Neuroblastoma Tumor-Associated Mesenchymal Stromal Cells Regulate the Cytolytic Functions of NK Cells
"> Figure 1
<p>Evaluation of the expression of immunomodulatory molecules in primary NB-TA-MSC cultures. (<b>A</b>) Flow cytometry analysis of the indicated surface markers (PD-L1, PD-L2, CD47 and GD2) in primary NB-TA-MSC cultures. Light grey histograms represent unstained control; dark grey histograms represent stained samples. A representative experiment is shown of <span class="html-italic">n</span> = 5 experiments performed. (<b>B</b>) RT-qPCR analysis of TAZ transcript in different primary NB-TA-MSC cultures. The NB commercial cell line SK-N-AS was used as a reference control since these cells display a mesenchymal phenotype and high TAZ expression [<a href="#B27-cancers-15-00019" class="html-bibr">27</a>]. Histograms represent the fold change of gene transcript expression normalized for GAPDH expression compared to SK-N-AS expression, whose level is arbitrarily set as 1. Data are expressed as mean ± SD (<span class="html-italic">n</span> = 3).</p> "> Figure 2
<p>Staining with the senescence-associated beta-galactosidase (SA-β-gal) assay of young/proliferative and growth-arrested NB-TA-MSC. (<b>A</b>) Representative images of young/proliferating NB-TA-MSC and (<b>B</b>) Growth-arrested NB-TA-MSC stained with SA-β-gal at the indicated culture passages. The senescent cells appear stained in blue. Images represent 10× with phase contrast optical microscope of <span class="html-italic">n</span> = 3 independent experiments. Yellow arrows indicate rare β-gal+ cells in young proliferating NB-TA-MSC cells.</p> "> Figure 3
<p>Susceptibility of primary NB-TA-MSC cultures to aNK cell-mediated lysis. (<b>A</b>) Allogeneic aNK cells were used as effector cells against CMFDA-labelled young/proliferating and (<b>B</b>) Senescent NB-TA-MSC-PGE primary cultures. Target cells were labelled with CMFDA, and allogeneic aNK cells were used as effectors at different E:T ratios as indicated. CMFDA-labelled K-562 cells were used as a positive control of lysis (K-562). An anti-CD105 IgG mAb, that induced ADCC (TRC 105) or irrelevant IgG mAb as a control (No Ab) was used. Data were expressed as mean ± SD (<span class="html-italic">n</span> = 4) of the percentage of cell lysis (CMFDA+ and PI+ cells). * <span class="html-italic">p</span> < 0.05 No Ab vs. K-562.</p> "> Figure 4
<p>Evaluation of NK cell cytotoxic activity after co-culture with primary NB-TA-MSC. (<b>A</b>) Schematic representation of cells seeded in co-culture experiments. Freshly isolated NK cells were cultured in the upper chamber for 6 days with NB-TA-MSC cells in the lower chamber (Only Transwell) or a setting with NK cells in the upper chamber (NK Transwell) and NB-TA-MSC with NK cells in the lower chamber (Contact). NK cultured alone were used as the control (CTRL). (<b>B</b>) NK cell cytotoxicity assays against CMFDA-labelled K-562 cells after co-culture with young/proliferating NB-TA-2ZC, FA, DI and BU primary cultures under direct cell–cell contact (Contact) or under Transwell conditions (Transwell and Only Transwell). NK cultured alone were used as a control (CTRL). Percentages of cell lysis (CMFDA+ and PI+ cells) were expressed as mean ±SD (<span class="html-italic">n</span> = 4). * <span class="html-italic">p</span> < 0.05 Contact vs. CTRL. ^ <span class="html-italic">p</span> < 0.05 Transwell vs. CTRL ° <span class="html-italic">p</span> < 0.05 Only Transwell vs. CTRL.</p> "> Figure 5
