Synthesis and Characterization of MgO-Fe₂O₃/γ-Al₂O₃ Nanocomposites: Enhanced Photocatalytic Efficiency and Selective Anticancer Properties
<p>XRD pattern: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, (<b>b</b>) Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, and (<b>c</b>) MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs.</p> "> Figure 2
<p>TEM images, HRTEM images, and SAED analysis: (<b>a</b>–<b>c</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, (<b>d</b>–<b>f</b>) Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, and (<b>g</b>–<b>i</b>) MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs.</p> "> Figure 3
<p>SEM images: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, (<b>b</b>) Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, (<b>c</b>) MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs, and (<b>d</b>) EDX analysis of MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs.</p> "> Figure 4
<p>Elemental mapping of the distribution of MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs: (<b>a</b>) electron, (<b>b</b>) aluminum (Al), (<b>c</b>) iron (Fe), (<b>d</b>) magnesium (Mg), and (<b>e</b>) oxygen (O).</p> "> Figure 5
<p>XPS spectra: (<b>a</b>) XPS survey spectra and high-resolution XPS spectra of (<b>b</b>) Al 1p, (<b>c</b>) Fe 2p, (<b>d</b>) O 1 s, and (<b>e</b>) Mg 2p for <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, and MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs.</p> "> Figure 6
<p>FTIR spectra of the synthesized samples: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, (<b>b</b>) Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, and (<b>c</b>) MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs.</p> "> Figure 7
<p>Photoluminescence spectra of <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, and MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs.</p> "> Figure 8
<p>(<b>a</b>) UV-Vis absorption of the Rh dye solution, (<b>b</b>) plot (C<sub>t</sub>/C<sub>0</sub>) vs. irradiation time (min), (<b>c</b>) kinetics of the photocatalysis of Rh B solutions for the prepared samples, and (<b>d</b>) photocatalysis efficiency (D%) of the Rh B solution using the synthesized catalyst.</p> "> Figure 9
<p>(<b>a</b>) UV-Vis absorption of MB dye solution, (<b>b</b>) plot (C<sub>t</sub>/C<sub>0</sub>) vs. irradiation time (min), (<b>c</b>) kinetics of the photocatalysis of MB solutions for prepared samples, and (<b>d</b>) photocatalysis efficiency (D%) of MB solution using synthesized catalyst.</p> "> Figure 10
<p>The number of recycled Rh B and MB dye photocatalysis agents using the prepared MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs under UV irradiation for 140 min.</p> "> Figure 11
<p>Schematic diagram of the photoreaction mechanism of organic dyes using MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs.</p> "> Figure 12
