radiation therapy has superior 2-year recurrence probability to Mohs micrographic surgery. Clin. Transl. Radiat. Oncol. 2023, 43, 100678. [Google Scholar] [CrossRef]
- Molina, M.A.; Cheung, M.C.; Perez, E.A.; Byrne, M.M.; Franceschi, D.; Moffat, F.L.; Livingstone, A.S.; Goodwin, W.J.; Gutierrez, J.C.; Koniaris, L.G. African American and poor patients have a dramatically worse prognosis for head and neck cancer: An examination of 20,915 patients. Cancer 2008, 113, 2797–2806. [Google Scholar] [CrossRef]
- Rachet, B.; Quinn, M.J.; Cooper, N.; Coleman, M.P. Survival from cancer of the larynx in England and Wales up to 2001. Br. J. Cancer 2008, 99 (Suppl. S1), S35–S37. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S.B.; Reeder-Hayes, K.E.; Carey, L.A. Disparities in breast cancer treatment and outcomes: Biological, social, and health system determinants and opportunities for research. Oncologist 2013, 18, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Vona-Davis, L.; Rose, D.P. The influence of socioeconomic disparities on breast cancer tumor biology and prognosis: A review. J. Womens Health 2009, 18, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine Committee on Understanding; Eliminating Racial; Ethnic Disparities in Health Care. Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care; National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- Erhunmwunsee, L.; Joshi, M.B.; Conlon, D.H.; Harpole, D.H., Jr. Neighborhood-level socioeconomic determinants impact outcomes in nonsmall cell lung cancer patients in the Southeastern United States. Cancer 2012, 118, 5117–5123. [Google Scholar] [CrossRef]
- Winkleby, M.; Cubbin, C.; Ahn, D. Effect of cross-level interaction between individual and neighborhood socioeconomic status on adult mortality rates. Am. J. Public Health 2006, 96, 2145–2153. [Google Scholar] [CrossRef]
- Singh, G.K. Area deprivation and widening inequalities in US mortality, 1969–1998. Am. J. Public Health 2003, 93, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Messer, L.C.; Laraia, B.A.; Kaufman, J.S.; Eyster, J.; Holzman, C.; Culhane, J.; Elo, I.; Burke, J.G.; O’Campo, P. The development of a standardized neighborhood deprivation index. J. Urban Health 2006, 83, 1041–1062. [Google Scholar] [CrossRef]
- Laraia, B.A.; Karter, A.J.; Warton, E.M.; Schillinger, D.; Moffet, H.H.; Adler, N. Place matters: Neighborhood deprivation and cardiometabolic risk factors in the Diabetes Study of Northern California (DISTANCE). Soc. Sci. Med. 2012, 74, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Unger, J.M.; Moseley, A.B.; Cheung, C.K.; Osarogiagbon, R.U.; Symington, B.; Ramsey, S.D.; Hershman, D.L. Persistent disparity: Socioeconomic deprivation and cancer outcomes in patients treated in clinical trials. J. Clin. Oncol. 2021, 39, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Austin Sanders, J.C. Rural-Urban Continuum Codes Documentation Economic Research Service: U.S. Department of Agriculture. 2024. Available online: https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/documentation/ (accessed on 22 January 2024).
