Non-Cancer Effects following Ionizing Irradiation Involving the Eye and Orbit
<p>Radiotherapy techniques of and corresponding radar charts. (<b>A</b>) Brachytherapy is a conformal technique that does not deliver radiation dose outside the eye. The principle is to apply a radioactive isotope to the sclera that will deliver radiation over a short distance to the tissue. The plaque delivers a heterogeneous dose from the sclera to the apex of the tumor. (<b>B</b>) Conventional 3D radiotherapy delivers a uniform dose to the eye using 1 to 3 fields. Intensity-modulated radiotherapy (IMRT) uses 5 to 9 fields and a multileaf collimator, allowing complex concave radiation dose distribution. (<b>C</b>) Stereotactic beam radiotherapy (SBRT) delivers radiotherapy from many different positions around the organ so that the beams meet at the tumor. The tumor receives a high dose of radiation and the healthy tissues around it only a low dose. (<b>D</b>) Proton beam therapy (PBT) allows a very focused and high-dose volume of energy deposition due to the physical properties of protons. The energy is delivered with a sharp Bragg peak allowing preservation of surrounding tissues. Adapted from Mathis et al., 2019 [<a href="#B14-cancers-14-01194" class="html-bibr">14</a>].</p> "> Figure 2
<p>Treatment of radiation-induced dry-eye syndrome.</p> "> Figure 3
<p>Radiation retinopathy in a patient treated with plaque brachytherapy for choroidal melanoma; (<b>A</b>) Fluorescein angiography (FA) at baseline showing the localization of the melanoma close to the macular area; (<b>B</b>) FA at 2 years showing 2 retinal ischemic areas (white arrows); (<b>C</b>) FA at 3 years showing the enlargement of the foveal avascular zone and the increased surface of ischemic areas. Laser photocoagulation was partially performed.</p> "> Figure 4
<p>Radiation-induced optic neuritis following proton beam irradiation of a juxtapapillary choroidal melanoma. (<b>A</b>) Treatment planning system (TPS) at baseline showing isodoses on fundus autofluorescence and color widefield retinography. Approximately 50% of the optic nerve was planned to receive the full radiation dose. (<b>B</b>) At 32 months after irradiation. Observation of optic disc swelling, hemorrhages and cotton wool spots; the tumor site is atrophic. Inset: enlarged view and fluorescein angiography confirming optic nerve edema.</p> "> Figure 5
<p>Intraocular hemorrhage following proton beam therapy for choroidal melanoma; (<b>A</b>) Retinography at baseline before irradiation. (<b>B</b>) Retinography at 6 months after irradiation showing intratumoral bleeding and toxic tumor syndrome (inferior exudative retinal detachment). The patient refused any medical or surgical intervention. (<b>C</b>) Retinography at 9 months after irradiation showing subretinal bleeding and exudative retinal detachment. (<b>D</b>) Retinography at 12 months after irradiation showing total intravitreal bleeding.</p> "> Figure 6
<p>Neovascular glaucoma in a patient treated with proton beam therapy for a large choroidal melanoma (12 mm in height and 20 mm in diameter).</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Radiobiology of Ocular Tissues
2.1. Normal Tissue Toxicity
2.2. Tolerance Dose
2.3. Volume Effects
2.4. Fractionation Sensitivity
3. Clinical Radiotherapy Concepts and Definitions of Tumor Volumes and Ocular Organs at Risk
4. Description of the Different Radiotherapy Techniques Used for Ocular Tumors
5. Ocular Side-Effects of Radiotherapy Involving the Eye or Orbit
5.1. Dry-Eye Syndrome
5.2. Radiation-Induced Cataract
5.3. Radiation-Induced Retinopathy
5.4. Radiation-Induced Optic Neuropathy (RION)
5.5. Toxic Tumor Syndrome
5.6. Intraocular Hemorrhage
5.7. Neovascular Glaucoma (NVG)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mathis, T.; Cassoux, N.; Tardy, M.; Piperno, S.; Gastaud, L.; Dendale, R.; Maschi, C.; Nguyen, A.-M.; Meyer, L.; Bonnin, N.; et al. Management of uveal melanomas, guidelines for oncologists. Bull. Cancer 2018, 105, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Thariat, J.; Herault, J.; Mouriaux, F. Conservative Treatments of Ocular Melanomas: Technology Used Wisely. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Thariat, J.; Hannoun-Levi, J.-M.; Sun Myint, A.; Vuong, T.; Gérard, J.-P. Past, Present, and Future of Radiotherapy for the Benefit of Patients. Nat. Rev. Clin. Oncol. 2013, 10, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Courdi, A.; Caujolle, J.P.; Grange, J.D.; Diallo-Rosier, L.; Sahel, J.; Bacin, F.; Zur, C.; Gastaud, P.; Iborra-Brassart, N.; Hérault, J.; et al. Results of Proton Therapy of Uveal Melanomas Treated in Nice. Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 5–11. [Google Scholar] [CrossRef]