<p>The percentage of viable cells after exposure to the <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NPs, or MgO-Fe<sub>2</sub>O<sub>3</sub>/<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </semantics></math>-Al<sub>2</sub>O<sub>3</sub> NCs after 24 h: (<b>a</b>) A549 cells and (<b>b</b>) normal IMR90 cells. The symbol (*) indicates a significant difference (<span class="html-italic">p</span> < 0.05) between the treated sample and the control.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Studies
2.2. Morphological Characterization
2.2.1. TEM Analysis
2.2.2. SEM and EDX with Elemental Mapping Analysis
2.3. XPS Analysis
2.4. FTIR Study
2.5. Photoluminescence Analysis
2.6. Photocatalytic Study of NPs and NCs
2.6.1. Stability and Recyclability of NPs and NCs
2.6.2. Photoreaction Mechanism
2.7. Anticancer and Biocompatibility Evaluations
3. Methods and Chemicals
3.1. Chemicals and Cells
3.2. Preparation of MgO-Fe2O3/Al2O3 NCs
3.3. Characterization of NPs and NCs
3.4. Photocatalytic Test of NPs and NCs
3.5. Cell Growth and Preparation of Samples for Cell Treatment
3.6. Cell Viability Assessment
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qamar, S.U.R. Nanocomposites: Potential Therapeutic Agents for the Diagnosis and Treatment of Infectious Diseases and Cancer. Colloid. Interface Sci. Commun. 2021, 43, 100463. [Google Scholar] [CrossRef]
- Rajani, A.; Chauhan, P.; Dave, P. Nanocomposites: A New Tendency of Structure in Nanotechnology and Material Science. J. Nanosci. Technol. 2021, 7, 937–941. [Google Scholar] [CrossRef]
- Tutar, R.; Motealleh, A.; Khademhosseini, A.; Kehr, N.S. Functional Nanomaterials on 2D Surfaces and in 3D Nanocomposite Hydrogels for Biomedical Applications. Adv. Funct. Mater. 2019, 29, 1904344. [Google Scholar] [CrossRef]
- Kim, D.; Shin, K.; Kwon, S.G.; Hyeon, T. Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Adv. Mater. 2018, 30, 1802309. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N. Organic Contaminants in African Aquatic Systems: Current Knowledge, Health Risks, and Future Research Directions. Sci. Total Environ. 2018, 619–620, 1493–1514. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Moustafa, M.M.; Taha, M.M. Hydrothermal Tuning of the Morphology and Particle Size of Hydrozincite Nanoparticles Using Different Counterions to Produce Nanosized ZnO as an Efficient Adsorbent for Textile Dye Removal. RSC Adv. 2016, 6, 42180–42195. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Ahmed, I.S.; Mohamed, T.Y.; Khatab, M. A Controlled, Template-Free, and Hydrothermal Synthesis Route to Sphere-like α-Fe2O3 Nanostructures for Textile Dye Removal. RSC Adv. 2016, 6, 20001–20013. [Google Scholar] [CrossRef]
- López-Gómez, M.; Malmierca, E.; de Górgolas, M.; Casado, E. Cancer in Developing Countries: The next Most Preventable Pandemic. The Global Problem of Cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 117–122. [Google Scholar] [CrossRef]
- Gupta, M.; Dahiya, J.; Marwaha, R.K.; Dureja, H. Therapies in cancer treatment: An overview. Int. J. Pharm. Pharm. Sci. 2015, 7, 1–9. [Google Scholar]
- Abbas, Z.; Rehman, S. An Overview of Cancer Treatment Modalities. Neoplasm 2018, 1, 139–157. [Google Scholar]