- Meilleur, A.; Subramanian, S.; Plascak, J.J.; Fisher, J.L.; Paskett, E.D.; Lamont, E.B. Rural residence and cancer outcomes in the United States: Issues and challenges. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, J.F.; Tierney, R.M.; Costas, I.; Grove, L.; Spitznagel, E.L., Jr. Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA 2004, 291, 2441–2447. [Google Scholar] [CrossRef]
- Diez Roux, A.V.; Merkin, S.S.; Arnett, D.; Chambless, L.; Massing, M.; Nieto, F.J.; Sorlie, P.; Szklo, M.; Tyroler, H.A.; Watson, R.L. Neighborhood of residence and incidence of coronary heart disease. N. Engl. J. Med. 2001, 345, 99–106. [Google Scholar] [CrossRef]
- Pickett, K.E.; Pearl, M. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: A critical review. J. Epidemiol. Community Health 2001, 55, 111–122. [Google Scholar] [CrossRef]
- Zierler, S.; Krieger, N.; Tang, Y.; Coady, W.; Siegfried, E.; DeMaria, A.; Auerbach, J. Economic deprivation and AIDS incidence in Massachusetts. Am. J. Public. Health 2000, 90, 1064–1073. [Google Scholar] [CrossRef]
- Sinha, P.; Kallogjeri, D.; Piccirillo, J.F. Assessment of comorbidities in surgical oncology outcomes. J. Surg. Oncol. 2014, 110, 629–635. [Google Scholar] [CrossRef]
- Lee, L.; Cheung, W.Y.; Atkinson, E.; Krzyzanowska, M.K. Impact of comorbidity on chemotherapy use and outcomes in solid tumors: A systematic review. J. Clin. Oncol. 2011, 29, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Reames, B.N.; Birkmeyer, N.J.; Dimick, J.B.; Ghaferi, A.A. Socioeconomic disparities in mortality after cancer surgery: Failure to rescue. JAMA Surg. 2014, 149, 475–481. [Google Scholar] [CrossRef]
- Klapheke, A.; Yap, S.A.; Pan, K.; Cress, R.D. (Eds.) Sociodemographic disparities in chemotherapy treatment and impact on survival among patients with metastatic bladder cancer. In Urologic Oncology: Seminars and Original Investigations; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Tran, A.; Moloney, M.; Kaczmarski, P.; Zheng, S.; Desai, A.; Desai, T.; Yu, L. Analysis of image-guided superficial radiation therapy (IGSRT) on the treatment of early-stage non-melanoma skin cancer (NMSC) in the outpatient dermatology setting. J. Cancer Res. Clin. Oncol. 2023, 149, 6283–6291. [Google Scholar] [CrossRef]
- Appropriate Use Criteria for the Treatment of Basal Cell Carcinoma (BCC) Using Image-Guided Superficial Radiation Therapy (Version 1.2024): Dermatology Association of Radiation Therapy. 2024. Available online: https://dermassociationrt.org/wp-content/uploads/2024/08/AUC-BCC-Clinical-Guidelines-8-1-24.pdf (accessed on 17 September 2024).
- Appropriate Use Criteria for the Treatment of Early-Stage Cutaneous Squamous Cell Carcinoma (SCC) Using Image-Guided Superficial Radiation Therapy (Version 1.2024): Dermatology Association of Radiation Therapy. 2024. Available online: https://dermassociationrt.org/wp-content/uploads/2024/06/AUC-SCC-Clinical-Guidelines-6-17-24.pdf (accessed on 17 September 2024).
- University of Wisconsin School of Medicine and Public Health Center for Health Disparities Research. About the Neighborhood Atlas®. Available online: https://www.neighborhoodatlas.medicine.wisc.edu/ (accessed on 2 September 2024).
- 2023 Population Estimates FIPS Codes: United States Census Bureau. 2024. Available online: https://www.census.gov/geographies/reference-files/2023/demo/popest/2023-fips.html (accessed on 2 September 2024).
- Download Instructions Neighborhood Atlas: Applied Population Lab, UW-Madison. Available online: https://www.neighborhoodatlas.medicine.wisc.edu/download (accessed on 2 September 2024).