- Paganetti, H.; Blakely, E.; Carabe-Fernandez, A.; Carlson, D.J.; Das, I.J.; Dong, L.; Grosshans, D.; Held, K.D.; Mohan, R.; Moiseenko, V.; et al. Report of the AAPM TG-256 on the Relative Biological Effectiveness of Proton Beams in Radiation Therapy. Med. Phys. 2019, 46, e53–e78. [Google Scholar] [CrossRef] [Green Version]
- Petringa, G.; Calvaruso, M.; Conte, V.; Bláha, P.; Bravatà, V.; Cammarata, F.P.; Cuttone, G.; Forte, G.I.; Keta, O.; Manti, L.; et al. Radiobiological Outcomes, Microdosimetric Evaluations and Monte Carlo Predictions in Eye Proton Therapy. Appl. Sci. 2021, 11, 8822. [Google Scholar] [CrossRef]
- Thariat, J.; Racadot, S.; Pointreau, Y.; Boisselier, P.; Grange, J.-D.; Graff, P.; Weber, D.C. Intensity-modulated radiotherapy of head and neck cancers: Dose effects on the ocular, orbital and eyelid structures. Cancer Radiother. 2016, 20, 467–474. [Google Scholar] [CrossRef]
- Thariat, J.; Grange, J.-D.; Mosci, C.; Rosier, L.; Maschi, C.; Lanza, F.; Nguyen, A.M.; Jaspart, F.; Bacin, F.; Bonnin, N.; et al. Visual Outcomes of Parapapillary Uveal Melanomas Following Proton Beam Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 328–335. [Google Scholar] [CrossRef]
- Espensen, C.A.; Appelt, A.L.; Fog, L.S.; Gothelf, A.B.; Thariat, J.; Kiilgaard, J.F. Predicting Visual Acuity Deterioration and Radiation-Induced Toxicities after Brachytherapy for Choroidal Melanomas. Cancers 2019, 11, 1124. [Google Scholar] [CrossRef] [Green Version]
- Mazal, A.; Prezado, Y.; Ares, C.; de Marzi, L.; Patriarca, A.; Miralbell, R.; Favaudon, V. FLASH and Minibeams in Radiation Therapy: The Effect of Microstructures on Time and Space and Their Potential Application to Protontherapy. Br. J. Radiol. 2020, 93, 20190807. [Google Scholar] [CrossRef]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.-F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh Dose-Rate FLASH Irradiation Increases the Differential Response between Normal and Tumor Tissue in Mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar] [CrossRef] [PubMed]
- Labarbe, R.; Hotoiu, L.; Barbier, J.; Favaudon, V. A Physicochemical Model of Reaction Kinetics Supports Peroxyl Radical Recombination as the Main Determinant of the FLASH Effect. Radiother. Oncol. 2020, 153, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Purdy, J.A. Current ICRU Definitions of Volumes: Limitations and Future Directions. Semin. Radiat. Oncol. 2004, 14, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Mathis, T.; Jardel, P.; Loria, O.; Delaunay, B.; Nguyen, A.-M.; Lanza, F.; Mosci, C.; Caujolle, J.-P.; Kodjikian, L.; Thariat, J. New Concepts in the Diagnosis and Management of Choroidal Metastases. Prog. Retin. Eye Res. 2019, 68, 144–176. [Google Scholar] [CrossRef]
- Via, R.; Hennings, F.; Fattori, G.; Pica, A.; Lomax, A.; Weber, D.C.; Baroni, G.; Hrbacek, J. Technical Note: Benchmarking Automated Eye Tracking and Human Detection for Motion Monitoring in Ocular Proton Therapy. Med. Phys. 2020, 47, 2237–2241. [Google Scholar] [CrossRef]
- Antonioli, L.; Pella, A.; Ricotti, R.; Rossi, M.; Fiore, M.R.; Belotti, G.; Magro, G.; Paganelli, C.; Orlandi, E.; Ciocca, M.; et al. Convolutional Neural Networks Cascade for Automatic Pupil and Iris Detection in Ocular Proton Therapy. Sensors 2021, 21, 4400. [Google Scholar] [CrossRef]
- Jeganathan, V.S.E.; Wirth, A.; MacManus, M.P. Ocular Risks from Orbital and Periorbital Radiation Therapy: A Critical Review. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 650–659. [Google Scholar] [CrossRef]
- Finger, P.T. Radiation Therapy for Orbital Tumors: Concepts, Current Use, and Ophthalmic Radiation Side Effects. Surv. Ophthalmol. 2009, 54, 545–568. [Google Scholar] [CrossRef]
- Durkin, S.R.; Roos, D.; Higgs, B.; Casson, R.J.; Selva, D. Ophthalmic and Adnexal Complications of Radiotherapy. Acta Ophthalmol. Scand. 2007, 85, 240–250. [Google Scholar] [CrossRef]
- Marwaha, G.; Macklis, R.; Singh, A.D. Radiation Therapy: Orbital Tumors. Dev. Ophthalmol. 2013, 52, 94–101. [Google Scholar] [CrossRef]
- Espensen, C.A.; Kiilgaard, J.F.; Appelt, A.L.; Fog, L.S.; Herault, J.; Maschi, C.; Caujolle, J.-P.; Thariat, J. Dose-Response and Normal Tissue Complication Probabilities after Proton Therapy for Choroidal Melanoma. Ophthalmology 2021, 128, 152–161. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, E.C.; Henderson, M.; Massaro-Giordano, M.; Bunya, V.Y. Advances in Dry Eye Disease Treatment. Curr. Opin. Ophthalmol. 2019, 30, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Kennerdell, J.S.; Flores, N.E.; Hartsock, R.J. Low-Dose Radiotherapy for Lymphoid Lesions of the Orbit and Ocular Adnexa. Ophthalmic Plast. Reconstr. Surg. 1999, 15, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Yang, H.J.; Yang, S.-W. Effects of Radiation Therapy on the Meibomian Glands and Dry Eye in Patients with Ocular Adnexal Mucosa-Associated Lymphoid Tissue Lymphoma. BMC Ophthalmol. 2020, 20, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mombaerts, I.; Cameron, J.D.; Chanlalit, W.; Garrity, J.A. Surgical Debulking for Idiopathic Dacryoadenitis: A Diagnosis and a Cure. Ophthalmology 2014, 121, 603–609. [Google Scholar] [CrossRef]
