Identifying Significantly Perturbed Subnetworks in Cancer Using Multiple Protein–Protein Interaction Networks
<p>Overview of the proposed MultiFDRnet method. (<b>a</b>) Constructing a multiplex network using multiple PPI networks. (<b>b</b>) Estimating local FDR scores through an empirical Bayes analysis. Red vertical bars are estimated counts of non-null genes. (<b>c</b>) Performing random walk to quantify subnetworks. Red nodes represent two state nodes corresponding to a seed gene and blue arrows represent the possible random walks originating from one state node. (<b>d</b>) Detecting significantly perturbed subnetworks for given seeds by solving mixed-integer linear programming problems. An example solution is the subnetwork within the red circles.</p> "> Figure 2
<p><span class="html-italic">F</span> scores and symmetric <math display="inline"><semantics> <msub> <mi>F</mi> <mi>sub</mi> </msub> </semantics></math> scores of seven methods applied to simulation data as a function of beta-distribution parameter <span class="html-italic">a</span>. (<b>a</b>,<b>b</b>) Comparison of MultiFDRnet with six alternative methods. (<b>c</b>,<b>d</b>) Comparison of MultiFDRnet with FDRnet when applied to aggregated and individual PPI networks.</p> "> Figure 3
<p>Exact FDRs and estimated FDRs of subnetworks identified by seven approaches applied to simulation data, derived from a beta-distribution with parameter <span class="html-italic">a</span> set at a value of 0.11. Each circle symbolizes an identified subnetwork, with its size being linearly proportional to the number of genes in the subnetwork. The FDR upper threshold was set to 0.1, marked by a dashed line.</p> "> Figure 4
<p>Twenty-four subnetworks detected by MultiFDRnet performed on bladder cancer data.</p> "> Figure 5
<p>Sixteen subnetworks detected by MultiFDRnet performed on head and neck cancer data.</p> "> Figure A1
<p>Power−law plots of PPI networks used in this study.</p> "> Figure A2
<p><span class="html-italic">F</span> scores and symmetric <math display="inline"><semantics> <msub> <mi>F</mi> <mi>sub</mi> </msub> </semantics></math> scores of HotNet2 method applied to synthetic data using individual PPI networks and consensus. The result of HotNet2 consensus result is denoted as HotNet2 and the results of HotNet2 on the individual PPI networks are denoted as Hotnet2 followed by the name of the PPI network used.</p> "> Figure A3
<p><span class="html-italic">F</span> scores and symmetric <math display="inline"><semantics> <msub> <mi>F</mi> <mi>sub</mi> </msub> </semantics></math> scores of Hierarchical HotNet method applied to synthetic data using individual PPI networks and consensus. The Hierarchical HotNet consensus result is denoted as hHotNet and the results of the Hierarchical HotNet on the individual PPI networks are denoted as hHotnet, followed by the name of the PPI network used.</p> "> Figure A4
<p>Exact FDRs and estimated FDRs of the seven methods performed on synthetic data generated by using different beta-distribution parameters <span class="html-italic">a</span> ranging from 0.01 to 0.11. The FDR upper bound was set to 0.1. Each circle represents a detected subnetwork, and its size is linearly proportional to the size of the subnetwork.</p> "> Figure A5
<p>Exact FDRs and estimated FDRs of consensus subnetworks and subnetworks detected by individual PPIs by HotNet2 performed on synthetic data generated by using the beta-distribution parameter <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.11</mn> </mrow> </semantics></math>.</p> "> Figure A6
<p>Exact FDRs and estimated FDRs of consensus subnetworks and subnetworks detected by individual PPIs by hierarchical HotNet performed on synthetic data generated by using the beta-distribution parameter <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.11</mn> </mrow> </semantics></math>.</p> "> Figure A7
<p><span class="html-italic">F</span> scores and symmetric <math display="inline"><semantics> <msub> <mi>F</mi> <mi>sub</mi> </msub> </semantics></math> scores of MultiFDRnet obtained by using different values of local exploration size <span class="html-italic">K</span>.</p> "> Figure A8