- Zhou, Q.; Zhang, L.; Wu, H. Nanomaterials for Cancer Therapies. Nanotechnol. Rev. 2017, 6, 473–496. [Google Scholar] [CrossRef]
- Siddique, S.; Chow, J.C.L. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials 2020, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Andaraarachchi, H.P.; Held, J.T.; Dorn, R.W.; Jeong, Y.J.; Rossini, A.J.; Kortshagen, U.R. Inductively Coupled Nonthermal Plasma Synthesis of Size-Controlled γ-Al2O3 Nanocrystals. Nanomaterials 2023, 13, 1627. [Google Scholar] [CrossRef] [PubMed]
- Lemago, H.H.; Khauli, N.; Hessz, D.; Igricz, T.; Petra, P.; Cserháti, C.; Mónika, B.E.; Parditka, B.; Erdélyi, Z.; Szilágyi, I.M. Fabrication of ZnO–Al2O3 Inverse Opals with Atomic Layer Deposited Amorphous-Al2O3 for Enhanced Photocatalysis. Mater. Sci. Semicond Process 2024, 183, 108733. [Google Scholar] [CrossRef]
- Delaportas, D.; Svarnas, P.; Alexandrou, I.; Siokou, A.; Black, K.J.; Bradley, J.W. γ-Al2O3 Nanoparticle Production by Arc-Discharge in Water: In Situ Discharge Characterization and Nanoparticle Investigation. J. Phys. D Appl. Phys. 2009, 42, 245204. [Google Scholar] [CrossRef]
- Smith, S.J.; Amin, S.A.; Woodfield, B.F.; Boerio-goates, J.; Campbell, B.J. Phase Progression of γ-Al2O3 Nanoparticles Synthesized in a Solvent-Deficient Environment. Inorg. Chem. 2013, 52, 4411–4423. [Google Scholar] [CrossRef]
- Gholizadeh, Z.; Aliannezhadi, M.; Ghominejad, M.; Tehrani, F.S. High Specific Surface Area γ-Al2O3 Nanoparticles Synthesized by Facile and Low-Cost Co-Precipitation Method. Sci. Rep. 2023, 13, 6131. [Google Scholar] [CrossRef]
- Abbas, S.F.; Hadier, A.; Al-Musawi, S.; Taha, B. Synthesis of High-Performance Antibacterial Magnesium Oxide Nanostructures through Laser Ablation. J. Appl. Sci. Nanotechnol. 2024, 4, 53–65. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Ahmed, I.S.; Hendy, H.S. A Facile One-Pot Hydrothermal Synthesis of Hematite (α-Fe2O3) Nanostructures and Cephalexin Antibiotic Sorptive Removal from Polluted Aqueous Media. J. Mol. Liq. 2018, 271, 844–856. [Google Scholar] [CrossRef]
- Mohammadi-Aghdam, S.; Bahraini, F.; Ghoreishi, S.M. In-Vitro Anticancer on Acute Lymphoblastic Leukemia NALM-6 Cell Line, Antibacterial and Catalytic Performance of Eco-Friendly Synthesized ZnO and Ag-Doped ZnO Nanoparticles Using Hedera Colchica Extract. Biomass Convers. Biorefin. 2023, 14, 20037–20052. [Google Scholar] [CrossRef]
- Kumari, H.; Sonia; Suman; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; et al. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water Air Soil. Pollut. 2023, 234, 349. [Google Scholar] [CrossRef] [PubMed]
- Shelke, P.; Rajbhoj, A.S. Electrochemical Synthesis and Their Photocatalytic Application of Mesoporous γ-Al2O3 Nanoparticles. Der Chem. Sin. 2017, 8, 482–486. [Google Scholar]
- Farani, M.R.; Farsadrooh, M.; Zare, I.; Gholami, A.; Akhavan, O. Green Synthesis of Magnesium Oxide Nanoparticles and Nanocomposites for Photocatalytic Antimicrobial, Antibiofilm and Antifungal Applications. Catalysts 2023, 13, 642. [Google Scholar] [CrossRef]
