Radiomics for Discriminating Benign and Malignant Salivary Gland Tumors; Which Radiomic Feature Categories and MRI Sequences Should Be Used?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
2.2. Image Acquisition
2.3. Tumor Segmentation
2.4. Image Pre-Processing
2.5. Feature Extraction
2.6. Data Augmentation
2.7. Feature Selection
2.8. Radiomics Models Construction and Evaluation
2.9. Selection of the Best Sequences and Feature Categories
2.10. Statistical Analysis
3. Results
3.1. Radiomic Analysis to Discriminate between MSGTs and BSGTs
3.2. Performance Comparison of Each Feature Category and All Features Combined
3.3. Comparison of Stability Strength and Number of Features Based on the Best Features Category and All Combined Features
3.4. Selection of MRI Sequences to Discriminate between MSGTs and BSGTs
3.5. Inter-Observer Agreement for Segmentation
3.6. Additional Analysis to Further Reduce Radiomic Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, M.T.; Watermann, C.; Dreyer, T.; Ergun, S.; Karnati, S. 2021 Update on Diagnostic Markers and Translocation in Salivary Gland Tumors. Int. J. Mol. Sci. 2021, 22, 6771. [Google Scholar] [CrossRef]
- Razek, A.A.K.A.; Mukherji, S.K. State-of-the-Art Imaging of Salivary Gland Tumors. Neuroimaging Clin. N. Am. 2018, 28, 303–307. [Google Scholar] [CrossRef]
- Lobo, R.; Hawk, J.; Srinivasan, A. A Review of Salivary Gland Malignancies Common Histologic Types, Anatomic Considerations, and Imaging Strategies. Neuroimaging Clin. N. Am. 2018, 28, 171–182. [Google Scholar] [CrossRef]
- Freling, N.; Crippa, F.; Maroldi, R. Staging and follow-up of high-grade malignant salivary gland tumours: The role of traditional versus functional imaging approaches—A review. Oral Oncol. 2016, 60, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Yousem, D.M.; Kraut, M.A.; Chalian, A.A. Major salivary gland imaging. Radiology 2000, 216, 19–29. [Google Scholar] [CrossRef]
- Seethala, R.R.; Stenman, G. Update from the 4th Edition of the World Health Organization Classification of Head and Neck Tumours: Tumors of the Salivary Gland. Head Neck Pathol. 2017, 11, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Afzelius, P.; Nielsen, M.Y.; Ewertsen, C.; Bloch, K.P. Imaging of the major salivary glands. Clin. Physiol. Funct. I 2016, 36, 1–10. [Google Scholar] [CrossRef]
- Schmidt, R.L.; Hall, B.J.; Wilson, A.R.; Layfield, L.J. A Systematic Review and Meta-Analysis of the Diagnostic Accuracy of Fine-Needle Aspiration Cytology for Parotid Gland Lesions. Am. J. Clin. Pathol. 2011, 136, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; King, A.D.; Wong, L.M.; Bhatia, K.S.; Qamar, S.; Mo, F.K.; Vlantis, A.C.; Ai, Q.Y.H. Discriminating between benign and malignant salivary gland tumors using diffusion-weighted imaging and intravoxel incoherent motion at 3 Tesla. Diagn. Interv. Imag. 2022. [Google Scholar] [CrossRef]
- Tao, X.F.; Yang, G.X.; Wang, P.Z.; Wu, Y.W.; Zhu, W.J.; Shi, H.M.; Gong, X.; Gao, W.Q.; Yu, Q. The value of combining conventional, diffusion-weighted and dynamic contrast-enhanced MR imaging for the diagnosis of parotid gland tumours. Dentomaxillofac. Radiol. 2017, 46, 20160434. [Google Scholar] [CrossRef]