- Koaik, M.; Baig, K. Corneal Neurotization. Curr. Opin. Ophthalmol. 2019, 30, 292–298. [Google Scholar] [CrossRef]
- Wakamatsu, T.H.; Sant’Anna, A.E.B.P.P.; Cristovam, P.C.; Alves, V.A.F.; Wakamatsu, A.; Gomes, J.A.P. Minor Salivary Gland Transplantation for Severe Dry Eyes. Cornea 2017, 36 (Suppl. 1), S26–S33. [Google Scholar] [CrossRef]
- Ainsbury, E.A.; Dalke, C.; Hamada, N.; Benadjaoud, M.A.; Chumak, V.; Ginjaume, M.; Kok, J.L.; Mancuso, M.; Sabatier, L.; Struelens, L.; et al. Radiation-Induced Lens Opacities: Epidemiological, Clinical and Experimental Evidence, Methodological Issues, Research Gaps and Strategy. Environ. Int. 2021, 146, 106213. [Google Scholar] [CrossRef]
- Hamada, N.; Azizova, T.V.; Little, M.P. An Update on Effects of Ionizing Radiation Exposure on the Eye. Br. J. Radiol. 2020, 93, 20190829. [Google Scholar] [CrossRef]
- Finger, P.T. Tumour Location Affects the Incidence of Cataract and Retinopathy after Ophthalmic Plaque Radiation Therapy. Br. J. Ophthalmol. 2000, 84, 1068–1070. [Google Scholar] [CrossRef] [Green Version]
- Seibel, I.; Cordini, D.; Hager, A.; Riechardt, A.I.; Rehak, M.; Böker, A.; Böhmer, D.; Heufelder, J.; Joussen, A.M. Cataract Development in Patients Treated with Proton Beam Therapy for Uveal Melanoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1625–1630. [Google Scholar] [CrossRef] [PubMed]
- Mathis, T.; Rosier, L.; Meniai, F.; Baillif, S.; Maschi, C.; Herault, J.; Caujolle, J.-P.; Kodjikian, L.; Salleron, J.; Thariat, J. The Lens Opacities Classification System III Grading in Irradiated Uveal Melanomas to Characterize Proton Therapy-Induced Cataracts. Am. J. Ophthalmol. 2019, 201, 63–71. [Google Scholar] [CrossRef]
- Thariat, J.; Jacob, S.; Caujolle, J.-P.; Maschi, C.; Baillif, S.; Angellier, G.; Mathis, T.; Rosier, L.; Carnicer, A.; Hérault, J.; et al. Cataract Avoidance with Proton Therapy in Ocular Melanomas. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5378–5386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gragoudas, E.S.; Egan, K.M.; Arrigg, P.G.; Seddon, J.M.; Glynn, R.J.; Munzenrider, J.E. Cataract Extraction after Proton Beam Irradiation for Malignant Melanoma of the Eye. Arch. Ophthalmol. 1992, 110, 475–479. [Google Scholar] [CrossRef]
- The Collaborative Ocular Melanoma Study Group. Incidence of Cataract and Outcomes after Cataract Surgery in the First 5 Years after Iodine 125 Brachytherapy in the Collaborative Ocular Melanoma Study: COMS Report No. 27. Ophthalmology 2007, 114, 1363–1371. [Google Scholar] [CrossRef]
- Archer, D.B.; Amoaku, W.M.K.; Gardiner, T.A. Radiation Retinopathy—Clinical, Histopathological, Ultrastructural and Experimental Correlations. Eye 1991, 5, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Mathis, T.; Levron, A.; Pommier, P.; Denis, P.; Thariat, J.; Kodjikian, L. Intra- and Subretinal Neovascularization Following Radiation Therapy: Contribution of OCT-Angiography. J. Fr. Ophtalmol. 2018, 41, e481–e483. [Google Scholar] [CrossRef]
- Parsons, J.T.; Bova, F.J.; Fitzgerald, C.R.; Mendenhall, W.M.; Million, R.R. Radiation Retinopathy after External-Beam Irradiation: Analysis of Time-Dose Factors. Int. J. Radiat. Oncol. Biol. Phys. 1994, 30, 765–773. [Google Scholar] [CrossRef]
- Kaushik, M.; Pulido, J.S.; Schild, S.E.; Stafford, S. Risk of Radiation Retinopathy in Patients with Orbital and Ocular Lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 1145–1150. [Google Scholar] [CrossRef]
- Horgan, N.; Shields, C.L.; Mashayekhi, A.; Teixeira, L.F.; Materin, M.A.; Shields, J.A. Early Macular Morphological Changes Following Plaque Radiotherapy for Uveal Melanoma. Retina 2008, 28, 263–273. [Google Scholar] [CrossRef]