- Connolly, K.L.; Jeong, J.M.; Barker, C.A.; Hernandez, M.; Lee, E.H. A systematic review of comorbidity indices used in the nonmelanoma skin cancer population. J. Am. Acad. Dermatol. 2017, 76, 344. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Carrozzino, D.; Guidi, J.; Patierno, C. Charlson Comorbidity Index: A Critical Review of Clinimetric Properties. Psychother. Psychosom. 2022, 91, 8–35. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Mannavola, F.; Lospalluti, L.; Sergi, M.C.; Cazzato, G.; Filoni, E.; Cavallo, F.; Giudice, G.; Stucci, L.S.; Porta, C.; et al. Non-Melanoma Skin Cancers: Biological and Clinical Features. Int. J. Mol. Sci. 2020, 21, 5394. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.; Wells, M.T.; Ullman, R.; King, F.; Shmukler, C. The Charlson comorbidity index can be used prospectively to identify patients who will incur high future costs. PLoS ONE 2014, 9, e112479. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, V.; Henderson, T.; Perry, C.; Muggivan, A.; Quan, H.; Ghali, W.A. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J. Clin. Epidemiol. 2004, 57, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Crisan, D.; Vargas-Malvar, A.L.; Kastler, S.; Fröba, G.; Scharffetter-Kochanek, K.; Schneider, L.A. Retrospective Analysis of Pre- and Peri-operative Morbidity of Patients with Non-melanoma Skin Cancer at a University Skin Cancer Centre. Acta Derm. Venereol. 2021, 101, adv00440. [Google Scholar] [CrossRef]
- Yusuf, S.W.; Venkatesulu, B.P.; Mahadevan, L.S.; Krishnan, S. Radiation-induced cardiovascular disease: A clinical perspective. Front. Cardiovasc. Med. 2017, 4, 66. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Zuo, L.; Shang, L.; Bazan, J.G. Radiotherapy treatment for nonmelanoma skin cancer. Expert Rev. Anticancer. Ther. 2015, 15, 765–776. [Google Scholar] [CrossRef]
- Freeman, V.L.; Ricardo, A.C.; Campbell, R.T.; Barrett, R.E.; Warnecke, R.B. Association of census tract-level socioeconomic status with disparities in prostate cancer-specific survival. Cancer Epidemiol. Biomark. Prev. 2011, 20, 2150–2159. [Google Scholar] [CrossRef]
- Robbins, A.S.; Yin, D.; Parikh-Patel, A. Differences in prognostic factors and survival among White men and Black men with prostate cancer, California, 1995–2004. Am. J. Epidemiol 2007, 166, 71–78. [Google Scholar] [CrossRef]
- White, A.; Coker, A.L.; Du, X.L.; Eggleston, K.S.; Williams, M. Racial/ethnic disparities in survival among men diagnosed with prostate cancer in Texas. Cancer 2011, 117, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Zell, J.A.; Cinar, P.; Mobasher, M.; Ziogas, A.; Meyskens, F.L., Jr.; Anton-Culver, H. Survival for patients with invasive cutaneous melanoma among ethnic groups: The effects of socioeconomic status and treatment. J. Clin. Oncol. 2008, 26, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.K.; Kelley, K.A.; Rosson, G.D.; Detrani, M.E.; Chang, D.C. Disparities in urban and rural mastectomy populations: The effects of patient- and county-level factors on likelihood of receipt of mastectomy. Ann. Surg. Oncol. 2008, 15, 2644–2652. [Google Scholar] [CrossRef] [PubMed]
- Nattinger, A.B.; Kneusel, R.T.; Hoffmann, R.G.; Gilligan, M.A. Relationship of distance from a radiotherapy facility and initial breast cancer treatment. J. Natl. Cancer Inst. 2001, 93, 1344–1346. [Google Scholar] [CrossRef] [PubMed]
- Celaya, M.O.; Rees, J.R.; Gibson, J.J.; Riddle, B.L.; Greenberg, E.R. Travel distance and season of diagnosis affect treatment choices for women with early-stage breast cancer in a predominantly rural population (United States). Cancer Causes Control. 2006, 17, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Punglia, R.S.; Weeks, J.C.; Neville, B.A.; Earle, C.C. Effect of distance to radiation treatment facility on use of radiation therapy after mastectomy in elderly women. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Modesitt, S.C.; Huang, B.; Shelton, B.J.; Wyatt, S. Endometrial cancer in Kentucky: The impact of age, smoking status, and rural residence. Gynecol. Oncol. 2006, 103, 300–306. [Google Scholar] [CrossRef]
- Desch, C.E.; Penberthy, L.; Newschaffer, C.J.; Hillner, B.E.; Whittemore, M.; McClish, D.; Smith, T.J.; Retchin, S.M. Factors that determine the treatment for local and regional prostate cancer. Med. Care 1996, 34, 152–162. [Google Scholar] [CrossRef]
- Nehal, K.; Lee, E. Mohs surgery. In UpToDate; UpToDate: Waltham, MA, USA, 2018. [Google Scholar]
- The ASRT Practice Standards for Medical Imaging and Radiation Therapy: American Society of Radiologic Technologists. 2024. Available online: https://www.asrt.org/main/standards-and-regulations/professional-practice/practice-standards-online (accessed on 30 June 2024).
