p21Waf1/Cip1 Is a Novel Downstream Target of 40S Ribosomal S6 Kinase 2
"> Figure 1
<p>RNA-Seq analysis. (<b>A</b>). Venn graph of DEGs detected using both Cuffdiff and DESeq following S6K2 KD. FDR < 0.05 was applied for each method. (<b>B</b>). The representative gene ontology terms of functional annotation clusters, which are significantly enriched in 118 shared DEGs (FDR < 0.05). (<b>C</b>). Densitometric quantification of <span class="html-italic">CDKN1A</span> mRNA normalized with GAPDH control. The asterisk (*) indicates a significant difference from control siRNA-transfected cells (<span class="html-italic">p</span> < 0.05) using paired Student’s <span class="html-italic">t</span>-test.</p> "> Figure 2
<p>T47D (<b>A</b>,<b>B</b>) or MCF-7 (<b>C</b>,<b>D</b>) cells were transfected with or without control non-targeting siRNA or SMARTpool (SP) S6K1 or S6K2 siRNA. Western blot analyses were performed with indicated antibodies. The intensity of p21 was determined using ImageJ and normalized with respect to loading control. Each bar represents mean ± S.E. <span class="html-italic">p</span> values were calculated using a paired Student’s <span class="html-italic">t</span> test. (<b>E</b>). Different concentrations of cell lysates from MCF-7 cells transfected with an empty vector pcDNA3 (PC) or a vector containing S6K2 construct were subjected to Western blot analyses with indicated antibodies.</p> "> Figure 3
<p>T47D (<b>A</b>,<b>B</b>) or MCF-7 (<b>C</b>,<b>D</b>) cells were transfected with indicated siRNAs and Western blot analyses were performed with indicated antibodies. Each bar represents the mean ± S.E of four independent experiments. <span class="html-italic">p</span> values were calculated using paired Student’s <span class="html-italic">t</span> test of control versus individual siRNA as described under <a href="#cancers-16-03783-f002" class="html-fig">Figure 2</a>. ***, <span class="html-italic">p</span> ≤ 0.0005; **, <span class="html-italic">p</span> ≤ 0.005; *, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 4
<p>T47D (<b>A</b>,<b>B</b>) or MCF-7 (<b>C</b>,<b>D</b>) cells were transfected with indicated siRNAs and Western blot analyses were performed with indicated antibodies. Each bar represents mean ± S.E of at least six independent experiments. <span class="html-italic">p</span> values were calculated using paired Student’s <span class="html-italic">t</span> test.</p> "> Figure 5
<p>T47D (<b>A</b>,<b>B</b>) or MCF-7 (<b>C</b>,<b>D</b>) cells were transfected with control or S6K2 siRNA and then infected with or without adenoviral vectors containing Akt1. Western blot analyses were performed with indicated antibodies. Each bar represents mean ± S.E of six independent experiments. <span class="html-italic">p</span> values calculated using paired <span class="html-italic">t</span> test of control versus Akt1 overexpressing cells: T47D, <span class="html-italic">p</span> = 0.0007; MCF-7, <span class="html-italic">p</span> = 0.0005; Light gray bar, control siRNA; black bar, S6K2 siRNA.</p> "> Figure 6
<p>T47D cells were transfected with indicated siRNAs. Western blot analyses were performed with indicated antibodies (<b>A</b>,<b>C</b>,<b>E</b>). The intensities of cJun (<b>B</b>) and p21 (<b>D</b>) were determined using ImageJ and normalized with respect to loading controls. Each bar represents mean ± S.E. <span class="html-italic">p</span> values were calculated using paired Student’s <span class="html-italic">t</span> test.</p> "> Figure 7
<p>T47D cells were transfected with control non-targeting siRNA or S6K2 siRNA and then treated with indicated concentrations of doxorubicin (Dox). Western blot analyses were performed with indicated antibodies. The band corresponding to cleaved caspase-7 was quantified using ImageJ and the intensities of bands normalized with loading controls are shown.</p> "> Figure 8