- Marin, L.; Toumi, E.; Caujolle, J.-P.; Doyen, J.; Martel, A.; Nahon-Esteve, S.; Maschi, C.; Baillif, S. OCT-Angiography for the Diagnosis of Radiation Maculopathy in Patients Treated with Proton Beam Therapy: A 2-Year Prospective Study. Eur. J. Ophthalmol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S. Post-Radiation Retinopathy. A Fluorescence Fundus Angiographic Study. Br. J. Ophthalmol. 1970, 54, 705–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, C.L.; Say, E.A.T.; Samara, W.A.; Khoo, C.T.L.; Mashayekhi, A.; Shields, J.A. Optical Coherence Tomography Angiography of the Macula after Plaque Radiotherapy of Choroidal Melanoma: Comparison of Irradiated Versus Nonirradiated Eyes in 65 Patients. Retina 2016, 36, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Sellam, A.; Coscas, F.; Lumbroso-Le Rouic, L.; Dendale, R.; Lupidi, M.; Coscas, G.; Desjardins, L.; Cassoux, N. Optical Coherence Tomography Angiography of Macular Features After Proton Beam Radiotherapy for Small Choroidal Melanoma. Am. J. Ophthalmol. 2017, 181, 12–19. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical Coherence Tomography Angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef]
- Finger, P.T.; Kurli, M. Laser Photocoagulation for Radiation Retinopathy after Ophthalmic Plaque Radiation Therapy. Br. J. Ophthalmol. 2005, 89, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Horgan, N.; Shields, C.L.; Mashayekhi, A.; Shields, J.A. Classification and Treatment of Radiation Maculopathy. Curr. Opin. Ophthalmol. 2010, 21, 233–238. [Google Scholar] [CrossRef]
- Veverka, K.K.; AbouChehade, J.E.; Iezzi, R.; Pulido, J.S. NONINVASIVE GRADING OF RADIATION RETINOPATHY: The Use of Optical Coherence Tomography Angiography. Retina 2015, 35, 2400–2410. [Google Scholar] [CrossRef]
- Kinyoun, J.L.; Lawrence, B.S.; Barlow, W.E. Proliferative Radiation Retinopathy. Arch. Ophthalmol. 1996, 114, 1097–1100. [Google Scholar] [CrossRef]
- Hykin, P.G.; Shields, C.L.; Shields, J.A.; Arevalo, J.F. The Efficacy of Focal Laser Therapy in Radiation-Induced Macular Edema. Ophthalmology 1998, 105, 1425–1429. [Google Scholar] [CrossRef]
- Finger, P.T.; Chin, K.J.; Semenova, E.A. Intravitreal Anti-VEGF Therapy for Macular Radiation Retinopathy: A 10-Year Study. Eur. J. Ophthalmol. 2016, 26, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Finger, P.T.; Chin, K.J. Intravitreous Ranibizumab (Lucentis) for Radiation Maculopathy. Arch. Ophthalmol. 2010, 128, 249–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallico, M.; Reibaldi, M.; Avitabile, T.; Longo, A.; Bonfiglio, V.; Chronopoulos, A.; Caltabiano, R.; Spatola, C.; Russo, A. Intravitreal Aflibercept for the Treatment of Radiation-Induced Macular Edema after Ruthenium 106 Plaque Radiotherapy for Choroidal Melanoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Murray, T.G.; Latiff, A.; Villegas, V.M.; Gold, A.S. Aflibercept for Radiation Maculopathy Study: A Prospective, Randomized Clinical Study. Ophthalmol. Retin. 2019, 3, 561–566. [Google Scholar] [CrossRef]
- Frizziero, L.; Parrozzani, R.; Trainiti, S.; Pilotto, E.; Miglionico, G.; Pulze, S.; Midena, E. Intravitreal Dexamethasone Implant in Radiation-Induced Macular Oedema. Br. J. Ophthalmol. 2017, 101, 1699–1703. [Google Scholar] [CrossRef]
- Baillif, S.; Maschi, C.; Gastaud, P.; Caujolle, J.P. Intravitreal Dexamethasone 0.7-Mg Implant for Radiation Macular Edema after Proton Beam Therapy for Choroidal Melanoma. Retina 2013, 33, 1784–1790. [Google Scholar] [CrossRef]
- Caminal, J.M.; Flores-Moreno, I.; Arias, L.; Gutiérrez, C.; Piulats, J.M.; Català, J.; Rubio, M.J.; Cobos, E.; García, P.; Pera, J.; et al. Intravitreal Dexamethasone Implant for Radiation Maculopathy Secondary to Plaque Brachytherapy in Choroidal Melanoma. Retina 2015, 35, 1890–1897. [Google Scholar] [CrossRef]
- Seibel, I.; Hager, A.; Riechardt, A.I.; Davids, A.M.; Böker, A.; Joussen, A.M. Antiangiogenic or Corticosteroid Treatment in Patients with Radiation Maculopathy After Proton Beam Therapy for Uveal Melanoma. Am. J. Ophthalmol. 2016, 168, 31–39. [Google Scholar] [CrossRef]
- Russo, A.; Reibaldi, M.; Avitabile, T.; Uva, M.G.; Franco, L.M.; Gagliano, C.; Bonfiglio, V.; Spatola, C.; Privitera, G.; Longo, A. Dexamethasone Intravitreal Implant vs. Ranibizumab in the Treatment of Macular Edema Secondary to Brachytherapy for Choroidal Melanoma. Retina 2018, 38, 788–794. [Google Scholar] [CrossRef]
- Russo, A.; Laguardia, M.; Damato, B. Eccentric Ruthenium Plaque Radiotherapy of Posterior Choroidal Melanoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 1533–1540. [Google Scholar] [CrossRef]
- Caujolle, J.-P.; Paoli, V.; Chamorey, E.; Maschi, C.; Baillif, S.; Herault, J.; Gastaud, P.; Hannoun-Levi, J.M. Local Recurrence after Uveal Melanoma Proton Beam Therapy: Recurrence Types and Prognostic Consequences. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1218–1224. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.K.; Lane, A.M.; Jain, P.; Awh, C.; Gragoudas, E.S. Ranibizumab for the Prevention of Radiation Complications in Patients Treated with Proton Beam Irradiation for Choroidal Melanoma. Trans. Am. Ophthalmol. Soc. 2016, 114, T2. [Google Scholar] [PubMed]