- Talari, K.; Goyal, M. Retrospective studies–utility and caveats. J. R. Coll. Physicians 2020, 50, 398–402. [Google Scholar] [CrossRef]
Code Number | In Metro Area | Adjacent to Metro Area | Population Size |
---|---|---|---|
1 | Yes | N/A | ≥1,000,000 |
2 | Yes | N/A | 250,000–1,000,000 |
3 | Yes | N/A | <250,000 |
4 | No | Yes | ≥20,000 |
5 | No | No | ≥20,000 |
6 | No | Yes | 5000–19,999 |
7 | No | No | 5000–19,999 |
8 | No | Yes | <5000 |
9 | No | No | <5000 |
Characteristic | Number of Lesions |
---|---|
Age, n (%) | |
<65 Years | 3158 (15.8) |
≥65 Years | 16,911 (84.2) |
Tumor Location, n (%) | |
Head/neck | 12,787 (63.7) |
Extremities | 4142 (20.6) |
Trunk | 819 (4.1) |
Stage, a n (%) | |
0 | |
1 | 9885 (49.4) |
2 | 5270 (26.4) |
3 | 4635 (23.2) |
Missing | 198 (1.0) |
Lesion Type, n (%) | |
BCC | 9885 (49.4) |
SCC | 5270 (26.4) |
SCCIS | 4635 (23.2) |
2 ≥ NMSC types | 198 (1.0) |
Area Deprivation Index Score, median (IQR) | 50.0 (24.0, 66.0) |
Rural–Urban Continuum Codes, n (%) | |
1 | 9712 (53.7) |
2 | 3735 (20.7) |
3 | 182 (1.0) |
4 | 1080 (6.0) |
5 | 248 (1.4) |
6 | 1628 (9.0) |
7 | 640 (3.5) |
8 | 662 (3.7) |
9 | 195 (1.1) |
Unknown | 1906 (9.54) |
Charlson Comorbidity Index Score, n (%) | |
0 | 367 (1.8) |
1 | 1128 (5.6) |
2 | 3591 (18.0) |
3 | 5776 (28.9) |
4 | 5764 (28.8) |
5 | 2048 (10.2) |
6 | 927 (4.6) |
≥7 | 387 (1.9) |
Comorbidity | Overall | BCC | SCC | SCCIS | Two or More NMSC Types |
---|---|---|---|---|---|
Diabetes | 3563 (17.8%) | 1537 (15.5%) | 1002 (19.0%) | 979 (21.1%) | 45 (22.7%) |
Solid Tumor Malignancy | 1538 (7.7%) | 752 (7.6%) | 447 (8.5%) | 329 (7.1%) | 10 (5.1%) |
Stroke or TIA | 928 (4.6%) | 432 (4.4%) | 242 (4.6%) | 237 (5.1%) | 17 (8.6%) |
Liver Disease | 288 (1.4%) | 118 (1.2%) | 101 (1.9%) | 67 (1.4%) | 2 (1.0%) |
Lymphoma | 256 (1.3%) | 103 (1.0%) | 77 (1.5%) | 73 (1.6%) | 3 (1.5%) |
Myocardial Infarction | 214 (1.1%) | 118 (1.2%) | 60 (1.1%) | 33 (0.7%) | 3 (1.5%) |
Leukemia | 201 (1.0%) | 69 (0.7%) | 70 (1.3%) | 60 (1.3%) | 2 (1.0%) |
Index Score | 2-Year Freedom from Recurrence | 4-Year Freedom from Recurrence | 6-Year Freedom from Recurrence |
---|---|---|---|
Area Deprivation Index Score, n (%) | |||
≤50 (n = 9163 at baseline) | |||
n, recurrence events | 3783, 25 | 1346, 29 | 211, 29 |
% freedom from recurrence | 99.37 | 98.00 | 87.26 |
>50 (n = 8761 at baseline) | |||
n, recurrence events | 3377, 15 | 1132, 19 | 140, 19 |
% freedom from recurrence | 99.56 | 98.33 | 86.43 |
Charlson Comorbidity Index (CCI) Score | |||