- Deepthi, S.; Vidya, Y.S.; Manjunatha, H.C.S.; Munirathnam, R.; Sridhar, K.N.; Seenappa, L.; Manjunatha, S.G.; Ganesh, T. X-Ray/Gamma Absorption and Anticancer Properties of Fe2O3 nanoparticles. Phys. Open 2023, 17, 100188. [Google Scholar] [CrossRef]
- Devi, S.; Tripta; Suman; Ankita; Kumar, A.; Singh, S.; Kumar, V.; Kumar, S.; Kumar, R.; Kumar, P. Enhanced Photocatalytic Activity of α-Fe2O3/MgO Nanocomposites for Environmental Sustainability. Ceram. Int. 2024, 13, 24608–24617. [Google Scholar] [CrossRef]
- Farooq, M.; Ramli, A.; Subbarao, D. Physiochemical Properties of γ-Al2O3–MgO and γ-Al2O3–CeO2 Composite Oxides. J. Chem. Eng. Data 2012, 57, 26–32. [Google Scholar] [CrossRef]
- Saranya, A.; Alomayri, T.; Ramar, K.; Priyadharsan, A.; Raj, V.; Murugan, K.F.; Alsawalh, M.; Maheshwaran, P. Facile One Pot Microwave-Assisted Green Synthesis of Fe2O3/Ag Nanocomposites by Phytoreduction: Potential Application as Sunlight-Driven Photocatalyst, Antibacterial and Anticancer Agent. J. Photochem. Photobiol. B 2020, 207, 111885. [Google Scholar]
- Tju, H.; Taufik, A.; Saleh, R. Enhanced UV Photocatalytic Performance of Magnetic Fe3O4/CuO/ZnO/NGP Nanocomposites. J. Phys. Conf. Ser. 2016, 710, 012005. [Google Scholar] [CrossRef]
- Alnehia, A.; Hadi, M.; Alnahari, H.; Al-Sharabi, A. Optical, Structural and Antibacterial Properties of Phase Heterostructured Fe2O3–CuO–CuFe2O4 Nanocomposite. Sci. Rep. 2024, 14, 14392. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, S.; Xiao, X.; Zhou, J.; Ren, F.; Sun, L.; Jiang, C. Controllable Synthesis, Magnetic Properties, and Enhanced Photocatalytic Activity of Spindlelike Mesoporous α-Fe2O3/ZnO Core-Shell Heterostructures. ACS Appl. Mater. Interfaces 2012, 4, 3602–3609. [Google Scholar] [CrossRef]
- Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S. Ultrasonic-Assisted CdO–MgO Nanocomposite for Multifunctional Applications. Mater. Technol. 2019, 34, 403–414. [Google Scholar] [CrossRef]
- Syed, A.; Yadav, L.S.R.; Bahkali, A.H.; Elgorban, A.M.; Hakeem, D.A.; Ganganagappa, N. Effect of CeO2-ZnO Nanocomposite for Photocatalytic and Antibacterial Activities. Crystals 2020, 10, 817. [Google Scholar] [CrossRef]
- Zare-Bidaki, M.; Ghasempour, A.; Mohammadparast-Tabas, P.; Ghoreishi, S.M.; Alamzadeh, E.; Javanshir, R.; Le, B.N.; Barakchi, M.; Fattahi, M.; Mortazavi-Derazkola, S. Enhanced in Vivo Wound Healing Efficacy and Excellent Antibacterial, Antifungal, Antioxidant and Anticancer Activities via AgNPs@PCS. Arab. J. Chem. 2023, 16, 105194. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Ali, A.A.; Amin, A.S. A Facile Pechini Sol-Gel Synthesis of TiO2/Zn2TiO2/ZnO/C Nanocomposite: An Efficient Catalyst for the Photocatalytic Degradation of Orange G Textile Dye. RSC Adv. 2017, 7, 30411–30421. [Google Scholar] [CrossRef]
- Talaei, A.J.; Zarei, N.; Hasan, A.; Bloukh, S.H.; Edis, Z.; Gamasaee, N.A.; Heidarzadeh, M.; Babadaei, M.M.N.; Shahpasand, K.; Sharifi, M.; et al. Fabrication of Inorganic Alumina Particles at Nanoscale by a Pulsed Laser Ablation Technique in Liquid and Exploring Their Protein Binding, Anticancer and Antipathogenic Activities. Arab. J. Chem. 2021, 14, 102923. [Google Scholar] [CrossRef]
