Magnetically Assembled Electrode Incorporating Self-Powered Tourmaline Composite Particles: Exploiting Waste Energy in Electrochemical Wastewater Treatment
"> Figure 1
<p>Preparation processes of different AEs particles in this study and their material characterization results: (<b>a</b>) SEM image and particle size distribution of Tml. (<b>b</b>) SEM images and particle size distribution of SnO<sub>2</sub>(0T). (<b>c</b>) EDS elemental content distribution of SnO<sub>2</sub>(0T). SEM images and particle size distribution of (<b>d</b>) SnO<sub>2</sub>(4.5%T) and (<b>e</b>) SnO<sub>2</sub>(16%T). (<b>f</b>) Tml polarization curves; (<b>g</b>) XRD images of the three AEs. (<b>h</b>) Schematic diagram of the distribution of different ratios of tourmaline doping.</p> "> Figure 2
<p>Electrochemical characterization of 2D Ti/Sb-SnO<sub>2</sub> and each group of MAE: (<b>a</b>) Double-layer capacitance value (C<sub>dl</sub>). (<b>b</b>) Voltametric charge (Q*) obtained at different potential scan rates and the corresponding q<sub>T</sub>. (<b>c</b>) CV curves (potential range: 0~2.5 V (vs. SCE), scan rate: 0.01 V·s<sup>−1</sup>). (<b>d</b>) Tafel plots of LSV curves. (<b>e</b>,<b>f</b>) Nyquist plots (equilibrium potential: 0 V and 2 V (vs. SCE), frequency range: 0.1~10<sup>5</sup> Hz). (<b>g</b>) Comprehensive comparison radar plots of key electrochemical performance metrics.</p> "> Figure 3
<p>One-factor experiments on the degradation of ARG (250 mL, 200 mg·L<sup>−1</sup>) by four electrodes composed of Ti/Sb-SnO<sub>2</sub> for 90 min under four experimental conditions: (<b>a</b>) ARG removal rate versus time; (<b>b</b>) COD of ARG solution after 90 min of degradation.</p> "> Figure 4
<p>Results of orthogonal test analysis based on ARG removal rate after 30 min of degradation: (<b>a</b>) Distribution of contributions of significant single and interaction factors to experimental results. (<b>b</b>) Significant single factor main effects at each level. (<b>c</b>,<b>d</b>) Space curved surface plot of the effect of different interaction factors on ARG removal rate.</p> "> Figure 5
<p>Results of orthogonal test analysis based on COD removal rate after 90 min of degradation: (<b>a</b>) Distribution of contributions of significant single and interaction factors to experiment results. (<b>b</b>) Significant single factor main effects at each level. (<b>c</b>,<b>d</b>) Space curved surface plot of the effect of different interaction factors on COD removal rate.</p> "> Scheme 1
<p>Structure of the magnetically assembled electrode (MAE) and the novel tourmaline composite auxiliary electrodes (AEs) particles in this study and the schematic diagram of the waste energy conversion of tourmaline in electrolysis.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization Results
2.2. Electrochemical Characterization Results
2.3. ARG Degradation Results
2.4. Orthogonal Tests Results
3. Experiments
3.1. MAE Preparation
3.2. Material Characterization
3.3. Electrochemical Characterization
3.4. Wastewater Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Alkhadra, M.A.; Su, X.; Suss, M.E.; Tian, H.; Guyes, E.N.; Shocron, A.N.; Conforti, K.M.; de Souza, J.P.; Kim, N.; Tedesco, M.; et al. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem. Rev. 2022, 122, 13547–13635. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yuan, H.; Ge, D.; Zhu, N. A novel conditioning approach for amelioration of sludge dewaterability using activated carbon strengthening electrochemical oxidation and realized mechanism. Water Res. 2022, 220, 118704. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Qu, S.; Li, R.; Huo, Z.-Y.; Gao, Y.; Luo, Y. Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): Performance, mechanisms, and perspectives. Sci. Total Environ. 2023, 856, 159092. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, C.; Waite, T.D. Hydroxyl radicals in anodic oxidation systems: Generation, identification and quantification. Water Res. 2022, 217, 118425. [Google Scholar] [CrossRef]
