Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Microsatellite Instability Analysis
2.3. MSH3 Exon 1 Repeat Polymorphism Analysis
2.4. PCR and Restriction Fragment Length Polymorphism Analysis of the MSH3+3133A/G Polymorphism
2.5. Real-Time PCR SNP Analysis of the IL-6-174G/C Promoter Polymorphism
2.6. PCR and Restriction Fragment Length Polymorphism Analysis of IL-6R+48892A/C and gp130+148G/C Polymorphisms
2.7. Statistical Analysis
3. Results
3.1. Analysis of the MSH3 Exon 1 Polymorphism
3.2. Analysis of the MSH3+3133A/G Polymorphism
3.3. Analysis of IL-6-174G/C Promoter Polymorphism
3.4. Analysis of the IL-6R+48892A/C Polymorphism
3.5. Analysis of the gp130+148G/C Polymorphism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Rebuzzi, F.; Ulivi, P.; Tedaldi, G. Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int. J. Mol. Sci. 2023, 24, 2137. [Google Scholar] [CrossRef]
- Carethers, J.M. Microsatellite instability pathway and EMAST in colorectal Cancer. Curr. Color. Cancer Rep. 2017, 13, 73–80. [Google Scholar] [CrossRef]
- Carethers, J.M.; Koi, M.; Tseng-Rogenski, S.S. EMAST is a form of microsatellite instability that is initiated by inflammation and modulates colorectal cancer progression. Genes 2015, 31, 185–205. [Google Scholar] [CrossRef]
- Haugen, A.C.; Goel, A.; Yamada, K.; Marra, G.; Nguyen, T.P.; Nagasaka, T.; Kanazawa, S.; Koike, J.; Kikuchi, Y.; Zhong, X.; et al. Genetic instability caused by loss of MutS homologue 3 in human colorectal cancer. Cancer Res. 2008, 68, 8465–8472. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.; Spier, I.; Zhao, B.; Kloth, M.; Marquez, J.; Hinrichsen, I.; Kirfel, J.; Tafazzoli, A.; Horpaopan, S.; Uhlhaas, S.; et al. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. Am. J. Hum. Genet. 2016, 99, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Tseng-Rogenski, S.S.; Chung, H.; Wilk, M.B.; Zhang, S.; Iwaizumi, M.; Carethers, J.M. Oxidative stress induces nuclear-to-cytosol shift of hMSH3, a potential mechanism for EMAST in colorectal cancer cells. PLoS ONE 2012, 7, e50616. [Google Scholar] [CrossRef]
- Tseng-Rogenski, S.S.; Hamaya, Y.; Choi, D.Y.; Carethers, J.M. Interleukin 6 alters localization of hMSH3, leading to DNA mismatch repair defects in colorectal cancer cells. Gastroenterology 2015, 148, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, E.; Orimo, H.; Ikejima, M.; Shimada, T. Nine-bp repeat polymorphism in exon 1 of the hMSH3 gene. Jpn. J. Hum. Genet. 1995, 40, 343–345. [Google Scholar] [CrossRef]
- Tseng-Rogenski, S.S.; Munakata, K.; Choi, D.Y.; Martin, P.K.; Mehta, S.; Koi, M.; Zheng, W.; Zhang, Y.; Carethers, J.M. The Human DNA Mismatch Repair Protein MSH3 Contains Nuclear Localization and Export Signals That Enable Nuclear-Cytosolic Shuttling in Response to Inflammation. Mol. Cell. Biol. 2020, 40, e00029-20. [Google Scholar] [CrossRef]
- Miao, H.K.; Chen, L.P.; Cai, D.P.; Kong, W.J.; Xiao, L.; Lin, J. MSH3 rs26279 polymorphism increases cancer risk: A meta-analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 11060–11067. [Google Scholar]