<p>Evaluation of NK cell proliferative potential and downregulation of NK activating receptors after co-culture with primary NB-TA-MSC cultures. (<b>A</b>) Live NK cell number (PI<sup>−</sup>) after co-culture with NB-TA–MSC primary cultures. Data were expressed as mean ±SD (<span class="html-italic">n</span> = 6). * <span class="html-italic">p</span> < 0.05 vs. CTRL. (<b>B</b>) Flow cytometry analysis of the activating receptors present on NK cells after co-culture with the indicated young/proliferating NB-T-MSC primary cultures under direct cell–cell contact or under Transwell conditions. Data were expressed as Fold change MFI compared with CTRL ± SD (<span class="html-italic">n</span> = 3). * <span class="html-italic">p</span> < 0.05 vs. CTRL.</p> "> Figure 6
<p>Effect of IDO and PGE2 inhibitors on NK cytotoxicity and proliferation under cell-cell contact conditions. (<b>A</b>) Percentage of K-562 cells lysis in cytotoxicity assays using freshly isolated NK cells after co-culture for 6 days with young/proliferating TA–MSC 2ZC, FA, DI and BU primary cultures either in the presence or in the absence of IDO and PGE2 inhibitors (Contact and Contact + inhibitors). Values are expressed as mean ± SD (<span class="html-italic">n</span> = 3). * <span class="html-italic">p</span> < 0.05 vs. NK Ctrl and vs. NK Ctrl + IDO and PGE2 inhibitors. (<b>B</b>) Live NK cell number (PI<sup>−</sup>) after co-culture with NB-TA–MSC primary cultures, either in the presence or in the absence of IDO and PGE2 inhibitors (Contact and Contact + inhibitors). Starting number of seeded NK cells and NK cultured alone (CTRL) were used as controls. Data were expressed as mean ± SD (<span class="html-italic">n</span> = 6). * <span class="html-italic">p</span> < 0.05 vs. CTRL.</p> "> Figure 7
<p>Evaluation of NK cell cytotoxic activity and proliferative potential after co-culture with senescent NB-TA-MSC cultures. NK-cell cytotoxicity assays against CMFDA-labelled K-562 cells after co-culture with (<b>A</b>) Senescent NB-TA–MSC-CO, PGE (<b>B</b>) Senescent NB-TA–MSC-2ZC culture, under direct cell-cell Contact or under Transwell conditions. Percentages of lysed cells were expressed as mean ± SD (<span class="html-italic">n</span> = 3). ns = not significant. (<b>C</b>) Live NK cell number (PI<sup>−</sup>) after co-culture with senescent NB-TA–MSC cultures. Co-culture of senescent NB-TA-MSC-PGE and 2ZC with NK cells did not affect cell number compared to CTRL, while the co-culture with senescent NB-TA-MSC-CO in direct-contact condition caused a slowdown of NK cells number. Data were expressed as mean ± SD (<span class="html-italic">n</span> = 6). * <span class="html-italic">p</span> < 0.05 vs. CTRL.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Primary NB-TA-MSC Isolation, Culture and Expansion
2.2. Commercial Cell Lines
2.3. Senescence-Associated Beta-Galactosidase (SA-β-gal) Staining
2.4. Flow-Cytometry
2.5. Quantitative Reverse Transcription PCR (RT-qPCR) Analysis
2.6. Purification of NK Cells
2.7. Cytotoxicity Assay
2.8. Co-Culture of NK and Target Cells
2.9. Statistical Analysis
3. Results
3.1. NB-TA-MSC Display MSC Phenotype and a Heterogeneous Expression of Immunomodulatory Molecules
3.2. NB-TA-MSC Primary Cell Cultures Are Resistant to NK Cell-Mediated Lysis
3.3. NB-TA-MSC Primary Cultures Inhibit the Cytolytic Activity of NK Cells
3.4. NB-TA-MSC Primary Cultures Down-Regulate the Expression of Activating Receptors on NK Cells
3.5. Compounds Inhibiting the Soluble Immune Regulatory Molecules Kynurenine and PGE2 Preserve Nk Cells Cytolytic Activity and Proliferation
