Enhanced CO2 Photoreduction Performance of WO3−x
"> Figure 1
<p>Synthesis diagram of WO<sub>3</sub> and WO<sub>3−x</sub>.</p> "> Figure 2
<p>(<b>a</b>) XRD patterns of WO<sub>3</sub> and WO<sub>3−x</sub>; (<b>b</b>) XPS analysis of W 4f; (<b>c</b>) XPS analysis of O 1s; (<b>d</b>) ESR spectra.</p> "> Figure 3
<p>The structure of the prepared samples: (<b>a</b>) SEM images of WO<sub>3</sub> and (<b>b</b>) WO<sub>3−x</sub>; (<b>c</b>) TEM of WO<sub>3</sub> and (<b>d</b>) WO<sub>3−x</sub>; (<b>e</b>) HRTEM; and (<b>f</b>) Elemental mapping analysis of WO<sub>3−x</sub>.</p> "> Figure 4
<p>The photocatalytic performance of WO<sub>3</sub> and WO<sub>3−x</sub>: (<b>a</b>) the amount of CO generated, (<b>b</b>) the rate of CO production; ESR spectra of WO<sub>3</sub> and WO<sub>3−x</sub> under dark and light conditions: (<b>c</b>) e<sup>−</sup>, (<b>d</b>) h<sup>+</sup>.</p> "> Figure 5
<p>(<b>a</b>) Steady-state fluorescence spectra, (<b>b</b>) transient fluorescence spectra, (<b>c</b>) photocurrent response curves, and (<b>d</b>) EIS Nyquist plots for WO<sub>3</sub> and WO<sub>3−x</sub>.</p> "> Figure 6
<p>(<b>a</b>) UV-Vis-NIR diffuse reflectance spectra, (<b>b</b>) band gaps via Kubelka–Munk (K–M) jump, (<b>c</b>) valence band XPS spectra, and (<b>d</b>) band structures of WO<sub>3</sub> and WO<sub>3−x</sub>.</p> "> Figure 7
<p>In situ FTIR spectra of WO<sub>3−x</sub>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Photocatalysts
2.2. Photocatalytic CO2 Reduction Performance
2.3. Photocatalytic Mechanism
3. Experimental Section
3.1. Chemicals
3.2. Synthesis of Materials
3.2.1. Preparation of WO3·H2O
3.2.2. Preparation of WO3−x
3.2.3. Preparation of WO3
3.3. Characterization
3.4. Electrochemical Measurements
3.5. Photocatalytic Reduction of CO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Vogt, C.; Monai, M.; Kramer, G.J.; Weckhuysen, B.M. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2019, 2, 188–197. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Tasnim, R.; Coo, J.L. Effects of atmospheric CO2 concentration on soil-water retention and induced suction in vegetated soil. Eng. Geol. 2018, 242, 108–120. [Google Scholar] [CrossRef]
- Conte, F.; García-López, E.I.; Marcì, G.; Bianchi, C.L.; Ramis, G.; Rossetti, I. Carbon Nitride-Based Catalysts for High Pressure CO2 Photoreduction. Catalysts 2022, 12, 1628. [Google Scholar] [CrossRef]
- Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C.P. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63, 541–569. [Google Scholar] [CrossRef]
- Ran, J.; Jaroniec, M.; Qiao, S.Z. Cocatalysts in semiconductor—based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649. [Google Scholar] [CrossRef]
- Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, J.; Yang, K.; Zhu, X.; Zhong, K.; Zhang, M.; Ji, H.; He, M.; Li, H.; Xu, H. Synergistic Effect in Plasmonic CuAu Alloys as Co-Catalyst on SnIn4S8 for Boosted Solar-Driven CO2 Reductio. Catalysts 2022, 12, 1588. [Google Scholar] [CrossRef]
- Zhang, Y.; Johannessen, B.; Zhang, P.; Gong, J.; Ran, J.; Qiao, S. Reversed electron transfer in dual single atom catalyst for boosted photoreduction of CO2. Adv. Mater. 2023, 35, 2306923. [Google Scholar] [CrossRef]
- Kessaratikoon, T.; Saengsaen, S.; Del Gobbo, S.; D’Elia, V.; Sooknoi, T. High surface area ZnO-Nanorods catalyze the clean thermal methane oxidation to CO2. Catalysts 2022, 12, 1533. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, Z.; Wang, X.; Li, J.; Li, Y.; Zhang, G. A novel Cu1.5Mn1.5O4 photothermal catalyst with boosted surface lattice oxygen activation for efficiently photothermal mineralization of toluene. Nano Res. 2023, 16, 2133–2141. [Google Scholar] [CrossRef]
- Osman, A.I.; Elgarahy, A.M.; Eltaweil, A.S.; Abd El-Monaem, E.M.; El-Aqapa, H.G.; Park, Y.; Hwang, Y.; Ayati, A.; Farghali, M.; Ihara, I. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environ. Chem. Lett. 2023, 21, 1315–1379. [Google Scholar] [CrossRef]
- Li, B.; Sun, L.; Bian, J.; Sun, N.; Sun, J.; Chen, L.; Li, Z.; Jing, L. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction. Appl. Catal. B 2020, 270, 118849. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Chen, X.; Yu, H.; Wang, H.; Wu, Z.; Zhang, J.; Xiong, T. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl. Catal. B-Environ. 2018, 227, 376–385. [Google Scholar] [CrossRef]
- Yan, J.; Wang, T.; Wu, G.; Dai, W.; Guan, N.; Li, L.; Gong, J. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 2015, 27, 1580–1586. [Google Scholar] [CrossRef]