CCI 0 (n = 367 at baseline) | |||
n, recurrence events | 158, 1 | 59, 1 | 9, 1 |
% freedom from recurrence | 99.67 | 99.67 | 99.67 |
CCI 1 (n = 1128 at baseline) | |||
n, recurrence events | 442, 3 | 172, 3 | 18, 3 |
% freedom from recurrence | 99.63 | 99.63 | 99.63 |
CCI 2 (n = 3591 at baseline) | |||
n, recurrence events | 1570, 7 | 570, 8 | 90, 8 |
% freedom from recurrence | 99.74 | 99.68 | 99.68 |
CCI 3 (n = 5776 at baseline) | |||
n, recurrence events | 2405, 16 | 895, 19 | 133, 19 |
% freedom from recurrence | 99.60 | 99.43 | 99.43 |
CCI 4 (n = 5764 at baseline) | |||
n, recurrence events | 2177, 11 | 717, 15 | 100, 15 |
% freedom from recurrence | 99.74 | 99.47 | 99.47 |
CCI 5 (n = 2048 at baseline) | |||
n, recurrence events | 806, 5 | 278, 5 | 34, 5 |
% freedom from recurrence | 99.60 | 99.60 | 99.60 |
CCI 6 (n = 927 at baseline) | |||
n, recurrence events | 341, 1 | 106, 1 | 10, 1 |
% freedom from recurrence | 99.88 | 99.88 | 99.88 |
CCI ≥7 (n = 387 at baseline) | |||
n, recurrence events | 145, 2 | 38, 2 | 1, 2 |
% freedom from recurrence | 99.27 | 99.27 | 99.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Digby, M.; Wright, K.; Germain, M.A.; McClure, E.M.; Kartono, F.; Rahman, S.; Friedman, S.D.; Osborne, C.; Desai, A. The Impact of Socioeconomic Status and Comorbidities on Non-Melanoma Skin Cancer Recurrence After Image-Guided Superficial Radiation Therapy. Cancers 2024, 16, 4037. https://doi.org/10.3390/cancers16234037
Ma L, Digby M, Wright K, Germain MA, McClure EM, Kartono F, Rahman S, Friedman SD, Osborne C, Desai A. The Impact of Socioeconomic Status and Comorbidities on Non-Melanoma Skin Cancer Recurrence After Image-Guided Superficial Radiation Therapy. Cancers. 2024; 16(23):4037. https://doi.org/10.3390/cancers16234037
Chicago/Turabian StyleMa, Liqiao, Michael Digby, Kevin Wright, Marguerite A. Germain, Erin M. McClure, Francisca Kartono, Syed Rahman, Scott D. Friedman, Candace Osborne, and Alpesh Desai. 2024. "The Impact of Socioeconomic Status and Comorbidities on Non-Melanoma Skin Cancer Recurrence After Image-Guided Superficial Radiation Therapy" Cancers 16, no. 23: 4037. https://doi.org/10.3390/cancers16234037
APA StyleMa, L., Digby, M., Wright, K., Germain, M. A., McClure, E. M., Kartono, F., Rahman, S., Friedman, S. D., Osborne, C., & Desai, A. (2024). The Impact of Socioeconomic Status and Comorbidities on Non-Melanoma Skin Cancer Recurrence After Image-Guided Superficial Radiation Therapy. Cancers, 16(23), 4037. https://doi.org/10.3390/cancers16234037