- Holmer, R.; Wätzig, G.H.; Tiwari, S.; Rose-John, S.; Kalthoff, H. Interleukin-6 trans-signaling increases the expression of carcinoembryonic antigen-related cell adhesion molecules 5 and 6 in colorectal cancer cells. BMC Cancer 2015, 15, 975. [Google Scholar] [CrossRef]
- Rose-John, S.; Jenkins, B.J.; Garbers, C.; Moll, J.M.; Scheller, J. Targeting IL-6 trans-signalling: Past, present and future prospects. Nat. Rev. Immunol. 2023, 23, 666–681. [Google Scholar] [CrossRef]
- Taher, M.Y.; Davies, D.M.; Maher, J. The role of the interleukin (IL)-6/IL-6 receptor axis in cancer. Biochem. Soc. Trans. 2018, 46, 1449–1462. [Google Scholar] [CrossRef]
- Jostock, T.; Müllberg, J.; Ozbek, S.; Atreya, R.; Blinn, G.; Voltz, N.; Fischer, M.; Neurath, M.F.; Rose-John, S. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem. 2001, 268, 160–167. [Google Scholar] [CrossRef]
- Terry, C.F.; Loukaci, V.; Green, F.R. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J. Biol. Chem. 2000, 275, 18138–18144. [Google Scholar] [CrossRef]
- Jones, K.G.; Brull, D.J.; Brown, L.C.; Sian, M.; Greenhalgh, R.M.; Humphries, S.E.; Powell, J.T. Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms. Circulation 2001, 103, 2260–2265. [Google Scholar] [CrossRef]
- Garbers, C.; Monhasery, N.; Aparicio-Siegmund, S.; Lokau, J.; Baran, P.; Nowell, M.A.; Jones, S.A.; Rose-John, S.; Scheller, J. The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochim. Biophys. Acta 2014, 1842, 1485–1494. [Google Scholar] [CrossRef]
- Wonnerth, A.; Katsaros, K.M.; Krychtiuk, K.A.; Speidl, W.S.; Kaun, C.; Thaler, K.; Huber, K.; Wojta, J.; Maurer, G.; Seljeflot, I.; et al. Glycoprotein 130 polymorphism predicts soluble glycoprotein 130 levels. Metabolism 2014, 63, 647–653. [Google Scholar] [CrossRef]
- Spaventi, R.; Pecur, L.; Pavelic, K.; Pavelic, Z.P.; Spaventi, S.; Stambrook, P.J. Human tumour bank in Croatia: A possible model for a small bank as part of the future European tumour bank network. Eur. J. Cancer 1994, 30A, 419. [Google Scholar] [CrossRef]
- Boland, C.R.; Thibodeau, S.N.; Hamilton, S.R.; Sidransky, D.; Eshleman, J.R.; Burt, R.W.; Meltzer, S.J.; Rodriguez-Bigas, M.A.; Fodde, R.; Ranzani, G.N.; et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998, 58, 5248–5257. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2021, 144, 646–674. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Becker, C.; Fantini, M.C.; Wirtz, S.; Nikolaev, A.; Lehr, H.A.; Galle, P.R.; Rose-John, S.; Neurath, M.F. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 2005, 4, 217–220. [Google Scholar] [CrossRef]
- Waldner, M.J.; Foersch, S.; Neurath, M.F. Interleukin-6-a key regulator of colorectal cancer development. Int. J. Biol. Sci. 2012, 8, 1248–1253. [Google Scholar] [CrossRef]
- Munakata, K.; Koi, M.; Kitajima, T.; Tseng-Rogenski, S.; Uemura, M.; Matsuno, H.; Kawai, K.; Sekido, Y.; Mizushima, T.; Toiyama, Y.; et al. Inflammation-Associated Microsatellite Alterations Caused by MSH3 Dysfunction Are Prevalent in Ulcerative Colitis and Increase With Neoplastic Advancement. Clin. Transl. Gastroenterol. 2019, 10, e00105. [Google Scholar] [CrossRef]