- Arunarajeswari, P.; Mathavan, T.; Jeyaseelan, S.; Divya, A.; Benial, A.M.F. Anionic Acid Functionalized Mesoporous γ- Al2O3 Nanorods: Preparation, Physicochemical and Biological Characterizations. Chem. Data Collect. 2021, 37, 100819. [Google Scholar] [CrossRef]
- Barzegarparay, F.; Najafzadehvarzi, H.; Pourbagher, R.; Parsian, H.; Ghoreishi, S.M.; Mortazavi-Derazkola, S. Green Synthesis of Novel Selenium Nanoparticles Using Crataegus Monogyna Extract (SeNPs@CM) and Investigation of Its Toxicity, Antioxidant Capacity, and Anticancer Activity against MCF-7 as a Breast Cancer Cell Line. Biomass Convers. Biorefin 2023, 14, 25369–25378. [Google Scholar] [CrossRef]
- Mohandoss, N.; Renganathan, S.; Subramaniyan, V.; Nagarajan, P.; Elavarasan, V.; Subramaniyan, P.; Vijayakumar, S. Investigation of Biofabricated Iron Oxide Nanoparticles for Antimicrobial and Anticancer Efficiencies. Appl. Sci. 2022, 12, 12986. [Google Scholar] [CrossRef]
- Kiani, Z.; Mirjalili, S.; Heydaryan, K.; Mohammadparast, P.; Aramjoo, H.; Bahraini, F.; Yousefinia, A.; Torabi, M.; Ghoreishi, S.M.; Fattahi, M.; et al. Harmonizing Nature and Nanotechnology: Phytoextract-Mediated Synthesis of Ag-Doped ZnO Nanoparticles Using Lavandula Stoechas Extract for Environmental and Biomedical Applications. J. Drug Deliv. Sci. Technol. 2024, 96, 105708. [Google Scholar] [CrossRef]
- Karimi, M.; Sadeghi, E.; Zahedifar, M.; Nejati, M.; Mirzaei, H.; Hamblin, M.R. In Vitro Study: Green Synthesis and Evaluation of MgO/C-Dots/DOX Phosphorescent Nanocomposites for Photodynamic/Photocatalytic Therapy of Tumors. Front. Bioeng. Biotechnol. 2023, 11, 1286955. [Google Scholar] [CrossRef]
- Marsooli, M.A.; Fasihi-Ramandi, M.; Adib, K.; Pourmasoud, S.; Ahmadi, F.; Ganjali, M.R.; Nasab, A.S.; Nasrabadi, M.R.; Plonska-Brzezinska, M.E. Preparation and Characterization of Magnetic Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 Nanoparticles and Investigation of Their Photocatalytic and Anticancer Properties on PANC1 Cells. Materials 2019, 12, 3274. [Google Scholar] [CrossRef] [PubMed]
- Alhussain, H.; Ferjani, H.; Oyewo, O.A.; Makgato, S.; Onwudiwe, D.C. Photocatalytic Degradation of Methyl Orange Using CuO/Al2O3 Nanocomposite Obtained by Microwave-Assisted Thermal Decomposition Route. Inorg. Chem. Commun. 2024, 162. [Google Scholar] [CrossRef]
- Moradnia, F.; Ramazani, A.; Fardood, S.T.; Gouranlou, F. A Novel Green Synthesis and Characterization of Tetragonal-Spinel MgMn2O4 Nanoparticles by Tragacanth Gel and Studies of Its Photocatalytic Activity for Degradation of Reactive Blue 21 Dye under Visible Light. Mater. Res. Express 2019, 6, 75057. [Google Scholar] [CrossRef]
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G.A. Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect. Catalysts 2020, 10, 858. [Google Scholar] [CrossRef]