<p>T47D cells were transfected with control non-targeting siRNA or p21 siRNA and then treated with indicated concentrations of doxorubicin. Western blot analyses were performed with indicated antibodies. The bands corresponding to p21, cleaved caspase-3, caspase-7, and PARP were quantified using ImageJ, and the intensities of bands normalized with loading controls are shown.</p> "> Figure 9
<p>T47D cells were transfected with control non-targeting siRNA, S6K2 and/or c-Jun siRNA and then treated with or without 0.3 and 1.0 µM (<b>A</b>) or 10 µM (<b>B</b>) doxorubicin. Western blot analysis was performed with indicated antibodies. The band corresponding to cleaved caspase-7 or PARP was quantified using ImageJ and the intensities of bands were normalized with tubulin.</p> "> Figure 10
<p>T47D cells were transfected with control non-targeting siRNA or JNK1 siRNA and then treated with indicated concentrations of doxorubicin. Western blot analyses were performed with indicated antibodies.</p> ">
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture and Transfection
2.3. RNA Isolation, NGS Sequencing, and Real-Time Quantitative PCR
2.4. Western Blot Analysis
2.5. Statistical Analyses
2.6. RNA-Seq Data Analyses
3. Results
3.1. Transcriptome Profiling of Breast Cancer Cells Following Knockdown of S6K2
3.2. Differential Effects of S6K1 and S6K2 on p21 Protein
3.3. Effects of Akt1 vs. Akt2 on p21 Levels
3.4. Effect of cJun on p21
3.5. Effect of S6K2, p21 and cJun on Chemosensitivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miricescu, D.; Totan, A.; Stanescu, S., II; Badoiu, S.C.; Stefani, C.; Greabu, M. PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. Int. J. Mol. Sci. 2020, 22, 173. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, D.M. mTOR and cancer: Insights into a complex relationship. Nat. Rev. Cancer 2006, 6, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Gout, I.; Minami, T.; Hara, K.; Tsujishita, Y.; Filonenko, V.; Waterfield, M.D.; Yonezawa, K. Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region. J. Biol. Chem. 1998, 273, 30061–30064. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.; Jee, K.; Lee, B.; Kim, J.; Kim, D.; Yun, Y.H.; Kim, J.W.; Choi, H.S.; Chung, J. Cloning and characterization of a nuclear S6 kinase, S6 kinase-related kinase (SRK); a novel nuclear target of Akt. Oncogene 1999, 18, 5115–5119. [Google Scholar] [CrossRef]
- Lee-Fruman, K.K.; Kuo, C.J.; Lippincott, J.; Terada, N.; Blenis, J. Characterization of S6K2, a novel kinase homologous to S6K1. Oncogene 1999, 18, 5108–5114. [Google Scholar] [CrossRef]
- Sridharan, S.; Basu, A. Distinct Roles of mTOR Targets S6K1 and S6K2 in Breast Cancer. Int. J. Mol. Sci. 2020, 21, 1199. [Google Scholar] [CrossRef]
- Perou, C.M.; Sorlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef]
- Yamamoto-Ibusuki, M.; Arnedos, M.; Andre, F. Targeted therapies for ER+/HER2- metastatic breast cancer. BMC Med. 2015, 13, 137. [Google Scholar] [CrossRef]
- Karlsson, E.; Perez-Tenorio, G.; Amin, R.; Bostner, J.; Skoog, L.; Fornander, T.; Sgroi, D.C.; Nordenskjold, B.; Hallbeck, A.L.; Stal, O. The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: A retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res. 2013, 15, R96. [Google Scholar] [CrossRef]
- Karlsson, E.; Waltersson, M.A.; Bostner, J.; Perez-Tenorio, G.; Olsson, B.; Hallbeck, A.L.; Stal, O. High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1. Genes Chromosomes Cancer 2011, 50, 775–787. [Google Scholar] [CrossRef]
- Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, S.; Xuan, Z.; Basu, A. Ribosomal S6 Kinase 2 Promotes Survival of Triple- Negative Breast Cancer Cells to Apoptotic Stimuli. Cancer Stud. Ther. 2019, 4, 1–6. [Google Scholar]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef]
- Dennis, G., Jr.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, R60. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Sridharan, S.; Basu, A. S6 kinase 2 promotes breast cancer cell survival via Akt. Cancer Res. 2011, 71, 2590–2599. [Google Scholar] [CrossRef]