- Takumi, K.; Nagano, H.; Kikuno, H.; Kumagae, Y.; Fukukura, Y.; Yoshiura, T. Differentiating malignant from benign salivary gland lesions: A multiparametric non-contrast MR imaging approach. Sci. Rep. 2021, 11, 2780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Li, H.; Wang, X.M.; Cai, Y.F. Sonoelastography for differential diagnosis between malignant and benign parotid lesions: A meta-analysis. Eur. Radiol. 2019, 29, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.Y.P.; Wong, K.T.; King, A.D.; Ahuja, A.T. Imaging of salivary gland tumours. Eur. J. Radiol. 2008, 66, 419–436. [Google Scholar] [CrossRef]
- Miao, L.Y.; Xue, H.; Ge, H.Y.; Wang, J.R.; Jia, J.W.; Cui, L.G. Differentiation of pleomorphic adenoma and Warthin’s tumour of the salivary gland: Is long-to-short diameter ratio a useful parameter? Clin. Radiol. 2015, 70, 1212–1219. [Google Scholar] [CrossRef]
- Gorovitz, S.; Macintyre, A. Toward a Theory of Medical Fallibility. Hastings Cent. Rep. 1975, 5, 13–23. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.M.; Chen, J.; Xu, Q.; Zhao, W.H.; Wang, X.F.; Yuan, M.G.; Liu, Z.J.; Wu, Z.J.; Dong, C. Development and validation of an MRI-based radiomics nomogram for distinguishing Warthin’s tumour from pleomorphic adenomas of the parotid gland. Dentomaxillofac. Radiol. 2021, 50, 20210023. [Google Scholar] [CrossRef]
- Shao, S.; Zheng, N.; Mao, N.; Xue, X.; Cui, J.; Gao, P.; Wang, B. A triple-classification radiomics model for the differentiation of pleomorphic adenoma, Warthin tumour, and malignant salivary gland tumours on the basis of diffusion-weighted imaging. Clin. Radiol. 2021, 76, 472.e11–472.e18. [Google Scholar] [CrossRef]
- Piludu, F.; Marzi, S.; Ravanelli, M.; Pellini, R.; Covello, R.; Terrenato, I.; Farina, D.; Campora, R.; Ferrazzoli, V.; Vidiri, A. MRI-Based Radiomics to Differentiate between Benign and Malignant Parotid Tumors With External Validation. Front. Oncol. 2021, 11, 656918. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Li, J.; Liu, S.; Cui, J.F.; Zhan, J.F.; Pang, J.; Zhou, R.Z.; Li, X.L.; Dong, C. MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland. Eur. Radiol. 2020, 31, 4042–4052. [Google Scholar] [CrossRef]
- Shao, S.; Mao, N.; Liu, W.J.; Cui, J.J.; Xue, X.L.; Cheng, J.F.; Zheng, N.; Wang, B. Epithelial salivary gland tumors: Utility of radiomics analysis based on diffusion-weighted imaging for differentiation of benign from malignant tumors. J. X-ray Sci. Technol. 2020, 28, 799–808. [Google Scholar] [CrossRef]
- Gabelloni, M.; Faggioni, L.; Attanasio, S.; Vani, V.; Goddi, A.; Colantonio, S.; Germanese, D.; Caudai, C.; Bruschini, L.; Scarano, M.; et al. Can Magnetic Resonance Radiomics Analysis Discriminate Parotid Gland Tumors? A Pilot Study. Diagnostics 2020, 10, 900. [Google Scholar] [CrossRef]
- Gunduz, E.; Alcin, O.F.; Kizilay, A.; Piazza, C. Radiomics and deep learning approach to the differential diagnosis of parotid gland tumors. Curr. Opin. Otolaryngol. 2022, 30, 107–113. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, E104–E107. [Google Scholar] [CrossRef] [Green Version]
- Altman, N.; Krzywinski, M. The curse(s) of dimensionality. Nat. Methods 2018, 15, 399–400. [Google Scholar] [CrossRef]
- Wu, W.M.; Parmar, C.; Grossmann, P.; Quackenbush, J.; Lambin, P.; Bussink, J.; Mak, R.; Aerts, H.J.W.L. Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology. Front. Oncol. 2016, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Pak, E.; Choi, K.S.; Choi, S.H.; Park, C.K.; Kim, T.M.; Park, S.H.; Lee, J.H.; Lee, S.T.; Hwang, I.; Yoo, R.E.; et al. Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI. Korean J. Radiol. 2021, 22, 1514–1524. [Google Scholar] [CrossRef]