- Farahmandjou, M.; Khodadadi, A.; Yaghoubi, M. Synthesis and Characterization of Fe-Al2O3 Nanoparticles Prepared by Coprecipitation Method. Iran. J. Chem. Chem. Eng. 2021, 40, 725–730. [Google Scholar]
- Zhu, H.; Wang, W.; Ye, D.; Yang, T.; Li, D.; Yang, M.; Yuan, B.; Wang, Y. Effect of Doping Content of MgO on Solar Absorptivity to IR Emissivity Ratio of Al2O3 Coatings. Coatings 2022, 12, 1891. [Google Scholar] [CrossRef]
- Henpraserttae, S.; Charojrochkul, S.; Klysubun, W.; Lawtrakul, L.; Toochinda, P. Reduced Temperature Ammonia Decomposition Using Ni/Zr-Doped Al2O3 Catalyst. Catal. Lett. 2018, 148, 1775–1783. [Google Scholar] [CrossRef]
- Gunawan, G.; Arifin, A.; Yani, I.; Indrajaya, M. Characterization of Porous Hydroxyapatite-Alumina Composite Scaffold Produced via Powder Compaction Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 620, 012107. [Google Scholar] [CrossRef]
- Oprea, C.; Ionescu, V. TEM and XRD Investigation of Fe2O3-Al2O3 System. Ovidus Univ. Ann. Chem. 2009, 20, 222–226. [Google Scholar]
- Alamouti, A.F.; Nadafan, M.; Dehghani, Z.; Ara, M.H.M.; Noghreiyan, A.V. Structural and Optical Coefficients Investigation of γ-Al2O3 Nanoparticles Using Kramers-Kronig Relations and Z–Scan Technique. J. Asian Ceram. Soc. 2021, 9, 366–373. [Google Scholar] [CrossRef]
- Cheng, Y.; Chu, C.; Zhou, P. Effects of Corundum-Structured Seeds on the Low-Temperature Growth and Hardness of the Alumina-Based Films. Mater. Res. Express 2020, 7, 076401. [Google Scholar] [CrossRef]
- Rajyashree, L.; Manoharan, C.; Loganathan, A.; Venkateshwarlu, M. Electrochemical and Sensing Properties of α-Fe2O3 Nanoparticles Synthesized Using Hydrothermal Method at Low Reaction Temperature. J. Mater. Sci. Mater. Electron. 2023, 34, 462. [Google Scholar] [CrossRef]
- Ammar, S.H.; Khadim, H.J.; Al-Farraji, A. Synthesis of Ni@γ-Al2O3@PID\SiW Recyclable Nanocatalyst and Its Catalytic Reduction and Antibacterial Activities. Nanotechnol. Environ. Eng. 2020, 5, 16. [Google Scholar] [CrossRef]
- Khodadadi, A.; Talebtash, M.R. Investigation and Synthesis of Fe Doped Al2O3 Nanoparticles by Co-Precipitation and Sol Gel Methods. Asian J. Nanosci. Mater. 2022, 5, 36–47. [Google Scholar] [CrossRef]
- Yan, B.; Wang, B.; Wang, L.; Jiang, T. Ce-Doped Mesoporous Alumina Supported Fe-Based Catalyst with High Activity for Oxidative Dehydrogenation of 1-Butene Using CO2 as Soft Oxidant. J. Porous Mater. 2019, 26, 1269–1277. [Google Scholar] [CrossRef]
- Khodadadi, A.; Farahmandjou, M.; Yaghoubi, M. Investigation on Synthesis and Characterization of Fe-Doped Al2O3 Nanocrystals by New Sol–Gel Precursors. Mater. Res. Express 2018, 6, 025029. [Google Scholar] [CrossRef]
- Sathyaseelan, B.; Baskaran, I.; Sivakumar, K. Phase Transition Behavior of Nanocrystalline Al2O3 Powders. Soft. Nanosci. Lett. 2013, 3, 69–74. [Google Scholar] [CrossRef]
- Qin, D.; Xie, D.; Zheng, H.; Li, Z.; Tang, J.; Wei, Z. In-Situ FTIR Study of CO2 Adsorption and Methanation Mechanism Over Bimetallic Catalyst at Low Temperature. Catal. Lett. 2021, 151, 2894–2905. [Google Scholar] [CrossRef]