- Jiao, X.; Zheng, K.; Liang, L.; Li, X.; Sun, Y.; Xie, Y. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 6592–6604. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Xu, X.; Ding, C.; Chen, N.; Ding, H.; Lu, A. Structural disorder controlled oxygen vacancy and photocatalytic activity of spinel-type minerals: A case study of ZnFe2O4. Chem. Geol. 2019, 504, 276–287. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, X.; Yuan, Q.; Liang, J.; Zhou, Y.; Qu, X.; Dong, B. In-situ synthesis of WO3−x/MoO3−x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2. Colloids Surf. A: Physicochem. Colloids Surf. A Physicochem. Eng. Asp. 2021, 621, 126582. [Google Scholar] [CrossRef]
- Yin, P.F.; Ling, T.; Lu, Y.R.; Xu, Z.W.; Qiao, S.Z.; Du, X.W. CdS nanoflake arrays for highly efficient light trapping. Adv. Mater. 2015, 27, 740–745. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.; Ye, H.; Chen, S.; Ju, H.; Liu, D.; Lin, Y.; Ye, W.; Wang, C.; Xu, Q.; et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935. [Google Scholar] [CrossRef]
- Shang, Y.; Cui, Y.; Shi, R.; Yang, P.; Wang, J.; Wang, Y. Regenerated WO2.72 nanowires with superb fast and selective adsorption for cationic dye: Kinetics, isotherm, thermodynamics, mechanism. J. Hazard. Mater. 2019, 379, 120834. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhu, J.; Yu, M.; Huang, X.; Li, Z.; Wang, Y.; Yu, C. Mox W1−xO3·0.33H2O solid solutions with tunable band gaps. J. Phys. Chem. C 2010, 114, 20947–20954. [Google Scholar] [CrossRef]
- Ali, H.; Vandevyvere, T.; Lauwaert, J.; Kansal, S.K.; Saravanamurugan, S.; Thybaut, J.W. Impact of oxygen vacancies in Ni supported mixed oxide catalysts on anisole hydrodeoxygenation. Catal. Commun. 2022, 164, 106436. [Google Scholar] [CrossRef]
- Marchal, C.; Mary, C.; Hammoud, L.; Xi, Q.; Toufaily, J.; Hamieh, T.; Suhadolnik, L.; Fornasiero, P.; Colbeau-Justin, C.; Caps, V.; et al. A parametric study of the crystal phases on Au/TiO2 photocatalysts for CO2 gas-phase reduction in the presence of water. Catalysts 2022, 12, 1623. [Google Scholar] [CrossRef]
- Chen, W.; Chang, L.; Ren, S.B.; He, Z.C.; Huang, G.B.; Liu, X.H. Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. J. Hazard. Mater. 2020, 384, 121308. [Google Scholar] [CrossRef]
- Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Li, J.; Jiang, G.; Zhou, Y.; Lee, S.; Dong, F. Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3. Appl. Catal. B-Environ. 2019, 241, 187–195. [Google Scholar] [CrossRef]
- Huang, J.; Tao, J.; Liu, G.; Lu, L.; Tang, H.; Qiao, G. In situ construction of 1D CdS/2D Nb2CTx MXene Schottky heterojunction for enhanced photocatalytic hydrogen production activity. Appl. Surf. Sci. 2022, 573, 151491. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Huang, H.; Wang, Y.; Tong, N.; Lin, J.; Liu, D.; Wang, X. Oxygen vacancy modulation of two-dimensional γ-Ga2O3 nanosheets as efficient catalysts for photocatalytic hydrogen evolution. Nanoscale 2018, 10, 21509–21517. [Google Scholar] [CrossRef]
- Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P.K. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chin. J. Catal. 2020, 41, 140–153. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Muhmood, T.; Yang, X. Regulating the assembly of precursors of carbon nitrides to improve photocatalytic hydrogen production. Catalysts 2022, 12, 1634. [Google Scholar] [CrossRef]
- Li, Y.; Wei, J.; Sun, Z.; Yang, T.; Liu, Z.; Chen, G.; Zhao, L.; Cheng, Z. Greatly enhanced photocurrent density in bismuth ferrite films by Localized Surface Plasmon Resonance effect. Appl. Surf. Sci. 2022, 583, 152571. [Google Scholar] [CrossRef]
- Yang, X.; Duan, J.; Zhang, X.; Zhang, H.; Liu, X.; Feng, Y.; Zheng, M. Heterojunction architecture of Nb2O5/g-C3N4 for enhancing photocatalytic activity to degrade organic pollutants and deactivate bacteria in water. Chin. Chem. Lett. 2022, 33, 3792–3796. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W.; et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem. Int. Ed. 2018, 130, 8855–8859. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9567–9581. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Li, Z.; Yang, X. Enhanced CO2 Photoreduction Performance of WO3−x. Catalysts 2025, 15, 13. https://doi.org/10.3390/catal15010013
Cheng Y, Li Z, Yang X. Enhanced CO2 Photoreduction Performance of WO3−x. Catalysts. 2025; 15(1):13. https://doi.org/10.3390/catal15010013
Chicago/Turabian StyleCheng, Yelan, Zhaolin Li, and Xiaofei Yang. 2025. "Enhanced CO2 Photoreduction Performance of WO3−x" Catalysts 15, no. 1: 13. https://doi.org/10.3390/catal15010013
APA StyleCheng, Y., Li, Z., & Yang, X. (2025). Enhanced CO2 Photoreduction Performance of WO3−x. Catalysts, 15(1), 13. https://doi.org/10.3390/catal15010013