- Gulgezen, G.; Cataltepe, Z.; Yu, L. Stable and Accurate Feature Selection. Lect. Notes Artif. Int. 2009, 5781, 455–468. [Google Scholar]
- Nogueira, S.; Sechidis, K.; Brown, G. On the Stability of Feature Selection Algorithms. J. Mach. Learn. Res. 2018, 18, 1–54. [Google Scholar]
- Khan, M.H.R.; Bhadra, A.; Howlader, T. Stability selection for lasso, ridge and elastic net implemented with AFT models. Stat. Appl. Genet. Mol. 2019, 18. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.M.; Ai, Q.Y.H.; Zhang, R.L.; Mo, F.; King, A.D. Radiomics for Discrimination between Early-Stage Nasopharyngeal Carcinoma and Benign Hyperplasia with Stable Feature Selection on MRI. Cancers 2022, 14, 3433. [Google Scholar] [CrossRef]
- Krishnaiah, R.R.; Kanal, L.N. Dimensionality and Sample Size Considerations in Pattern Recognition Practice. In Handbook of Statistics; North-Holland: Amsterdam, The Netherlands, 1982; pp. 825–855. [Google Scholar]
- Dernoncourt, D.; Hanczar, B.; Zucker, J.D. Analysis of feature selection stability on high dimension and small sample data. Comput. Stat. Data Anal. 2014, 71, 681–693. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dine, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 196–205. [Google Scholar]
- Duane, F.; Aznar, M.C.; Bartlett, F.; Cutter, D.J.; Darby, S.C.; Jagsi, R.; Lorenzen, E.L.; McArdle, O.; McGale, P.; Myerson, S.; et al. A cardiac contouring atlas for radiotherapy. Radiother. Oncol. 2017, 122, 416–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.J.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collewet, G.; Strzelecki, M.; Mariette, F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn. Reson. Imaging 2004, 22, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Yaniv, Z.; Lowekamp, B.C.; Johnson, H.J.; Beare, R. SimpleITK Image-Analysis Notebooks: A Collaborative Environment for Education and Reproducible Research. J. Digit. Imaging 2018, 31, 290–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nekooeimehr, I.; Lai-Yuen, S.K. Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Syst. Appl. 2016, 46, 405–416. [Google Scholar] [CrossRef]
- Blagus, R.; Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef] [Green Version]
- Wilcoxin, F. Probability tables for individual comparisons by ranking methods. Biometrics 1947, 3, 119–122. [Google Scholar] [CrossRef]
- Alhamzawi, R.; Ali, H.T.M. The Bayesian adaptive lasso regression. Math. Biosci. 2018, 303, 75–82. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, S.Z. Methods Used in Computer-Aided Diagnosis for Breast Cancer Detection Using Mammograms: A Review. J. Health Eng. 2020, 2020, 9162464. [Google Scholar] [CrossRef] [Green Version]
- Chalkidou, A.; O’Doherty, M.J.; Marsden, P.K. False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review. PLoS ONE 2015, 10, e0124165. [Google Scholar] [CrossRef] [Green Version]
- Court, L.E.; Fave, X.; Mackin, D.; Lee, J.; Yang, J.Z.; Zhang, L.F. Computational resources for radiomics. Transl. Cancer Res. 2016, 5, 340–348. [Google Scholar] [CrossRef]
- Sumi, M.; Nakamura, T. Head and neck tumours: Combined MRI assessment based on IVIM and TIC analyses for the differentiation of tumors of different histological types. Eur. Radiol. 2014, 24, 223–231. [Google Scholar] [CrossRef]