- Shields, C.L.; Dalvin, L.A.; Chang, M.; Mazloumi, M.; Fortin, P.; McGarrey, M.; Martin, A.; Yaghy, A.; Yang, X.; Vichitvejpaisal, P.; et al. Visual Outcome at 4 Years Following Plaque Radiotherapy and Prophylactic Intravitreal Bevacizumab (Every 4 Months for 2 Years) for Uveal Melanoma: Comparison with Nonrandomized Historical Control Individuals. JAMA Ophthalmol. 2020, 138, 136–146. [Google Scholar] [CrossRef]
- Eandi, C.M.; Polito, M.S.; Schalenbourg, A.; Zografos, L. Eighteen-Months Results of Intravitreal Anti-Vascular Endothelial Growth Factor on Vision and Microcirculation in Radiation Maculopathy. Retina 2021, 41, 1883. [Google Scholar] [CrossRef] [PubMed]
- Van der Kogel, A.J. Radiation-Induced Damage in the Central Nervous System: An Interpretation of Target Cell Responses. Br. J. Cancer Suppl. 1986, 7, 207–217. [Google Scholar]
- Hopewell, J.W.; van der Kogel, A.J. Pathophysiological Mechanisms Leading to the Development of Late Radiation-Induced Damage to the Central Nervous System. Front. Radiat. Ther. Oncol. 1999, 33, 265–275. [Google Scholar] [CrossRef]
- Danesh-Meyer, H.V. Radiation-Induced Optic Neuropathy. J. Clin. Neurosci. 2008, 15, 95–100. [Google Scholar] [CrossRef]
- Omary, R.A.; Berr, S.S.; Kamiryo, T.; Lanzino, G.; Kassell, N.F.; Lee, K.S.; Lopes, M.B.; Hillman, B.J. 1995 AUR Memorial Award. Gamma Knife Irradiation-Induced Changes in the Normal Rat Brain Studied with 1H Magnetic Resonance Spectroscopy and Imaging. Acad. Radiol. 1995, 2, 1043–1051. [Google Scholar] [CrossRef]
- Levin, L.A.; Gragoudas, E.S.; Lessell, S. Endothelial Cell Loss in Irradiated Optic Nerves. Ophthalmology 2000, 107, 370–374. [Google Scholar] [CrossRef]
- Groenewald, C.; Konstantinidis, L.; Damato, B. Effects of Radiotherapy on Uveal Melanomas and Adjacent Tissues. Eye 2013, 27, 163–171. [Google Scholar] [CrossRef]
- Kline, L.B.; Kim, J.Y.; Ceballos, R. Radiation Optic Neuropathy. Ophthalmology 1985, 92, 1118–1126. [Google Scholar] [CrossRef]
- Yousef, Y.A.; Finger, P.T. Optical Coherence Tomography of Radiation Optic Neuropathy. Ophthalmic Surg. Lasers Imaging 2012, 43, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Chien, J.L.; Sioufi, K.; Ferenczy, S.R.; Say, E.A.T.; Shields, C.L. Optical Coherence Tomography Angiography Detects Subclinical Radial Peripapillary Capillary Density Reduction after Plaque Radiotherapy for Choroidal Melanoma. Retina 2020, 40, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.K.; Lane, A.M.; Egan, K.M.; Munzenrider, J.; Gragoudas, E.S. Natural History of Radiation Papillopathy after Proton Beam Irradiation of Parapapillary Melanoma. Ophthalmology 2010, 117, 1617–1622. [Google Scholar] [CrossRef]
- Martel, M.K.; Sandler, H.M.; Cornblath, W.T.; Marsh, L.H.; Hazuka, M.B.; Roa, W.H.; Fraass, B.A.; Lichter, A.S. Dose-Volume Complication Analysis for Visual Pathway Structures of Patients with Advanced Paranasal Sinus Tumors. Int. J. Radiat. Oncol. Biol. Phys. 1997, 38, 273–284. [Google Scholar] [CrossRef]
- Meyer, A.; Lévy, C.; Blondel, J.; D’Hermies, F.; Frau, E.; Schlienger, P.; Mammar, H.; Delacroix, S.; Nauraye, C.; Desblancs, C.; et al. Optic neuropathy after proton-beam therapy for malignant choroidal melanoma. J. Fr. Ophtalmol. 2000, 23, 543–553. [Google Scholar]
- Gragoudas, E.S.; Li, W.; Lane, A.M.; Munzenrider, J.; Egan, K.M. Risk Factors for Radiation Maculopathy and Papillopathy after Intraocular Irradiation. Ophthalmology 1999, 106, 1571–1577; discussion 1577–1578. [Google Scholar] [CrossRef]
- Cicinelli, M.V.; Di Nicola, M.; Gigliotti, C.R.; Battista, M.; Miserocchi, E.; Del Vecchio, A.; Mortini, P.; Bandello, F.; Modorati, G.M. Predictive Factors of Radio-Induced Complications in 194 Eyes Undergoing Gamma Knife Radiosurgery for Uveal Melanoma. Acta Ophthalmol. 2021, 99, e1458–e1466. [Google Scholar] [CrossRef]
- De Potter, P.; Shields, C.L.; Shields, J.A.; Cater, J.R.; Brady, L.W. Plaque Radiotherapy for Juxtapapillary Choroidal Melanoma. Visual Acuity and Survival Outcome. Arch. Ophthalmol. 1996, 114, 1357–1365. [Google Scholar] [CrossRef]
- Omoti, A.E.; Omoti, C.E. Ocular Toxicity of Systemic Anticancer Chemotherapy. Pharm. Pract. 2006, 4, 55–59. [Google Scholar]
- Monroe, A.T.; Bhandare, N.; Morris, C.G.; Mendenhall, W.M. Preventing Radiation Retinopathy with Hyperfractionation. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Bhandare, N.; Monroe, A.T.; Morris, C.G.; Bhatti, M.T.; Mendenhall, W.M. Does Altered Fractionation Influence the Risk of Radiation-Induced Optic Neuropathy? Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Borruat, F.-X.; Schatz, N.J.; Giaser, J.S.; Matos, L.; Feuer, W. Radiation Optic Neuropathy: Report of Cases, Role of Hyperbaric Oxygen Therapy, and Literature Review. Neuro-Ophthalmol. 1996, 16, 255–266. [Google Scholar] [CrossRef]