- Mas-Ponte, D.; McCullough, M.; Supek, F. Spectrum of DNA mismatch repair failures viewed through the lens of cancer genomics and implications for therapy. Clin. Sci. 2022, 136, 383–404. [Google Scholar] [CrossRef]
- Koi, M.; Tseng-Rogenski, S.S.; Carethers, J.M. Inflammation-associated microsatellite alterations: Mechanisms and significance in the prognosis of patients with colorectal cancer. World J. Gastrointest. Oncol. 2018, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- IL6R Genetics Consortium Emerging Risk Factors Collaboration. Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. Lancet 2012, 379, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Atreya, R.; Mudter, J.; Finotto, S.; Müllberg, J.; Jostock, T.; Wirtz, S.; Schütz, M.; Bartsch, B.; Holtmann, M.; Becker, C.; et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: Evidence in Crohn disease and experimental colitis in vivo. Nat. Med. 2000, 6, 583–588. [Google Scholar] [CrossRef] [PubMed]
n (%) | Group S (%) | Group M (%) | Group E (%) | ||
---|---|---|---|---|---|
Gender | M | 121 (62.1) | 71 (61.7) | 14 (53.8) | 36 (66.7) |
F | 74 (37.9) | 44 (38.3) | 12 (46.2) | 18 (33.3) | |
Age | ≥65 y | 127 (65.1) | 79 (68.7) | 15 (57.7) | 33 (61.1) |
<65 y | 68 (34.9) | 36 (31.3) | 11 (42.3) | 21 (38.9) | |
Dukes | A | 27 (13.8) | 18 (15.7) | 0 (0) | 9 (16.7) |
B | 75 (38.5) | 41 (35.7) | 14 (53.8) | 20 (37.0) | |
C | 78 (40.0) | 49 (42.6) | 11 (42.3) | 18 (33.3) | |
D | 15 (7.7) | 7 (6.1) | 1 (3.9) | 7 (13.0) | |
Grade | 1 | 62 (32.1) | 37 (32.5) | 9 (34.6) | 16 (30.2) |
2 | 111 (57.5) | 65 (57.0) | 13 (50.0) | 33 (62.3) | |
3 | 20 (10.4) | 12 (10.5) | 4 (15.4) | 4 (7.5) | |
Size | ≥5 cm | 106 (54.9) | 54 (47.8) | 20 (76.9) | 32 (59.3) |
<5 cm | 87 (45.1) | 59 (52.2) | 6 (23.1) | 22 (40.7) |
MSH3 Exon 1 | Group S | Group M | Group E |
---|---|---|---|
n = 115 | n = 26 | n = 55 | |
Genotype | n (%) | n (%) | n (%) |
FL/FL | 49 (42.6) | 13 (50) | 24 (43.6) |
FL/∆ | 28 (24.3) | 3 (11.5) | 13 (23.6) |
∆/∆ | 11 (9.6) | 5 (19.2) | 8 (14.5) |
FL/ins9 | 11 (9.6) | 3 (2.6) | 5 (4.3) |
FL/A5 | 3 (2.6) | 1 (0.9) | 1 (0.9) |
FL/∆/ins9 | 4 (3.5) | 0 (0) | 0 (0) |
∆/ins9 | 3 (2.6) | 0 (0) | 0 (0) |
FL/ins18 | 0 (0) | 0 (0) | 3 (2.6) |
ins9/ins9 | 2 (1.7) | 0 (0) | 1 (0.9) |
FL/ins4 | 1 (0.9) | 0 (0) | 0 |
ins9/ins18 | 1 (0.9) | 1 (0.9) | 0 |
ins18/ins18 | 1 (0.9) | 0 (0) | 0 |
A5/∆ | 1 (0.9) | 0 (0) | 0 |
Alleles | |||
FL | 145 (61.966) | 33 (63.462) | 33 (63.462) |
∆ | 58 (24.786) | 13 (25) | 13 (25) |
ins9 | 23 (9.829) | 4 (7.692) | 4 (7.692) |
ins18 | 3 (0.013) | 1 (0.004) | 1 (0.004) |
ins4 | 1 (0.004) | 0 | 0 |
A5 | 4 (0.017) | 1 (0.004) | 1 (0.004) |
Polymorphisms | Group S | Group E | p | Group S | Group M | p | Group E | Group M | p |
---|---|---|---|---|---|---|---|---|---|
n = 115 | n = 55 | n = 115 | n = 26 | n = 55 | n = 26 | ||||
MSH3+3133A/G | |||||||||
Genotype | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |||