<p><span class="html-italic">F</span> scores and symmetric <math display="inline"><semantics> <msub> <mi>F</mi> <mi>sub</mi> </msub> </semantics></math> scores of MultiFDRnet obtained by using different values of FDR bound <span class="html-italic">B</span>.</p> "> Figure A9
<p><span class="html-italic">F</span> scores and symmetric <math display="inline"><semantics> <msub> <mi>F</mi> <mi>sub</mi> </msub> </semantics></math> scores of MultiFDRnet obtained by replacing one PPI network with its randomized version. Notably, while the performance of our method slightly declined, it still performed significantly better than other approaches that were applied to AggrePPI constructed by using the original four PPI networks (see <a href="#cancers-15-04090-f002" class="html-fig">Figure 2</a>a,b).</p> "> Figure A10
<p>Estimated FDRs of subnetworks detected by six methods performed on bladder cancer mutation data. Each circle represents a detected subnetwork, and the number besides a circle is the number of genes in the corresponding subnetwork. Data for BioNet is not depicted since it did not find any significant subnetworks.</p> "> Figure A11
<p>Subnetworks detected by FDRnet applied to BLCA data.</p> "> Figure A12
<p>Estimated FDRs of subnetworks detected by six methods performed on head and neck cancer data.</p> "> Figure A13
<p>Two subnetworks detected by hierarchical HotNet performed on head and neck cancer data. The red circles and lines indicate the genes and interactions that appear in the HNSC-specific PPI, respectively.</p> "> Figure A14
<p>Fifteen subnetworks detected by FDRnet performed on head and neck cancer data. The red circles and lines indicate the genes and interactions that appear in the HNSC-specific PPI, respectively.</p> "> Figure A15
<p>Subnetworks detected by FDRnet performed on head and neck cancer data using the HNSC network.</p> "> Figure A16
<p>Subnetworks detected by FDRnet performed on head and neck cancer data with the weight of all edges from HNSC set to 5.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Modeling Multiple PPI Networks as a Multiplex Network
2.2. Defining False Discovery Rate for Subnetworks in Multiplex Networks
2.3. Random Walk-Based Approach to Subnetwork Identification
2.4. Identifying Subnetworks Using Mixed-Integer Linear Programming
3. Results
3.1. Simulation Study
3.1.1. Evaluation Metrics
3.1.2. Experimental Results
3.1.3. Parameter Sensitivity Analysis
3.2. Bladder Cancer Study
3.2.1. Mutational Data and PPI Networks
3.2.2. Experimental Results
3.3. Head and Neck Cancer Study
3.3.1. Mutational Data and PPI Networks
3.3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PPI | Protein–protein Interactions |
MILP | Mixed Integer Linear Programming |
HNSC | Head and Neck Squamous Cell Carcinoma |
Appendix A. Details of Linearizing the Optimization Problem
Appendix B. Figures and Tables
PPI Network | #Nodes | #Edges | Version |
---|---|---|---|
BioGRID | 19,660 | 736,536 | 4.4.212 |
iRefIndex | 17,809 | 657,937 | 18 |
ReactomeFI | 13,601 | 250,481 | 2021 |
STRING | 11,133 | 112,064 | 11.5 |
HNSC | 675 | 1677 | / |
AggrePPI | 20,337 | 1,251,978 | / |
AggrePPI-HNSC | 20,351 | 1,252,734 | / |
References
- Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010, 463, 899–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Jiménez, F.; Muiños, F.; Sentís, I.; Deu-Pons, J.; Reyes-Salazar, I.; Arnedo-Pac, C.; Mularoni, L.; Pich, O.; Bonet, J.; Kranas, H.; et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 2020, 20, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.H.; Tokheim, C.; Porta-Pardo, E.; Sengupta, S.; Bertrand, D.; Weerasinghe, A.; Colaprico, A.; Wendl, M.C.; Kim, J.; Reardon, B.; et al. Comprehensive characterization of cancer driver genes and mutations. Cell 2018, 173, 371–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Leiserson, M.D.; Vandin, F.; Wu, H.T.; Dobson, J.R.; Eldridge, J.V.; Thomas, J.L.; Papoutsaki, A.; Kim, Y.; Niu, B.; McLellan, M.; et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 2015, 47, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, R.; Goodison, S.; Sun, Y. An efficient and effective method to identify significantly perturbed subnetworks in cancer. Nat. Comput. Sci. 2021, 1, 79–88. [Google Scholar] [CrossRef]