- Finger, P.T.; Chin, K.J. Antivascular Endothelial Growth Factor Bevacizumab for Radiation Optic Neuropathy: Secondary to Plaque Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 789–798. [Google Scholar] [CrossRef]
- Roelofs, K.A.; Larocque, M.P.; Murtha, A.; Weis, E. The Use of Intravitreal Anti-VEGF and Triamcinolone in the Treatment of Radiation Papillopathy. Ocul. Oncol. Pathol. 2018, 4, 395–400. [Google Scholar] [CrossRef]
- Shields, C.L.; Demirci, H.; Marr, B.P.; Mashayekhi, A.; Dai, V.V.; Materin, M.A.; Shields, J.A. Intravitreal Triamcinolone Acetonide for Acute Radiation Papillopathy. Retina 2006, 26, 537–544. [Google Scholar] [CrossRef]
- Eckstein, D.; Riechardt, A.I.; Heufelder, J.; Zeitz, O.; Böker, A.; Brockmann, C.; Joussen, A.M.; Seibel, I. Radiation-Induced Optic Neuropathy: Observation versus Intravitreal Treatment: Can Visual Acuity Be Maintained by Intravitreal Treatment? Am. J. Ophthalmol. 2019, 208, 289–294. [Google Scholar] [CrossRef]
- Bensoussan, E.; Thariat, J.; Maschi, C.; Delas, J.; Schouver, E.D.; Hérault, J.; Baillif, S.; Caujolle, J.-P. Outcomes after Proton Beam Therapy for Large Choroidal Melanomas in 492 Patients. Am. J. Ophthalmol. 2016, 165, 78–87. [Google Scholar] [CrossRef]
- Damato, B. Local Resection of Uveal Melanoma. Dev. Ophthalmol. 2012, 49, 66–80. [Google Scholar] [CrossRef]
- Konstantinidis, L.; Groenewald, C.; Coupland, S.E.; Damato, B. Trans-Scleral Local Resection of Toxic Choroidal Melanoma after Proton Beam Radiotherapy. Br. J. Ophthalmol. 2014, 98, 775–779. [Google Scholar] [CrossRef]
- Mantel, I.; Schalenbourg, A.; Bergin, C.; Petrovic, A.; Weber, D.C.; Zografos, L. Prophylactic Use of Bevacizumab to Avoid Anterior Segment Neovascularization Following Proton Therapy for Uveal Melanoma. Am. J. Ophthalmol. 2014, 158, 693–701.e2. [Google Scholar] [CrossRef]
- Houston, S.K.; Shah, N.V.; Decatur, C.; Lonngi, M.; Feuer, W.; Markoe, A.M.; Murray, T.G. Intravitreal Bevacizumab Combined with Plaque Brachytherapy Reduces Melanoma Tumor Volume and Enhances Resolution of Exudative Detachment. Clin. Ophthalmol. 2013, 7, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrozzani, R.; Pilotto, E.; Dario, A.; Miglionico, G.; Midena, E. Intravitreal Triamcinolone versus Intravitreal Bevacizumab in the Treatment of Exudative Retinal Detachment Secondary to Posterior Uveal Melanoma. Am. J. Ophthalmol. 2013, 155, 127–133.e2. [Google Scholar] [CrossRef] [PubMed]
- Malclès, A.; Nguyen, A.-M.; Mathis, T.; Grange, J.-D.; Kodjikian, L. Intravitreal Dexamethasone Implant (Ozurdex®) for Exudative Retinal Detachment after Proton Beam Therapy for Choroidal Melanoma. Eur. J. Ophthalmol. 2017, 27, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Hafiz, G.; Mir, T.A.; Scott, A.W.; Sophie, R.; Shah, S.M.; Ying, H.S.; Lu, L.; Chen, C.; Campbell, J.P.; et al. Pro-Permeability Factors After Dexamethasone Implant in Retinal Vein Occlusion; the Ozurdex for Retinal Vein Occlusion (ORVO) Study. Am. J. Ophthalmol. 2015, 160, 313–321.e19. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Hafiz, G.; Mir, T.A.; Scott, A.W.; Zimmer-Galler, I.; Shah, S.M.; Wenick, A.S.; Brady, C.J.; Han, I.; He, L.; et al. Pro-Permeability Factors in Diabetic Macular Edema; the Diabetic Macular Edema Treated with Ozurdex Trial. Am. J. Ophthalmol. 2016, 168, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodjikian, L.; Bellocq, D.; Mathis, T. Pharmacological Management of Diabetic Macular Edema in Real-Life Observational Studies. BioMed Res. Int. 2018, 2018, 8289253. [Google Scholar] [CrossRef]
- Desjardins, L.; Lumbroso-Le Rouic, L.; Levy-Gabriel, C.; Dendale, R.; Delacroix, S.; Nauraye, C.; Estève, M.; Plancher, C.; Asselain, B. Combined Proton Beam Radiotherapy and Transpupillary Thermotherapy for Large Uveal Melanomas: A Randomized Study of 151 Patients. Ophthalmic Res. 2006, 38, 255–260. [Google Scholar] [CrossRef]
- Konstantinidis, L.; Groenewald, C.; Coupland, S.E.; Damato, B. Long-Term Outcome of Primary Endoresection of Choroidal Melanoma. Br. J. Ophthalmol. 2014, 98, 82–85. [Google Scholar] [CrossRef]
- Cassoux, N.; Cayette, S.; Plancher, C.; Lumbroso-Le Rouic, L.; Levy-Gabriel, C.; Asselain, B.; Sastre, X.; Couturier, J.; Arrufat, S.; Piperno-Neumann, S.; et al. Choroidal Melanoma: Does Endoresection Prevent Neovascular Glaucoma in Patient Treated with Proton Beam Irradiation? Retina 2013, 33, 1441–1447. [Google Scholar] [CrossRef]