- Sumi, M.; Van Cauteren, M.; Sumi, T.; Obara, M.; Ichikawa, Y.; Nakamura, T. Salivary Gland Tumors: Use of Intravoxel Incoherent Motion MR Imaging for Assessment of Diffusion and Perfusion for the Differentiation of Benign from Malignant Tumors. Radiology 2012, 263, 770–777. [Google Scholar] [CrossRef]
- Liu, Y.B.; Zheng, J.B.; Zhao, J.Z.; Yu, L.J.; Lu, X.P.; Zhu, Z.H.; Guo, C.L.; Zhang, T. Magnetic resonance image biomarkers improve differentiation of benign and malignant parotid tumors through diagnostic model analysis. Oral Radiol. 2021, 37, 658–668. [Google Scholar] [CrossRef]
- Traverso, A.; Kazmierski, M.; Welch, M.L.; Weiss, J.; Fiset, S.; Foltz, W.D.; Gladwish, A.; Dekker, A.; Jaffray, D.; Wee, L.; et al. Sensitivity of radiomic features to inter-observer variability and image pre-processing in Apparent Diffusion Coefficient (ADC) maps of cervix cancer patients. Radiother. Oncol. 2020, 143, 88–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int J. Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradmand, H.; Aghamir, S.M.R.; Ghaderi, R. Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma. J. Appl. Clin. Med. Phys. 2020, 21, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Hoebel, K.V.; Patel, J.B.; Beers, A.L.; Chang, K.; Singh, P.; Brown, J.M.; Pinho, M.C.; Batchelor, T.T.; Gerstner, E.R.; Rosen, B.R.; et al. Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. Radiol. Artif. Intell. 2021, 3, e190199. [Google Scholar] [CrossRef]
- Korte, J.C.; Cardenas, C.; Hardcastle, N.; Kron, T.; Wang, J.; Bahig, H.; Elgohari, B.; Ger, R.; Court, L.; Fuller, C.D.; et al. Radiomics feature stability of open-source software evaluated on apparent diffusion coefficient maps in head and neck cancer. Sci. Rep. 2021, 11, 17633. [Google Scholar] [CrossRef] [PubMed]
- McHugh, D.J.; Porta, N.; Little, R.A.; Cheung, S.; Watson, Y.; Parker, G.J.M.; Jayson, G.C.; O’Connor, J.P.B. Image Contrast, Image Pre-Processing, and T1 Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases. Cancers 2021, 13, 240. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, E.; Alcin, O.F.; Kizilay, A.; Yildirim, I.O. Deep learning model developed by multiparametric MRI in differential diagnosis of parotid gland tumors. Eur. Arch. Otorhinolaryngol. 2022, 279, 5389–5399. [Google Scholar] [CrossRef]
- Chang, Y.J.; Huang, T.Y.; Liu, Y.J.; Chung, H.W.; Juan, C.J. Classification of parotid gland tumors by using multimodal MRI and deep learning. NMR Biomed. 2021, 34, e4408. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Y.; Zhang, X.; Sha, Y.; Wang, S.; Li, H.; Liu, J. A Deep Learning Model for Classification of Parotid Neoplasms Based on Multimodal Magnetic Resonance Image Sequences. Laryngoscope 2022. [Google Scholar] [CrossRef]
Characteristics | MSGT (n = 34) | BSGT (n = 57) | p-Value |
---|---|---|---|
Tumor histology | Lymphoepithelioma-like carcinoma 7 (20.6%) Myoepithelial carcinoma 2 (5.9%) Salivary duct carcinoma 4 (11.8%) Adenoid cystic carcinoma 5 (14.7%) Mucoepidermoid carcinoma 8 (21.6%) Metastatic carcinoma 2 (5.9%) Acinic cell carcinoma 1 (2.9%) Poorly differentiated carcinoma 2 (5.9%) Basal cell adenocarcinoma 1 (2.9%) Other carcinomas 2 (5.9%) | Pleomorphic adenoma 44 (77.2%) Warthin’s tumor 13 (22.8%) | |
Sex (M/F) | 20/14 | 30/27 | 0.57 |
Age (years) | 57.94 ± 16.76 | 55.35 ± 15.91 | 0.25 |
Tumor location | Parotid 25 (73.5%) Submandibular 5 (14.7%) Sublingual 4 (11.8%) | Parotid 51 (89.5%) Submandibular 6 (10.5%) Sublingual 0 (0%) | |