- Levi, H.; Elkon, R.; Shamir, R. DOMINO: A network-based active module identification algorithm with reduced rate of false calls. Mol. Syst. Biol. 2021, 17, e9593. [Google Scholar] [CrossRef]
- Chitra, U.; Park, T.Y.; Raphael, B.J. NetMix2: Unifying Network Propagation and Altered Subnetworks. In Proceedings of the Research in Computational Molecular Biology, San Diego, CA, USA, 22–25 May 2022; pp. 193–208. [Google Scholar]
- Oughtred, R.; Stark, C.; Breitkreutz, B.J.; Rust, J.; Boucher, L.; Chang, C.; Kolas, N.; O’Donnell, L.; Leung, G.; McAdam, R.; et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019, 47, D529–D541. [Google Scholar] [CrossRef] [Green Version]
- Razick, S.; Magklaras, G.; Donaldson, I.M. iRefIndex: A consolidated protein interaction database with provenance. BMC Bioinform. 2008, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [PubMed] [Green Version]
- Kotlyar, M.; Pastrello, C.; Ahmed, Z.; Chee, J.; Varyova, Z.; Jurisica, I. IID 2021: Towards context-specific protein interaction analyses by increased coverage, enhanced annotation and enrichment analysis. Nucleic Acids Res. 2021, 50, D640–D647. [Google Scholar]
- Swaney, D.L.; Ramms, D.J.; Wang, Z.; Park, J.; Goto, Y.; Soucheray, M.; Bhola, N.; Kim, K.; Zheng, F.; Zeng, Y.; et al. A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity. Science 2021, 374, eabf2911. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.; Bouhaddou, M.; Kim, K.; Rojc, A.; Modak, M.; Soucheray, M.; McGregor, M.J.; O’Leary, P.; Wolf, D.; et al. A protein interaction landscape of breast cancer. Science 2021, 374, eabf3066. [Google Scholar] [CrossRef]
- Reyna, M.A.; Leiserson, M.D.; Raphael, B.J. Hierarchical HotNet: Identifying hierarchies of altered subnetworks. Bioinformatics 2018, 34, i972–i980. [Google Scholar] [CrossRef] [Green Version]
- Luck, K.; Kim, D.K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux, B.; et al. A reference map of the human binary protein interactome. Nature 2020, 580, 402–408. [Google Scholar] [CrossRef]
- Halu, A.; De Domenico, M.; Arenas, A.; Sharma, A. The multiplex network of human diseases. NPJ Syst. Biol. Appl. 2019, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Kinsley, A.C.; Rossi, G.; Silk, M.J.; VanderWaal, K. Multilayer and multiplex networks: An introduction to their use in veterinary epidemiology. Front. Vet. Sci. 2020, 7, 596. [Google Scholar] [CrossRef] [PubMed]
- Jerrum, M.; Sinclair, A. Conductance and the rapid mixing property for Markov chains: The approximation of permanent resolved. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, 2–4 May 1988; pp. 235–244. [Google Scholar]
- Jeub, L.G.; Mahoney, M.W.; Mucha, P.J.; Porter, M.A. A local perspective on community structure in multilayer networks. Netw. Sci. 2017, 5, 144–163. [Google Scholar] [CrossRef] [Green Version]
- Andersen, R.; Chung, F.; Lang, K. Local graph partitioning using PageRank vectors. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), Berkeley, CA, USA, 21–24 October 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 475–486. [Google Scholar]
- Dilkina, B.; Gomes, C.P. Solving connected subgraph problems in wildlife conservation. In Proceedings of the International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, Bologna, Italy, 16–18 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 102–116. [Google Scholar]
- Mucha, P.J.; Richardson, T.; Macon, K.; Porter, M.A.; Onnela, J.P. Community structure in time-dependent, multiscale, and multiplex networks. Science 2010, 328, 876–878. [Google Scholar] [CrossRef]
- De Domenico, M.; Solé-Ribalta, A.; Gómez, S.; Arenas, A. Navigability of interconnected networks under random failures. Proc. Natl. Acad. Sci. USA 2014, 111, 8351–8356. [Google Scholar] [CrossRef] [PubMed]
- De Domenico, M.; Lancichinetti, A.; Arenas, A.; Rosvall, M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 2015, 5, 011027. [Google Scholar] [CrossRef] [Green Version]
- IBM Inc. CPLEX Optimizer Studio 12.8. 2018. Available online: https://www.ibm.com/analytics/cplex-optimizer (accessed on 21 February 2022).