- Basu, A.; Sridharan, S. Regulation of anti-apoptotic Bcl-2 family protein Mcl-1 by S6 kinase 2. PLoS ONE 2017, 12, e0173854. [Google Scholar] [CrossRef]
- Hodeify, R.; Tarcsafalvi, A.; Megyesi, J.; Safirstein, R.L.; Price, P.M. Cdk2-dependent phosphorylation of p21 regulates the role of Cdk2 in cisplatin cytotoxicity. Am. J. Physiol. Renal Physiol. 2011, 300, F1171–F1179. [Google Scholar] [CrossRef] [PubMed]
- Pardo, O.E.; Seckl, M.J. S6K2: The Neglected S6 Kinase Family Member. Front. Oncol. 2013, 3, 191. [Google Scholar] [CrossRef] [PubMed]
- Bostner, J.; Karlsson, E.; Eding, C.B.; Perez-Tenorio, G.; Franzen, H.; Konstantinell, A.; Fornander, T.; Nordenskjold, B.; Stal, O. S6 kinase signaling: Tamoxifen response and prognostic indication in two breast cancer cohorts. Endocr. Relat. Cancer 2015, 22, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Danes, C.; Lowe, M.; Herliczek, T.W.; Keyomarsi, K. Activation of the estrogen-signaling pathway by p21(WAF1/CIP1) in estrogen receptor-negative breast cancer cells. J. Natl. Cancer Inst. 2000, 92, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Konduri, S.D.; Medisetty, R.; Liu, W.; Kaipparettu, B.A.; Srivastava, P.; Brauch, H.; Fritz, P.; Swetzig, W.M.; Gardner, A.E.; Khan, S.A.; et al. Mechanisms of estrogen receptor antagonism toward p53 and its implications in breast cancer therapeutic response and stem cell regulation. Proc. Natl. Acad. Sci. USA 2010, 107, 15081–15086. [Google Scholar] [CrossRef]
- Lee, T.H.; Chuang, L.Y.; Hung, W.C. Tamoxifen induces p21WAF1 and p27KIP1 expression in estrogen receptor-negative lung cancer cells. Oncogene 1999, 18, 4269–4274. [Google Scholar] [CrossRef]
- Margueron, R.; Licznar, A.; Lazennec, G.; Vignon, F.; Cavailles, V. Oestrogen receptor alpha increases p21(WAF1/CIP1) gene expression and the antiproliferative activity of histone deacetylase inhibitors in human breast cancer cells. J. Endocrinol. 2003, 179, 41–53. [Google Scholar] [CrossRef]
- Manu, K.A.; Cao, P.H.A.; Chai, T.F.; Casey, P.J.; Wang, M. p21cip1/waf1 Coordinate Autophagy, Proliferation and Apoptosis in Response to Metabolic Stress. Cancers 2019, 11, 1112. [Google Scholar] [CrossRef]
- Basu, A.; Lambring, C.B. Akt Isoforms: A Family Affair in Breast Cancer. Cancers 2021, 13, 3445. [Google Scholar] [CrossRef]
- Manning, B.D.; Cantley, L.C. United at last: The tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem. Soc. Trans. 2003, 31, 573–578. [Google Scholar] [CrossRef]
- Kreis, N.N.; Louwen, F.; Yuan, J. The Multifaceted p21 (Cip1/Waf1/CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers 2019, 11, 1220. [Google Scholar] [CrossRef] [PubMed]
- Rasool, R.U.; Nayak, D.; Chakraborty, S.; Faheem, M.M.; Rah, B.; Mahajan, P.; Gopinath, V.; Katoch, A.; Iqra, Z.; Yousuf, S.K.; et al. AKT is indispensable for coordinating Par-4/JNK cross talk in p21 downmodulation during ER stress. Oncogenesis 2017, 6, e341. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.V.; Jangamreddy, J.R.; Grabarek, J.; Schweizer, F.; Klonisch, T.; Cieslar-Pobuda, A.; Los, M.J. Nuclear localized Akt enhances breast cancer stem-like cells through counter-regulation of p21(Waf1/Cip1) and p27(kip1). Cell Cycle 2015, 14, 2109–2120. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Al-Odaini, A.A.; Fils-Aime, N.; Villatoro, M.A.; Guo, J.; Arakelian, A.; Rabbani, S.A.; Ali, S.; Lebrun, J.J. Cyclin D1 cooperates with p21 to regulate TGFbeta-mediated breast cancer cell migration and tumor local invasion. Breast Cancer Res. 2013, 15, R49. [Google Scholar] [CrossRef]
- Sever, N.I.; Cengiz Sahin, S. S6K2 promises an important therapeutic potential for cancer. Future Oncol. 2019, 15, 95–102. [Google Scholar] [CrossRef]
- Kciuk, M.; Gielecinska, A.; Mujwar, S.; Kolat, D.; Kaluzinska-Kolat, Z.; Celik, I.; Kontek, R. Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023, 12, 659. [Google Scholar] [CrossRef]
- Netterfield, T.S.; Ostheimer, G.J.; Tentner, A.R.; Joughin, B.A.; Dakoyannis, A.M.; Sharma, C.D.; Sorger, P.K.; Janes, K.A.; Lauffenburger, D.A.; Yaffe, M.B. Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after DNA damage induced by topoisomerase II inhibition. Cell Syst. 2023, 14, 582–604.e10. [Google Scholar] [CrossRef]