- Van Beek, J.G.M.; Ramdas, W.D.; Angi, M.; van Rij, C.M.; Naus, N.C.; Kacperek, A.; Errington, R.D.; Damato, B.; Heimann, H.; Kiliç, E. Local Tumour Control and Radiation Side Effects for Fractionated Stereotactic Photon Beam Radiotherapy Compared to Proton Beam Radiotherapy in Uveal Melanoma. Radiother. Oncol. 2021, 157, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Egan, K.M.; Gragoudas, E.S.; Seddon, J.M.; Glynn, R.J.; Munzenreider, J.E.; Goitein, M.; Verhey, L.; Urie, M.; Koehler, A. The Risk of Enucleation after Proton Beam Irradiation of Uveal Melanoma. Ophthalmology 1989, 96, 1377–1382; discussion 1382–1383. [Google Scholar] [CrossRef]
- Egger, E.; Zografos, L.; Schalenbourg, A.; Beati, D.; Böhringer, T.; Chamot, L.; Goitein, G. Eye Retention after Proton Beam Radiotherapy for Uveal Melanoma. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 867–880. [Google Scholar] [CrossRef]
- Mishra, K.K.; Daftari, I.K.; Weinberg, V.; Cole, T.; Quivey, J.M.; Castro, J.R.; Phillips, T.L.; Char, D.H. Risk Factors for Neovascular Glaucoma after Proton Beam Therapy of Uveal Melanoma: A Detailed Analysis of Tumor and Dose-Volume Parameters. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Shields, J.A.; Shields, M.B.; Augsburger, J.J. Prevalence and Mechanisms of Secondary Intraocular Pressure Elevation in Eyes with Intraocular Tumors. Ophthalmology 1987, 94, 839–846. [Google Scholar] [CrossRef]
- Ly, L.V.; Bronkhorst, I.H.G.; van Beelen, E.; Vrolijk, J.; Taylor, A.W.; Versluis, M.; Luyten, G.P.M.; Jager, M.J. Inflammatory Cytokines in Eyes with Uveal Melanoma and Relation with Macrophage Infiltration. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5445–5451. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.R.; Tan, D.; Bunce, C.; Gittos, A.; Neale, M.H.; Hungerford, J.L.; Charnock-Jones, S.; Cree, I.A. Vascular Endothelial Growth Factor Is Elevated in Ocular Fluids of Eyes Harbouring Uveal Melanoma: Identification of a Potential Therapeutic Window. Br. J. Ophthalmol. 2002, 86, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Missotten, G.S.O.; Notting, I.C.; Schlingemann, R.O.; Zijlmans, H.J.; Lau, C.; Eilers, P.H.C.; Keunen, J.E.E.; Jager, M.J. Vascular Endothelial Growth Factor a in Eyes with Uveal Melanoma. Arch. Ophthalmol. 2006, 124, 1428–1434. [Google Scholar] [CrossRef] [Green Version]
- Daftari, I.K.; Char, D.H.; Verhey, L.J.; Castro, J.R.; Petti, P.L.; Meecham, W.J.; Kroll, S.; Blakely, E.A. Anterior Segment Sparing to Reduce Charged Particle Radiotherapy Complications in Uveal Melanoma. Int. J. Radiat. Oncol. Biol. Phys. 1997, 39, 997–1010. [Google Scholar] [CrossRef]
- Hirasawa, N.; Tsuji, H.; Ishikawa, H.; Koyama-Ito, H.; Kamada, T.; Mizoe, J.-E.; Ito, Y.; Naganawa, S.; Ohnishi, Y.; Tsujii, H. Risk Factors for Neovascular Glaucoma after Carbon Ion Radiotherapy of Choroidal Melanoma Using Dose–Volume Histogram Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 538–543. [Google Scholar] [CrossRef]
- Char, D.H.; Quivey, J.M.; Castro, J.R.; Kroll, S.; Phillips, T. Helium Ions versus Iodine 125 Brachytherapy in the Management of Uveal Melanoma. A Prospective, Randomized, Dynamically Balanced Trial. Ophthalmology 1993, 100, 1547–1554. [Google Scholar] [CrossRef]
- Foss, A.J.; Whelehan, I.; Hungerford, J.L.; Anderson, D.F.; Errington, R.D.; Kacperek, A.; Restori, M.; Kongerud, J.; Sheen, M. Predictive Factors for the Development of Rubeosis Following Proton Beam Radiotherapy for Uveal Melanoma. Br. J. Ophthalmol. 1997, 81, 748–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayreh, S.S. Neovascular Glaucoma. Prog. Retin. Eye Res. 2007, 26, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Bianciotto, C.; Shields, C.L.; Pirondini, C.; Mashayekhi, A.; Furuta, M.; Shields, J.A. Proliferative Radiation Retinopathy after Plaque Radiotherapy for Uveal Melanoma. Ophthalmology 2010, 117, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Park, U.C.; Park, K.H.; Kim, D.M.; Yu, H.G. Ahmed Glaucoma Valve Implantation for Neovascular Glaucoma after Vitrectomy for Proliferative Diabetic Retinopathy. J. Glaucoma 2011, 20, 433–438. [Google Scholar] [CrossRef]
- Leszczyński, R.; Domański, R.; Formińska-Kapuścik, M.; Mrukwa-Kominek, E.; Rokita-Wala, I. Contact Transscleral Cyclophotocoagulation in the Treatment of Neovascular Glaucoma: A Five-Year Follow-Up. Med. Sci. Monit. 2009, 15, BR84–BR87. [Google Scholar]
- Pokroy, R.; Greenwald, Y.; Pollack, A.; Bukelman, A.; Zalish, M. Visual Loss after Transscleral Diode Laser Cyclophotocoagulation for Primary Open-Angle and Neovascular Glaucoma. Ophthalmic Surg. Lasers Imaging 2008, 39, 22–29. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Oshima, Y.; Sakaguchi, H.; Ikuno, Y.; Miki, A.; Gomi, F.; Otori, Y.; Kamei, M.; Kusaka, S.; Tano, Y. Intravitreal Bevacizumab to Treat Iris Neovascularization and Neovascular Glaucoma Secondary to Ischemic Retinal Diseases in 41 Consecutive Cases. Ophthalmology 2008, 115, 1571–1580.e3. [Google Scholar] [CrossRef]