- Gakis, G.P.; Vahlas, C.; Vergnes, H.; Dourdain, S.; Tison, Y.; Martinez, H.; Bour, J.; Ruch, D.; Boudouvis, A.G.; Caussat, B.; et al. Investigation of the Initial Deposition Steps and the Interfacial Layer of Atomic Layer Deposited (ALD) Al2O3 on Si. Appl. Surf. Sci. 2019, 492, 245–254. [Google Scholar] [CrossRef]
- Yadav, P.; Manori, S.; Chamoli, P.; Raina, K.K.; Shukla, R.K. Microwave Assisted Green Synthesis of γ-Fe2O3 Nanoparticles and Their Application for Photocatalysis of Ternary Dye Mixture. J. Mater. Sci. Mater. Electron. 2023, 34, 1–17. [Google Scholar] [CrossRef]
- Kim, I.H.; Park, C.H.; Woo, T.G.; Jeong, J.H.; Jeon, C.S.; Kim, Y.D. Comparative Studies of Mesoporous Fe2O3/Al2O3 and Fe2O3/SiO2 Fabricated by Temperature-Regulated Chemical Vapour Deposition as Catalysts for Acetaldehyde Oxidation. Catal. Lett. 2018, 148, 454–464. [Google Scholar] [CrossRef]
- Lemine, O.M.; Madkhali, N.; Alshammari, M.; Algessair, S.; Gismelseed, A.; Mir, L.E.; Hjiri, M.; Yousif, A.A.; El-boubbou, K. Maghemite (Γ- Fe2O3) and Γ- Fe2O3-TiO2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency. Materials 2021, 14, 5691. [Google Scholar] [CrossRef] [PubMed]
- Alraddadi, S. Electronic Structure and Magnetic Properties of (γ- Fe2O3/MgO)N Multilayers. Appl. Phys. A Mater. Sci. Process 2021, 127, 53. [Google Scholar] [CrossRef]
- Shirai, K.; Tsukada, C.; Kutluk, C.; Namatame, H.; Taniguchi, M.; Yagi, S. (CH3)2S Adsorption Behavior on Pd/Mg Thin Film Surface Studied by NEXAFS. e-J. Surf. Sci. Nanotechnol. 2012, 10, 194–197. [Google Scholar] [CrossRef]
- Mandal, B.; Panda, J.; Paul, P.K.; Sarkar, R.; Tudu, B. MnFe2O4 Decorated Reduced Graphene Oxide Heterostructures: Nanophotocatalyst for Methylene Blue Dye Degradation. Vacuum 2020, 173, 109150. [Google Scholar] [CrossRef]
- Atrak, K.; Ramazani, A.; Taghavi Fardood, S. Green Synthesis of Amorphous and Gamma Aluminum Oxide Nanoparticles by Tragacanth Gel and Comparison of Their Photocatalytic Activity for the Degradation of Organic Dyes. J. Mater. Sci. Mater. Electron. 2018, 29, 8347–8353. [Google Scholar] [CrossRef]
- Farahmandjou, M.; Khodadadi, A.; Yaghoubi, M. Low Concentration Iron-Doped Alumina (Fe/Al2O3) Nanoparticles Using Co-Precipitation Method. J. Supercond. Nov. Magn. 2020, 33, 3425–3432. [Google Scholar] [CrossRef]
- Wong, C.W.; Chan, Y.S.; Jeevanandam, J.; Pal, K.; Bechelany, M.; Abd Elkodous, M.; El-Sayyad, G.S. Response Surface Methodology Optimization of Mono-Dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol–Gel Method for Outstanding Antimicrobial and Antibiofilm Activities. J. Clust. Sci. 2020, 31, 367–389. [Google Scholar] [CrossRef]
- Rani, G.; Sahare, P.D. Effect of Temperature on Structural and Optical Properties of Boehmite Nanostructure. Int. J. Appl. Ceram. Technol. 2015, 12, 124–132. [Google Scholar] [CrossRef]
- Djebaili, K.; Mekhalif, Z.; Boumaza, A.; Djelloul, A. XPS, FTIR, EDX, and XRD Analysis of Al2O3 Scales Grown on PM2000 Alloy. Spectroscopy 2015, 2015, 868109. [Google Scholar]