- Shao, D.; Zhang, X.-l.; Lyu, W.; Zhang, Y.; Tan, G.; Xu, H.; Yan, W. Magnetic Assembled Anode Combining PbO2 and Sb-SnO2 Organically as an Effective and Sustainable Electrocatalyst for Wastewater Treatment with Adjustable Attribution and Construction. ACS Appl. Mater. Interfaces 2018, 10, 44385–44395. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Lyu, W.; Cui, J.; Zhang, X.; Zhang, Y.; Tan, G.; Yan, W. Polyaniline nanoparticles magnetically coated Ti/Sb–SnO2 electrode as a flexible and efficient electrocatalyst for boosted electrooxidation of biorefractory wastewater. Chemosphere 2020, 241, 125103. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Shao, D.; Xu, H.; Rao, Y.; Tan, G.; Yan, W. Magnetically assembled electrodes based on Pt, RuO2-IrO2-TiO2 and Sb-SnO2 for electrochemical oxidation of wastewater featured by fluctuant Cl-concentration. J. Hazard. Mater. 2022, 421, 126803. [Google Scholar] [CrossRef]
- Shao, D.; Zhang, Y.; Lyu, W.; Zhang, X.-l.; Tan, G.; Xu, H.; Yan, W. A modular functionalized anode for efficient electrochemical oxidation of wastewater: Inseparable synergy between OER anode and its magnetic auxiliary electrodes. J. Hazard. Mater. 2020, 390, 122174. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Wang, Y.; Li, P.; Guo, R.; Zhang, Y.; Yang, C.; Yang, L.; Wei, Z.; Xu, H.; Yan, W.; et al. Integrating natural tourmaline with energy conversion ability to magnetically assembled electrode: Boosted electrochemical oxidation wastewater treatment performance. J. Environ. Chem. Eng. 2024, 12, 111664. [Google Scholar] [CrossRef]
- Zhang, X.; Shao, D.; Lyu, W.; Xu, H.; Yang, L.; Zhang, Y.; Wang, Z.; Liu, P.; Yan, W.; Tan, G. Design of magnetically assembled electrode (MAE) with Ti/PbO2 and heterogeneous auxiliary electrodes (AEs): The functionality of AEs for efficient electrochemical oxidation. Chem. Eng. J. 2020, 395, 125145. [Google Scholar] [CrossRef]
- Zhang, F.; Shao, D.; Yang, C.; Xu, H.; Yang, J.; Feng, L.; Wang, S.; Li, Y.; Jia, X.; Song, H. New Magnetically Assembled Electrode Consisting of Magnetic Activated Carbon Particles and Ti/Sb-SnO2 for a More Flexible and Cost-Effective Electrochemical Oxidation Wastewater Treatment. Catalysts 2023, 13, 7. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Zhao, G.; Liu, Z.; Cai, Y.; Wang, S.; Shen, C.; Hu, B.; Wang, X. Piezoelectric materials and techniques for environmental pollution remediation. Sci. Total Environ. 2023, 869, 161767. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, T.; Fang, Z.; Zhou, J.; Zheng, Y.; Guo, C.; Zhu, L.; Wang, E.; Hou, X.; Chou, K.-C.; et al. Boosting of water splitting using the chemical energy simultaneously harvested from light, kinetic energy and electrical energy using N doped 4H-SiC nanohole arrays. Nano Energy 2022, 104, 107876. [Google Scholar] [CrossRef]
- Liu, W.; Wang, P.; Ao, Y.; Chen, J.; Gao, X.; Jia, B.; Ma, T. Directing Charge Transfer in a Chemical-Bonded BaTiO3@ReS2 Schottky Heterojunction for Piezoelectric Enhanced Photocatalysis. Adv. Mater. 2022, 34, e2202508. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Christianson, L.; Huang, X.; Christianson, R.; Cooke, R.A.; Bhattarai, R.; Li, S. Efficacy of heated tourmaline in reducing biomass clogging within woodchip bioreactors. Sci. Total Environ. 2021, 755, 142401. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Tang, X.; Zhu, Q.; Han, J.; Wang, C. A review: Application of tourmaline in environmental fields. Chemosphere 2021, 281, 130780. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, T.; Wang, X.; Zhang, L.; Zhao, C.; Wu, W.; Zhu, G.; Jia, Y. Natural tourmaline for pyroelectric dye decomposition under 25–60 °C room-temperature cold-hot fluctuation. Sep. Purif. Technol. 2023, 327, 124971. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Li, K.; Li, T. Dechlorinating performance of Dehalococcoides spp. mixed culture enhanced by tourmaline. Chemosphere 2018, 194, 9–19. [Google Scholar] [CrossRef]
- Zong, L.; Yu, Y.; Wang, J.; Liu, P.; Feng, W.; Dai, X.; Chen, L.; Gunawan, C.; Jimmy Yun, S.L.; Amal, R.; et al. Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication. Biomaterials 2023, 296, 122074. [Google Scholar] [CrossRef]
- An, C.; Wang, T.; Wang, S.; Chen, X.; Han, X.; Wu, S.; Deng, Q.; Zhao, L.; Hu, N. Ultrasonic-assisted preparation of two-dimensional materials for electrocatalysts. Ultrason. Sonochem. 2023, 98, 106503. [Google Scholar] [CrossRef] [PubMed]