3.6. Senescent NB-TA-MSC Lose Their Immunomodulatory Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capasso, M.; Diskin, S.J. Genetics and genomics of neuroblastoma. Cancer Treat. Res. 2010, 155, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Theruvath, J.; Menard, M.; Smith, B.A.H.; Linde, M.H.; Coles, G.L.; Dalton, G.N.; Wu, W.; Kiru, L.; Delaidelli, A.; Sotillo, E.; et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat. Med. 2022, 28, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.L.; Gilman, A.L.; Ozkaynak, M.F.; London, W.B.; Kreissman, S.G.; Chen, H.X.; Smith, M.; Anderson, B.; Villablanca, J.G.; Matthay, K.K.; et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 2010, 363, 1324–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caforio, M.; Sorino, C.; Caruana, I.; Weber, G.; Camera, A.; Cifaldi, L.; De Angelis, B.; Del Bufalo, F.; Vitale, A.; Goffredo, B.M.; et al. GD2 redirected CAR T and activated NK-cell-mediated secretion of IFNγ overcomes MYCN-dependent IDO1 inhibition, contributing to neuroblastoma cell immune escape. J. Immunother. Cancer 2021, 9, e001502. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012, 21, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Poggi, A.; Musso, A.; Dapino, I.; Zocchi, M.R. Mechanisms of tumor escape from immune system: Role of mesenchymal stromal cells. Immunol. Lett. 2014, 159, 55–72. [Google Scholar] [CrossRef]
- Spaggiari, G.M.; Capobianco, A.; Abdelrazik, H.; Becchetti, F.; Mingari, M.C.; Moretta, L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008, 111, 1327–1333. [Google Scholar] [CrossRef]
- Johann, P.D.; Vaegler, M.; Gieseke, F.; Mang, P.; Armeanu-Ebinger, S.; Kluba, T.; Handgretinger, R.; Müller, I. Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity. BMC Cancer 2010, 10, 501. [Google Scholar] [CrossRef] [Green Version]
- Hendry, S.A.; Farnsworth, R.H.; Solomon, B.; Achen, M.G.; Stacker, S.A.; Fox, S.B. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment. Front. Immunol. 2016, 7, 621. [Google Scholar] [CrossRef] [Green Version]
- Puré, E.; Lo, A. Can Targeting Stroma Pave the Way to Enhanced Antitumor Immunity and Immunotherapy of Solid Tumors? Cancer Immunol. Res. 2016, 4, 269–278. [Google Scholar] [CrossRef]
- Bergfeld, S.A.; Blavier, L.; DeClerck, Y.A. Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol. Cancer Ther. 2014, 13, 962–975. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, A.R.; Trenton, N.J.; Debeb, B.G.; Larson, R.; Ruffell, B.; Chu, K.; Hittelman, W.; Diehl, M.; Reuben, J.M.; Ueno, N.T.; et al. Mesenchymal stem cells and macrophages interact through IL-6 to promote inflammatory breast cancer in pre-clinical models. Oncotarget 2016, 7, 82482–82492. [Google Scholar] [CrossRef] [Green Version]
- Noy, R.; Pollard, J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Asgharzadeh, S.; Salo, J.A.; Ji, L.; Oberthuer, A.; Fischer, M.; Berthold, F.; Hadjidaniel, M.; Liu, C.W.Y.; Metelitsa, L.S.; Pique-Regi, R.; et al. Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J. Clin. Oncol. 2012, 30, 3525–3532. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, N.A.; Sanchez-Salas, R.; Peske, J.D.; Vano, Y.; Becht, E.; Petitprez, F.; Validire, P.; Ingels, A.; Cathelineau, X.; Fridman, W.H.; et al. The clinical role of the TME in solid cancer. Br. J. Cancer 2019, 120, 45–53. [Google Scholar] [CrossRef]
- López-Soto, A.; Gonzalez, S.; Smyth, M.J.; Galluzzi, L. Control of Metastasis by NK Cells. Cancer Cell. 2017, 32, 135–154. [Google Scholar] [CrossRef]
- Galland, S.; Vuille, J.; Martin, P.; Letovanec, I.; Caignard, A.; Fregni, G.; Stamenkovic, I. Tumor-Derived Mesenchymal Stem Cells Use Distinct Mechanisms to Block the Activity of Natural Killer Cell Subsets. Cell. Rep. 2017, 20, 2891–2905. [Google Scholar] [CrossRef] [Green Version]
- Melaiu, O.; Chierici, M.; Lucarini, V.; Jurman, G.; Conti, L.A.; De Vito, R.; Boldrini, R.; Cifaldi, L.; Castellano, A.; Furlanello, C.; et al. Cellular and gene signatures of tumor-infiltrating dendritic cells and natural-killer cells predict prognosis of neuroblastoma. Nat. Commun. 2020, 11, 5992. [Google Scholar] [CrossRef]