- Beisser, D.; Klau, G.W.; Dandekar, T.; Müller, T.; Dittrich, M.T. BioNet: An R-Package for the functional analysis of biological networks. Bioinformatics 2010, 26, 1129–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dittrich, M.T.; Klau, G.W.; Rosenwald, A.; Dandekar, T.; Müller, T. Identifying functional modules in protein–protein interaction networks: An integrated exact approach. Bioinformatics 2008, 24, i223–i231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyna, M.A.; Haan, D.; Paczkowska, M.; Verbeke, L.P.; Vazquez, M.; Kahraman, A.; Pulido-Tamayo, S.; Barenboim, J.; Wadi, L.; Dhingra, P.; et al. Pathway and network analysis of more than 2500 whole cancer genomes. Nat. Commun. 2020, 11, 729. [Google Scholar]
- Verschueren, E.; Husain, B.; Yuen, K.; Sun, Y.; Paduchuri, S.; Senbabaoglu, Y.; Lehoux, I.; Arena, T.A.; Wilson, B.; Lianoglou, S.; et al. The immunoglobulin superfamily receptome defines cancer-relevant networks associated with clinical outcome. Cell 2020, 182, 329–344. [Google Scholar] [CrossRef]
- Shahamatdar, S.; He, M.X.; Reyna, M.A.; Gusev, A.; AlDubayan, S.H.; Van Allen, E.M.; Ramachandran, S. Germline features associated with immune infiltration in solid tumors. Cell Rep. 2020, 30, 2900–2908. [Google Scholar] [CrossRef] [Green Version]
- Forster, D.T.; Li, S.C.; Yashiroda, Y.; Yoshimura, M.; Li, Z.; Isuhuaylas, L.A.V.; Itto-Nakama, K.; Yamanaka, D.; Ohya, Y.; Osada, H.; et al. BIONIC: Biological network integration using convolutions. Nat. Methods 2022, 19, 1250–1261. [Google Scholar] [CrossRef]
- Giurgiu, M.; Reinhard, J.; Brauner, B.; Dunger-Kaltenbach, I.; Fobo, G.; Frishman, G.; Montrone, C.; Ruepp, A. CORUM: The comprehensive resource of mammalian protein complexes–2019. Nucleic Acids Res. 2018, 47, D559–D563. [Google Scholar] [CrossRef] [Green Version]
- Pounds, S.; Morris, S.W. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 2003, 19, 1236–1242. [Google Scholar] [CrossRef] [Green Version]
- Raphael, B.J.; Dobson, J.R.; Oesper, L.; Vandin, F. Identifying driver mutations in sequenced cancer genomes: Computational approaches to enable precision medicine. Genome Med. 2014, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J. Educ. Behav. Stat. 2000, 25, 60–83. [Google Scholar] [CrossRef] [Green Version]
- Van Rijsbergen, C.J. The Geometry of Information Retrieval; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2. 0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011, 12, R41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, R.A. Statistical methods for research workers. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 66–70. [Google Scholar]
- Forbes, S.A.; Beare, D.; Boutselakis, H.; Bamford, S.; Bindal, N.; Tate, J.; Cole, C.G.; Ward, S.; Dawson, E.; Ponting, L.; et al. COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res. 2016, 45, D777–D783. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, B.; Parks, L.; Komurov, K.; Vinnedge, L.P. Defective transcription elongation in human cancers imposes targetable proteotoxic vulnerability. Transl. Oncol. 2022, 16, 101323. [Google Scholar] [CrossRef]
MultiFDRnet | FDRnet | HHotNet | HotNet2 | Domino | Netmix2 | BioNet | |
---|---|---|---|---|---|---|---|
Simulation | 3557(465) | 2588(672) | 3624(468) | 3,740,063(18,900) | 150(2) | 44,493(122) | 7382(1881) |
Bladder cancer | 3840 | 2079 | 3372 | 3,725,313 | 139 | 44,017 | / |
Head and neck cancer | 2546 | 1852 | 3581 | 3,726,267 | 521 | 44,013 | / |
Bladder Cancer | Head and Neck Cancer | ||||||
---|---|---|---|---|---|---|---|
Method | #Genes | #Subnetworks | FDR | #COSMIC Genes | #Genes | #Subnetworks | FDR |
MultiFDRnet | 77 | 24 | 0.084(0.01) | 29 | 61 | 16 | 0.083(0.01) |
FDRnet | 95 | 28 | 0.086(0.01) | 30 | 77 | 15 | 0.093(0.006) |
hHotNet | 22 | 1 | 0.028 | 17 | 33 | 2 | 0.06(0.05) |
HotNet2 | 52 | 1 | 0.17 | 28 | 56 | 1 | 0.05 |
Domino | 27 | 3 | 0.54(0.16) | 10 | 110 | 15 | 0.50(0.18) |
NetMix2 | 21 | 1 | 0.18 | 17 | 20 | 1 | 0.07 |
BioNet | / | / | / | / | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Chen, R.; Melendy, T.; Goodison, S.; Sun, Y. Identifying Significantly Perturbed Subnetworks in Cancer Using Multiple Protein–Protein Interaction Networks. Cancers 2023, 15, 4090. https://doi.org/10.3390/cancers15164090
Yang L, Chen R, Melendy T, Goodison S, Sun Y. Identifying Significantly Perturbed Subnetworks in Cancer Using Multiple Protein–Protein Interaction Networks. Cancers. 2023; 15(16):4090. https://doi.org/10.3390/cancers15164090
Chicago/Turabian StyleYang, Le, Runpu Chen, Thomas Melendy, Steve Goodison, and Yijun Sun. 2023. "Identifying Significantly Perturbed Subnetworks in Cancer Using Multiple Protein–Protein Interaction Networks" Cancers 15, no. 16: 4090. https://doi.org/10.3390/cancers15164090
APA StyleYang, L., Chen, R., Melendy, T., Goodison, S., & Sun, Y. (2023). Identifying Significantly Perturbed Subnetworks in Cancer Using Multiple Protein–Protein Interaction Networks. Cancers, 15(16), 4090. https://doi.org/10.3390/cancers15164090