Tumor site | Unilateral 34 (100%) Bilateral 0 (0%) | Unilateral 47 (90.4%) Bilateral 5 (9.6%) |
Shape (n = 14) | First Order (n = 18) | Texture (n = 73) | Exp (n = 91) | Log (n = 91) | Wavelet (n = 801) | All Features (n = 1015) | |
---|---|---|---|---|---|---|---|
Validation set | |||||||
T1WI | 0.718 ± 0.004 | 0.552 ± 0.003 | 0.801 ± 0.004 | 0.729 ± 0.004 | 0.828 ± 0.004 *** | 0.725 ± 0.005 | 0.750 ± 0.004 |
FS-T2WI | 0.778 ± 0.004 | 0.788 ± 0.004 | 0.785 ± 0.004 | 0.819 ± 0.004 *** | 0.806 ± 0.004 | 0.785 ± 0.005 | 0.774 ± 0.004 |
CE-T1WI | 0.704 ± 0.004 | 0.605 ± 0.003 | 0.729 ± 0.004 | 0.747 ± 0.004 | 0.754 ± 0.005 *** | 0.689 ± 0.004 | 0.707 ± 0.004 |
Training set | |||||||
T1WI | 0.721 ± 0.003 | 0.554 ± 0.003 | 0.871 ± 0.003 | 0.835 ± 0.002 | 0.902 ± 0.001 | 0.996 ± 0.000 | 0.999 ± 0.000 |
FS-T2WI | 0.833 ± 0.002 | 0.841 ± 0.001 | 0.891 ± 0.001 | 0.924 ± 0.001 | 0.926 ± 0.001 | 0.998 ± 0.000 | 0.998 ± 0.000 |
CE-T1WI | 0.706 ± 0.002 | 0.625 ± 0.004 | 0.845 ± 0.002 | 0.862 ± 0.001 | 0.866 ± 0.002 | 0.980 ± 0.001 | 0.997 ± 0.000 |
All Features | Best Feature Category | p-Values | |
---|---|---|---|
Nogueira score | |||
T1WI | 0.360 | 0.437 | <0.001 |
FS-T2WI | 0.292 | 0.466 | <0.001 |
CE-T1WI | 0.331 | 0.433 | <0.001 |
Jaccard index | |||
T1WI | 0.234 ± 0.066 | 0.330 ± 0.145 | <0.001 |
FS-T2WI | 0.184 ± 0.069 | 0.368 ± 0.150 | <0.001 |
CE-T1WI | 0.219 ± 0.067 | 0.322 ± 0.137 | <0.001 |
Validation Set | Training Set | |||||
---|---|---|---|---|---|---|
T1WI-Log (n = 91) | T1WI-Log + FS-T2WI-Exp (n = 182) | T1WI-Log + FS-T2WI-Exp + CE-T1WI-Log (n = 273) | T1WI-Log (n = 91) | T1WI-Log + FS-T2WI-Exp (n = 182) | T1WI-Log + FS-T2WI-Exp + CE-T1WI-Log (n = 273) | |
AUC | 0.828 ± 0.004 | 0.846 ± 0.004 ** | 0.825 ± 0.005 | 0.902 ± 0.001 | 0.953 ± 0.001 | 0.978 ± 0.001 |
Accuracy | 0.750 ± 0.004 | 0.761 ± 0.004 | 0.751 ± 0.004 | 0.837 ± 0.002 | 0.885 ± 0.001 | 0.951 ± 0.001 |
Sensitivity | 0.730 ± 0.005 | 0.740 ± 0.005 | 0.728 ± 0.005 | 0.846 ± 0.002 | 0.893 ± 0.002 | 0.950 ± 0.001 |
Specificity | 0.769 ± 0.005 | 0.782 ± 0.005 | 0.775 ± 0.005 | 0.826 ± 0.003 | 0.878 ± 0.002 | 0.951 ± 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Ai, Q.Y.H.; Wong, L.M.; Green, C.; Qamar, S.; So, T.Y.; Vlantis, A.C.; King, A.D. Radiomics for Discriminating Benign and Malignant Salivary Gland Tumors; Which Radiomic Feature Categories and MRI Sequences Should Be Used? Cancers 2022, 14, 5804. https://doi.org/10.3390/cancers14235804
Zhang R, Ai QYH, Wong LM, Green C, Qamar S, So TY, Vlantis AC, King AD. Radiomics for Discriminating Benign and Malignant Salivary Gland Tumors; Which Radiomic Feature Categories and MRI Sequences Should Be Used? Cancers. 2022; 14(23):5804. https://doi.org/10.3390/cancers14235804
Chicago/Turabian StyleZhang, Rongli, Qi Yong H. Ai, Lun M. Wong, Christopher Green, Sahrish Qamar, Tiffany Y. So, Alexander C. Vlantis, and Ann D. King. 2022. "Radiomics for Discriminating Benign and Malignant Salivary Gland Tumors; Which Radiomic Feature Categories and MRI Sequences Should Be Used?" Cancers 14, no. 23: 5804. https://doi.org/10.3390/cancers14235804
APA StyleZhang, R., Ai, Q. Y. H., Wong, L. M., Green, C., Qamar, S., So, T. Y., Vlantis, A. C., & King, A. D. (2022). Radiomics for Discriminating Benign and Malignant Salivary Gland Tumors; Which Radiomic Feature Categories and MRI Sequences Should Be Used? Cancers, 14(23), 5804. https://doi.org/10.3390/cancers14235804