AA | 56 (48.7) | 28 (50.9) | - | 56 (48.7) | 16 (61.5) | - | 28 (50.9) | 16 (61.5) | - |
AG | 52 (45.2) | 27 (49.1) | >0.999 | 52 (45.2) | 8 (30.8) | 0.257 | 27 (49.1) | 8 (30.8) | 0.226 |
GG | 7 (6.1) | 0 (0) | 0.095 | 7 (6.1) | 2 (7.7) | >0.999 | 0 (0) | 2 (7.7) | 0.148 |
Alleles | |||||||||
A | 164 (71.3) | 83 (75.5) | - | 164 (71.3) | 40 (76.9) | - | 83 (75.5) | 40 (76.9) | - |
G | 67 (28.7) | 27 (24.5) | 0.438 | 67 (28.7) | 12 (23.1) | 0.494 | 27 (24.5) | 12 (23.1) | >0.999 |
IL-6-174G/C | |||||||||
Genotype | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |||
GG | 37 (32.2) | 16 (29) | - | 37 (32.2) | 8 (30.8) | - | 16 (29) | 8 (30.8) | - |
GC | 66 (57.4) | 25 (45.5) | 0.848 | 66 (57.4) | 14 (53.8) | >0.999 | 25 (45.5) | 14 (53.8) | >0.999 |
CC | 12 (10.4) | 14 (25.5) | 0.051 | 12 (10.4) | 4 (15.4) | 0.715 | 14 (25.5) | 4 (15.4) | 0.506 |
Alleles | |||||||||
G | 140 (60.9) | 57 (51.8) | - | 140 (60.9) | 30 (57.7) | - | 57 (51.8) | 30 (57.7) | - |
C | 90 (39.1) | 53 (48.2) | 0.127 | 90 (39.1) | 22 (42.3) | 0.754 | 53 (48.2) | 22 (42.3) | 0.505 |
IL-6R+48892A/C | |||||||||
Genotype | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |||
AA | 48 (41.7) | 23 (41.8) | - | 48 (41.7) | 9 (34.6) | - | 23 (41.8) | 9 (34.6) | - |
AC | 54 (47) | 26 (47.2) | >0.999 | 54 (47) | 17 (65.4) | 0.278 | 26 (47.2) | 17 (65.4) | 0.336 |
CC | 13 (11.3) | 6 (11) | >0.999 | 13 (11.3) | 0 (0) | 0.193 | 6(11) | 0 (0) | 0.303 |
Alleles | |||||||||
A | 150 (65.2) | 72 (65.5) | - | 150 (65.2) | 35 (67.3) | - | 72 (65.5) | 35 (67.3) | - |
C | 80 (34.8) | 38 (34.5) | >0.999 | 80 (34.8) | 17 (32.7) | 0.872 | 38 (34.5) | 17 (32.7) | 0.860 |
gp130+148G/C | |||||||||
Genotype | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |||
GG | 80 (69.6) | 47 (85.5) | - | 80 (69.6) | 22 (84.6) | - | 47 (85.5) | 22 (84.6) | - |
GC + CC | 35 (30.4) | 8 (14.5) | 0.037 * | 35 (30.4) | 4 (15.4) | 0.149 | 8 (14.5) | 4 (15.4) | >0.999 |
Alleles | |||||||||
G | 191 (83) | 101 (91.8) | - | 191 (83) | 47 (90.4) | - | 101 (91.8) | 47 (90.4) | - |
C | 39 (17) | 9 (8.2) | 0.031 * | 39 (17) | 5 (9.6) | 0.212 | 9 (8.2) | 5 (9.6) | 0.769 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salar, A.; Vuković Đerfi, K.; Pačić, A.; Škrtić, A.; Cacev, T.; Kapitanović, S. Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer. Cancers 2024, 16, 2916. https://doi.org/10.3390/cancers16162916
Salar A, Vuković Đerfi K, Pačić A, Škrtić A, Cacev T, Kapitanović S. Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer. Cancers. 2024; 16(16):2916. https://doi.org/10.3390/cancers16162916
Chicago/Turabian StyleSalar, Anamarija, Kristina Vuković Đerfi, Arijana Pačić, Anita Škrtić, Tamara Cacev, and Sanja Kapitanović. 2024. "Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer" Cancers 16, no. 16: 2916. https://doi.org/10.3390/cancers16162916
APA StyleSalar, A., Vuković Đerfi, K., Pačić, A., Škrtić, A., Cacev, T., & Kapitanović, S. (2024). Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer. Cancers, 16(16), 2916. https://doi.org/10.3390/cancers16162916