- Ismael, M. Photo-Fenton reaction enhanced visible-light activity of p- Photo-Fenton reaction enhanced visible-light activity of p-CuFe2O4/n-g-C3N4 heterojunction composites synthesized by a simple ultrasonic-assisted route for organic pollutants degradation. Mater. Res. Bull. 2022, 151, 111803. [Google Scholar] [CrossRef]
- Yang, X.L.; Yang, X.; Peng, Y.; Li, Z.-F.; Yu, J.; Zhang, Y. Regulating the Built-In Electric Field of BiOBr by a Piezoelectric Mineral Tourmaline and the Enhanced Photocatalytic Property. Ind. Eng. Chem. Res. 2022, 61, 1704–1714. [Google Scholar] [CrossRef]
- Sun, S.; Li, J.; Ding, H.; Zhang, B.; Huang, H.; Xu, Z.; Tu, Y.; Chen, D.; Duan, X. Engineered tourmaline/g-C3N4 composites for photocatalytic Fenton-like oxidation: Synergy of spontaneous interface polarization and surface iron circulations induced by minerals. Chem. Eng. J. 2023, 460, 141718. [Google Scholar] [CrossRef]
- Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N.A.; Li, Y.; Penner, R.M.; Schaak, R.E.; Weiss, P.S. Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano 2018, 12, 9635–9638. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ren, X.; Duan, X.; Sarmah, A.K.; Zhao, X. Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): A review. Sci. Total Environ. 2022, 863, 160818. [Google Scholar] [CrossRef] [PubMed]
- Moyé, L. Statistical Methods for Cardiovascular Researchers. Circul. Res. 2016, 118, 439–453. [Google Scholar] [CrossRef]
- Song, B.; Liang, H.; Sun, R.; Peng, P.; Jiang, Y.; She, D. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int. J. Biol. Macromol. 2020, 144, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kim, S.Y.; Noh, J.H.; Bae, Y.H.; Lee, J.W.; Maeng, S.K. A shift from chemical oxygen demand to total organic carbon for stringent industrial wastewater regulations: Utilization of organic matter characteristics. J. Environ. Manag. 2022, 305, 114412. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Yan, W.; Li, X.; Xu, H. Fe3O4/Sb–SnO2 granules loaded on Ti/Sb–SnO2 electrode shell by magnetic force: Good recyclability and high electro-oxidation performance. ACS Sustain. Chem. Eng. 2015, 3, 1777–1785. [Google Scholar] [CrossRef]
- Shao, D.; Zhao, W.; Ji, S.; Yang, C.; Zhang, J.; Guo, R.; Zhang, B.; Lyu, W.; Feng, J.; Xu, H.; et al. Joule heat assisting electrochemical degradation of polyethylene microplastics melted on anode. Appl. Catal. B Environ. Energy 2024, 357, 124281. [Google Scholar] [CrossRef]
- Thomas, S.; Sreekanth, R.; Sijumon, V.A.; Aravind, U.K.; Aravindakumar, C.T. Oxidative degradation of Acid Red 1 in aqueous medium. Chem. Eng. J. 2014, 244, 473–482. [Google Scholar] [CrossRef]
- Muni, R.N.; Singh, J.; Kumar, V.; Sharma, S.; Sudhakara, P.; Aggarwal, V.; Rajkumar, S. Multiobjective optimization of EDM parameters for rice husk Ash/Cu/Mg-reinforced hybrid Al-0.7Fe-0.6Si-0.375Cr-0.25Zn metal matrix nanocomposites for engineering applications: Fabrication and morphological analysis. J. Nanomater. 2022, 2022, 2188705. [Google Scholar] [CrossRef]
- Florenza, X.; Solano, A.M.S.; Centellas, F.; Martínez-Huitle, C.A.; Brillas, E.; Garcia-Segura, S. Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry. Relationship between decolorization, mineralization and products. Electrochim. Acta 2014, 142, 276–288. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Shao, D.; Wang, Y.; Xu, H.; Song, H. Magnetically Assembled Electrode Incorporating Self-Powered Tourmaline Composite Particles: Exploiting Waste Energy in Electrochemical Wastewater Treatment. Catalysts 2025, 15, 2. https://doi.org/10.3390/catal15010002
Zhang B, Shao D, Wang Y, Xu H, Song H. Magnetically Assembled Electrode Incorporating Self-Powered Tourmaline Composite Particles: Exploiting Waste Energy in Electrochemical Wastewater Treatment. Catalysts. 2025; 15(1):2. https://doi.org/10.3390/catal15010002
Chicago/Turabian StyleZhang, Bo, Dan Shao, Yaru Wang, Hao Xu, and Haojie Song. 2025. "Magnetically Assembled Electrode Incorporating Self-Powered Tourmaline Composite Particles: Exploiting Waste Energy in Electrochemical Wastewater Treatment" Catalysts 15, no. 1: 2. https://doi.org/10.3390/catal15010002
APA StyleZhang, B., Shao, D., Wang, Y., Xu, H., & Song, H. (2025). Magnetically Assembled Electrode Incorporating Self-Powered Tourmaline Composite Particles: Exploiting Waste Energy in Electrochemical Wastewater Treatment. Catalysts, 15(1), 2. https://doi.org/10.3390/catal15010002