- Caujolle, J.P.; Maschi, C.; Freton, A.; Pages, G.; Gastaud, P. Treatment of Neovascular Glaucoma after Proton Therapy for Uveal Melanomas with Ranibizumab Injection: Preliminary Results. Ophthalmic Res. 2012, 47, 57–60. [Google Scholar] [CrossRef]
- Grisanti, S.; Biester, S.; Peters, S.; Tatar, O.; Ziemssen, F.; Bartz-Schmidt, K.U. Tuebingen Bevacizumab Study Group Intracameral Bevacizumab for Iris Rubeosis. Am. J. Ophthalmol. 2006, 142, 158–160. [Google Scholar] [CrossRef]
- Mahdjoubi, A.; Najean, M.; Lemaitre, S.; Dureau, S.; Dendale, R.; Levy, C.; Rouic, L.L.-L.; Desjardins, L.; Cassoux, N. Intravitreal Bevacizumab for Neovascular Glaucoma in Uveal Melanoma Treated by Proton Beam Therapy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 411–420. [Google Scholar] [CrossRef]
- Takihara, Y.; Inatani, M.; Kawaji, T.; Fukushima, M.; Iwao, K.; Iwao, M.; Tanihara, H. Combined Intravitreal Bevacizumab and Trabeculectomy with Mitomycin C versus Trabeculectomy with Mitomycin C Alone for Neovascular Glaucoma. J. Glaucoma 2011, 20, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Higashide, T.; Takeda, H.; Ohkubo, S.; Sugiyama, K. Beneficial Effects of Preoperative Intravitreal Bevacizumab on Trabeculectomy Outcomes in Neovascular Glaucoma. Acta Ophthalmol. 2010, 88, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Puyo, L.; Paques, M.; Fink, M.; Sahel, J.-A.; Atlan, M. Choroidal Vasculature Imaging with Laser Doppler Holography. Biomed. Opt. Express 2019, 10, 995–1012. [Google Scholar] [CrossRef] [PubMed]
- Zoberi, J.E.; Garcia-Ramirez, J.; Hedrick, S.; Rodriguez, V.; Bertelsman, C.G.; Mackey, S.; Hu, Y.; Gach, H.M.; Rao, P.K.; Grigsby, P.W. MRI-Based Treatment Planning and Dose Delivery Verification for Intraocular Melanoma Brachytherapy. Brachytherapy 2018, 17, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Fleury, E.; Trnková, P.; Erdal, E.; Hassan, M.; Stoel, B.; Jaarma-Coes, M.; Luyten, G.; Herault, J.; Webb, A.; Beenakker, J.-W.; et al. Three-Dimensional MRI-Based Treatment Planning Approach for Non-Invasive Ocular Proton Therapy. Med. Phys. 2021, 48, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Powell, B.E.; Finger, P.T. Anti-VEGF Therapy Immediately after Plaque Radiation Therapy Prevents or Delays Radiation Maculopathy. Ophthalmol. Retina 2020, 4, 547–550. [Google Scholar] [CrossRef]
Orbital Structure | Dose Threshold (Gy) | Toxicity | Prevention | Treatment |
---|---|---|---|---|
Lacrimal gland | 30–40 | Dry-eye syndrome Lacrimal duct stenosis | Delineation of the lacrimal gland during TPS | Topical lubrication Punctal occlusion |
Eyelashes/Eyelid | 30 | Dermatitis Madarosis Eyelid malposition Trichiasis Wound healing delay | Ballistic optimization | Eyelash depilation Eyelids care |
Cornea | 30–40 | Keratitis, Edema Stromal ulceration | Topical lubrication | Topical lubrication Topical steroids and immunosuppressive drops Bandage contact lens Lateral tarsorrhaphy Corneal graft |
Lens | 0.5–5 | Cataract | Lens-sparing techniques | Cataract surgery |
Macula | 45 | Ischemic maculopathy Macular oedema | Reduced margins during TPS Anti-VEGF | Anti-VEGF injections DEX-implant injections Laser photocoagulation |
Optic nerve | 55 | Optic neuritis Optic atrophy | Reduced margins |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thariat, J.; Martel, A.; Matet, A.; Loria, O.; Kodjikian, L.; Nguyen, A.-M.; Rosier, L.; Herault, J.; Nahon-Estève, S.; Mathis, T. Non-Cancer Effects following Ionizing Irradiation Involving the Eye and Orbit. Cancers 2022, 14, 1194. https://doi.org/10.3390/cancers14051194
Thariat J, Martel A, Matet A, Loria O, Kodjikian L, Nguyen A-M, Rosier L, Herault J, Nahon-Estève S, Mathis T. Non-Cancer Effects following Ionizing Irradiation Involving the Eye and Orbit. Cancers. 2022; 14(5):1194. https://doi.org/10.3390/cancers14051194
Chicago/Turabian StyleThariat, Juliette, Arnaud Martel, Alexandre Matet, Olivier Loria, Laurent Kodjikian, Anh-Minh Nguyen, Laurence Rosier, Joël Herault, Sacha Nahon-Estève, and Thibaud Mathis. 2022. "Non-Cancer Effects following Ionizing Irradiation Involving the Eye and Orbit" Cancers 14, no. 5: 1194. https://doi.org/10.3390/cancers14051194
APA StyleThariat, J., Martel, A., Matet, A., Loria, O., Kodjikian, L., Nguyen, A. -M., Rosier, L., Herault, J., Nahon-Estève, S., & Mathis, T. (2022). Non-Cancer Effects following Ionizing Irradiation Involving the Eye and Orbit. Cancers, 14(5), 1194. https://doi.org/10.3390/cancers14051194