- Borriello, L.; Nakata, R.; Sheard, M.A.; Fernandez, G.E.; Sposto, R.; Malvar, J.; Blavier, L.; Shimada, H.; Asgharzadeh, S.; Seeger, R.C.; et al. Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. Cancer Res. 2017, 77, 5142–5157. [Google Scholar] [CrossRef] [Green Version]
- Pelizzo, G.; Veschi, V.; Mantelli, M.; Croce, S.; Di Benedetto, V.; D’Angelo, P.; Maltese, A.; Catenacci, L.; Apuzzo, T.; Scavo, E.; et al. Microenvironment in neuroblastoma: Isolation and characterization of tumor-derived mesenchymal stromal cells. BMC Cancer 2018, 18, 1176. [Google Scholar] [CrossRef]
- Kock, A.; Larsson, K.; Bergqvist, F.; Eissler, N.; Elfman, L.H.M.; Raouf, J.; Korotkova, M.; Johnsen, J.I.; Jakobsson, P.J.; Kogner, P. Inhibition of Microsomal Prostaglandin E Synthase-1 in Cancer-Associated Fibroblasts Suppresses Neuroblastoma Tumor Growth. EBioMedicine 2018, 32, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Komohara, Y.; Takeya, M. CAFs and TAMs: Maestros of the tumour microenvironment. J. Pathol. 2017, 241, 313–315. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, O.; Yoshida, M.; Koma, Y.-I.; Yanai, T.; Hasegawa, D.; Kosaka, Y.; Nishimura, N.; Yokozaki, H. Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J. Pathol. 2016, 240, 211–223. [Google Scholar] [CrossRef]
- Wu, H.W.; Sheard, M.A.; Malvar, J.; Fernandez, G.E.; DeClerck, Y.A.; Blavier, L.; Shimada, H.; Theuer, C.P.; Sposto, R.; Seeger, R.C. Anti-CD105 antibody eliminates tumor microenvironment cells and enhances Anti-GD2 antibody immunotherapy of neuroblastoma with activated natural killer cells. Clin. Cancer Res. 2019, 25, 4761–4774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blavier, L.; Yang, R.M.; Declerck, Y.A. The Tumor Microenvironment in Neuroblastoma: New Players, New Mechanisms of Interaction and New Perspectives. Cancers 2020, 12, 2912. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, B.; Shamsasenjan, K.; Ahmadi, M.; Beheshti, S.A.; Saleh, M. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem Cell Res. Ther. 2022, 13, 97. [Google Scholar] [CrossRef]
- Canzonetta, C.; Pelosi, A.; Di Matteo, S.; Veneziani, I.; Tumino, N.; Vacca, P.; Munari, E.; Pezzullo, M.; Theuer, C.; De Vito, R.; et al. Identification of neuroblastoma cell lines with uncommon TAZ+/mesenchymal stromal cell phenotype with strong suppressive activity on natural killer cells. J. Immunother. Cancer 2021, 9, e001313. [Google Scholar] [CrossRef]
- Sivori, S.; Parolini, S.; Marcenaro, E.; Castriconi, R.; Pende, D.; Millo, R.; Moretta, A. Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J. Neuroimmunol. 2000, 107, 220–225. [Google Scholar] [CrossRef]
- Itahana, K.; Campisi, J.; Dimri, G.P. Methods to Detect Biomarkers of Cellular Senescence. Methods Mol. Biol. 2007, 371, 21–31. [Google Scholar] [CrossRef]
- Russ, A.; Hua, A.B.; Montfort, W.R.; Rahman, B.; Riaz, I.B.; Khalid, M.U.; Carew, J.S.; Nawrocki, S.T.; Persky, D.; Anwer, F. Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies; an in-depth review. Blood Rev. 2018, 32, 480–489. [Google Scholar] [CrossRef]
- Kholodenko, I.V.; Kalinovsky, D.V.; Doronin, I.I.; Deyev, S.M.; Kholodenko, R.V. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J. Immunol. Res. 2018, 2018, 7394268. [Google Scholar] [CrossRef] [Green Version]
- Loisel, S.; Dulong, J.; Ménard, C.; Renoud, M.L.; Meziere, N.; Isabelle, B.; Latour, M.; Bescher, N.; Pedeux, R.; Bertheuil, N.; et al. Brief Report: Proteasomal Indoleamine 2;3-Dioxygenase Degradation Reduces the Immunosuppressive Potential of Clinical Grade-Mesenchymal Stromal Cells Undergoing Replicative Senescence. Stem Cells 2017, 35, 1431–1436. [Google Scholar] [CrossRef] [Green Version]
- de Witte, S.F.H.; Lambert, E.E.; Merino, A.; Strini, T.; Douben, H.J.C.W.; O’Flynn, L.; Elliman, S.J.; de Klein, A.J.E.M.M.; Newsome, P.N.; Baan, C.C.; et al. Aging of bone marrow– and umbilical cord–derived mesenchymal stromal cells during expansion. Cytotherapy 2017, 19, 798–807. [Google Scholar] [CrossRef]