- Al Bitar, S.; Gali-Muhtasib, H. The Role of the Cyclin Dependent Kinase Inhibitor p21(cip1/waf1) in Targeting Cancer: Molecular Mechanisms and Novel Therapeutics. Cancers 2019, 11, 1475. [Google Scholar] [CrossRef]
- Schmidt, M.; Fan, Z. Protection against chemotherapy-induced cytotoxicity by cyclin-dependent kinase inhibitors (CKI) in CKI-responsive cells compared with CKI-unresponsive cells. Oncogene 2001, 20, 6164–6171. [Google Scholar] [CrossRef]
- Shamloo, B.; Usluer, S. p21 in Cancer Research. Cancers 2019, 11, 1178. [Google Scholar] [CrossRef]
- Hu, K.; Li, J.; Wu, G.; Zhou, L.; Wang, X.; Yan, Y.; Xu, Z. The novel roles of virus infection-associated gene CDKN1A in chemoresistance and immune infiltration of glioblastoma. Aging 2021, 13, 6662–6680. [Google Scholar] [CrossRef] [PubMed]
- Yip, H.Y.K.; Shin, S.Y.; Chee, A.; Ang, C.S.; Rossello, F.J.; Wong, L.H.; Nguyen, L.K.; Papa, A. Integrative modeling uncovers p21-driven drug resistance and prioritizes therapies for PIK3CA-mutant breast cancer. NPJ Precis. Oncol. 2024, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, Z.; Hu, Y.; Yi, X.; Wu, L.; Cao, Z.; Wang, J. Sensitive and selective monitoring of the DNA damage-induced intracellular p21 protein and unraveling the role of the p21 protein in DNA repair and cell apoptosis by surface plasmon resonance. Analyst 2020, 145, 3697–3704. [Google Scholar] [CrossRef] [PubMed]
- Ventura, J.J.; Hubner, A.; Zhang, C.; Flavell, R.A.; Shokat, K.M.; Davis, R.J. Chemical genetic analysis of the time course of signal transduction by JNK. Mol. Cell 2006, 21, 701–710. [Google Scholar] [CrossRef]
- Wang, C.H.; Tsao, Y.P.; Chen, H.J.; Chen, H.L.; Wang, H.W.; Chen, S.L. Transcriptional repression of p21((Waf1/Cip1/Sdi1)) gene by c-jun through Sp1 site. Biochem. Biophys. Res. Commun. 2000, 270, 303–310. [Google Scholar] [CrossRef]
- Kolomeichuk, S.N.; Bene, A.; Upreti, M.; Dennis, R.A.; Lyle, C.S.; Rajasekaran, M.; Chambers, T.C. Induction of apoptosis by vinblastine via c-Jun autoamplification and p53-independent down-regulation of p21WAF1/CIP1. Mol. Pharmacol. 2008, 73, 128–136. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, W.; Bu, W.; Ji, H.; Zhao, X.; Zheng, Y.; Lin, X.; Li, Y.; Lu, Z. Differential regulation of c-Jun protein plays an instrumental role in chemoresistance of cancer cells. J. Biol. Chem. 2013, 288, 19321–19329. [Google Scholar] [CrossRef]
- Gervais, J.L.; Seth, P.; Zhang, H. Cleavage of CDK inhibitor p21(Cip1/Waf1) by caspases is an early event during DNA damage-induced apoptosis. J. Biol. Chem. 1998, 273, 19207–19212. [Google Scholar] [CrossRef]
- Kodama, Y.; Taura, K.; Miura, K.; Schnabl, B.; Osawa, Y.; Brenner, D.A. Antiapoptotic effect of c-Jun N-terminal Kinase-1 through Mcl-1 stabilization in TNF-induced hepatocyte apoptosis. Gastroenterology 2009, 136, 1423–1434. [Google Scholar] [CrossRef]
- Wu, Y.C.; O’Reilly, M.A. Bcl-X(L) is the primary mediator of p21 protection against hyperoxia-induced cell death. Exp. Lung Res. 2011, 37, 82–91. [Google Scholar] [CrossRef]
- Shaulian, E.; Karin, M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 2002, 4, E131–E136. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basu, A.; Xuan, Z. p21Waf1/Cip1 Is a Novel Downstream Target of 40S Ribosomal S6 Kinase 2. Cancers 2024, 16, 3783. https://doi.org/10.3390/cancers16223783
Basu A, Xuan Z. p21Waf1/Cip1 Is a Novel Downstream Target of 40S Ribosomal S6 Kinase 2. Cancers. 2024; 16(22):3783. https://doi.org/10.3390/cancers16223783
Chicago/Turabian StyleBasu, Alakananda, and Zhenyu Xuan. 2024. "p21Waf1/Cip1 Is a Novel Downstream Target of 40S Ribosomal S6 Kinase 2" Cancers 16, no. 22: 3783. https://doi.org/10.3390/cancers16223783
APA StyleBasu, A., & Xuan, Z. (2024). p21Waf1/Cip1 Is a Novel Downstream Target of 40S Ribosomal S6 Kinase 2. Cancers, 16(22), 3783. https://doi.org/10.3390/cancers16223783