- Gwendal, L.; Paula, Y.L. Recent discoveries concerning the tumor—Mesenchymal stem cell interactions. Biochim. Biophys. Acta Rev. Cancer 2016, 1866, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Spaggiari, G.M.; Capobianco, A.; Becchetti, S.; Mingari, M.C.; Moretta, L. Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs; whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006, 107, 1484–1490. [Google Scholar] [CrossRef]
- Fan, Y.; Herr, F.; Vernochet, A.; Mennesson, B.; Oberlin, E.; Durrbach, A. Human Fetal Liver Mesenchymal Stem Cell-Derived Exosomes Impair Natural Killer Cell Function. Stem Cells Dev. 2019, 28, 44–55. [Google Scholar] [CrossRef]
- Rodríguez-Milla, M.Á.; Mirones, I.; Mariñas-Pardo, L.; Melen, G.J.; Cubillo, I.; Ramírez, M.; García-Castro, J. Enrichment of neural-related genes in human mesenchymal stem cells from neuroblastoma patients. Int. J. Mol. Med. 2012, 30, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Furman, W.L. Monoclonal Antibody Therapies for High Risk Neuroblastoma. Biologics 2021, 15, 205–219. [Google Scholar] [CrossRef]
- Shusterman, S.; Naranjo, A.; van Ryn, C.; Hank, J.A.; Parisi, M.T.; Shulkin, B.L.; Servaes, S.; London, W.B.; Shimada, H.; Gan, J.; et al. Antitumor Activity and Tolerability of hu14.18-IL2 with GMCSF and Isotretinoin in Recurrent or Refractory Neuroblastoma: A Children’s Oncology Group phase II study. Clin. Cancer Res. 2019, 25, 6044–6051. [Google Scholar] [CrossRef] [Green Version]
- Tumino, N.; Besi, F.; Martini, S.; Di Pace, A.L.; Munari, E.; Quatrini, L.; Pelosi, A.; Fiore, P.F.; Fiscon, G.; Paci, P.; et al. Polymorphonuclear Myeloid-Derived Suppressor Cells Are Abundant in Peripheral Blood of Cancer Patients and Suppress Natural Killer Cell Anti-Tumor Activity. Front. Immunol. 2022, 12, 803014. [Google Scholar] [CrossRef]
- Hochheuser, C.; Windt, L.J.; Kunze, N.Y.; De Vos, D.L.; Tytgat, G.A.M.; Voermans, C.; Timmerman, I. Mesenchymal Stromal Cells in Neuroblastoma: Exploring Crosstalk and Therapeutic Implications. Stem Cells Dev. 2021, 30, 59–78. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, P.; Ye, X.; Zhang, F.; Lin, Q.; Wu, K.; Chen, W. Isoalantolactone Increases the Sensitivity of Prostate Cancer Cells to Cisplatin Treatment by Inducing Oxidative Stress. Front. Cell. Dev. Biol. 2021, 9, 632779. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Matteo, S.; Avanzini, M.A.; Pelizzo, G.; Calcaterra, V.; Croce, S.; Spaggiari, G.M.; Theuer, C.; Zuccotti, G.; Moretta, L.; Pelosi, A.; et al. Neuroblastoma Tumor-Associated Mesenchymal Stromal Cells Regulate the Cytolytic Functions of NK Cells. Cancers 2023, 15, 19. https://doi.org/10.3390/cancers15010019
Di Matteo S, Avanzini MA, Pelizzo G, Calcaterra V, Croce S, Spaggiari GM, Theuer C, Zuccotti G, Moretta L, Pelosi A, et al. Neuroblastoma Tumor-Associated Mesenchymal Stromal Cells Regulate the Cytolytic Functions of NK Cells. Cancers. 2023; 15(1):19. https://doi.org/10.3390/cancers15010019
Chicago/Turabian StyleDi Matteo, Sabina, Maria Antonietta Avanzini, Gloria Pelizzo, Valeria Calcaterra, Stefania Croce, Grazia Maria Spaggiari, Charles Theuer, Gianvincenzo Zuccotti, Lorenzo Moretta, Andrea Pelosi, and et al. 2023. "Neuroblastoma Tumor-Associated Mesenchymal Stromal Cells Regulate the Cytolytic Functions of NK Cells" Cancers 15, no. 1: 19. https://doi.org/10.3390/cancers15010019
APA StyleDi Matteo, S., Avanzini, M. A., Pelizzo, G., Calcaterra, V., Croce, S., Spaggiari, G. M., Theuer, C., Zuccotti, G., Moretta, L., Pelosi, A., & Azzarone, B. (2023). Neuroblastoma Tumor-Associated Mesenchymal Stromal Cells Regulate the Cytolytic Functions of NK Cells. Cancers, 15(1), 19. https://doi.org/10.3390/cancers15010019