- Gayathri, R.; Raja, G.; Rajeswaran, P. High Stable with Efficient Dye-Sensitized Solar Cell-Based Al2O3/Graphene Hybrid Photoanode Fabricated by Simple Household Microwave Irradiation Technique. J. Mater. Sci. Mater. Electron. 2020, 31, 9742–9752. [Google Scholar] [CrossRef]
- Wang, S.F.; Zhuang, C.F.; Yuan, Y.G.; Xiang, X.; Sun, G.Z.; Ding, Q.P.; Li, Z.J.; Zu, X.T. Synthesis and Photoluminescence of γ- Al2O3 and C-Doped γ- Al2O3 Powders. Trans. Indian. Ceram. Soc. 2014, 73, 37–42. [Google Scholar] [CrossRef]
- Rastorguev, A.; Baronskiy, M.; Zhuzhgov, A.; Kostyukov, A.; Krivoruchko, O.; Snytnikov, V. Local Structure of Low-Temperature γ-Al2O3 Phases as Determined by the Luminescence of Cr3+ and Fe3+. RSC Adv. 2014, 5, 5686–5694. [Google Scholar] [CrossRef]
- Kaur, P.; Kaur, A.; Singh, S.; Thakur, S.; Singh, L. Comprehensive Analysis of Crystal Structure, Optical and Luminescent Behavior of Fe Doped MgO Nanophosphors. Optik 2020, 219, 164742. [Google Scholar] [CrossRef]
- Revathi, V.; Karthik, K. Microwave Assisted CdO–ZnO–MgO Nanocomposite and Its Photocatalytic and Antibacterial Studies. J. Mater. Sci. Mater. Electron. 2018, 29, 18519–18530. [Google Scholar] [CrossRef]
- Munawar, T.; Mukhtar, F.; Nadeem, M.S.; Riaz, M.; Naveed ur Rahman, M.; Mahmood, K.; Hasan, M.; Arshad, M.I.; Hussain, F.; Hussain, A.; et al. Novel Photocatalyst and Antibacterial Agent; Direct Dual Z-Scheme ZnO–CeO2-Yb2O3 Heterostructured Nanocomposite. Solid. State Sci. 2020, 109, 106446. [Google Scholar] [CrossRef]
- Munawar, T.; Mukhtar, F.; Yasmeen, S.; Naveed-Ur-Rehman, M.; Muhammad, R.; Nadeem, S.; Riaz, M.; Mansoor, M.; Iqbal, F. Sunlight-Induced Photocatalytic Degradation of Various Dyes and Bacterial Inactivation Using CuO-MgO-ZnO Nanocomposite. Environ. Sci. Pollut. Res. 2021, 28, 42243–42260. [Google Scholar] [CrossRef]
- Lei, Y.; Huo, J.; Liao, H. Microstructure and Photocatalytic Properties of Polyimide/Heterostructured NiO-Fe2O3-ZnO Nanocomposite Films via an Ion-Exchange Technique. RSC Adv. 2017, 7, 40621–40631. [Google Scholar] [CrossRef]
- Munawar, T.; Mukhtar, F.; Nadeem, M.S.; Mahmood, K.; Hasan, M.; Hussain, A.; Ali, A.; Arshad, M.I.; Iqbal, F. Novel Direct Dual-Z-Scheme ZnO-Er2O3-Nd2O3@reduced Graphene Oxide Heterostructured Nanocomposite: Synthesis, Characterization and Superior Antibacterial and Photocatalytic Activity. Mater. Chem. Phys. 2020, 253, 123249. [Google Scholar] [CrossRef]
- Kanwal, A.; Sajjad, S.; Leghari, S.A.K.; Yousaf, Z. Cascade Electron Transfer in Ternary CuO/α-Fe2O3/γ-Al2O3 Nanocomposite as an Effective Visible Photocatalyst. J. Phys. Chem. Solids 2021, 151, 109899. [Google Scholar] [CrossRef]
- Yang, M.-Q.; Zhang, N.; Xu, Y.-J. Synthesis of Fullerene–, Carbon Nanotube–, and Graphene–TiO2 Nanocomposite Photocatalysts for Selective Oxidation: A Comparative Study. ACS Appl. Mater. Interfaces 2013, 5, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.P.; Bilehal, D.C.; Tadesse, A.; Kumar, D. Photocatalytic Degradation of Organic Dyes: Pd-γ-Al2O3 and PdO-γ-Al2O3 as Potential Photocatalysts. RSC Adv. 2021, 11, 6396–6406. [Google Scholar] [CrossRef] [PubMed]
- Shirzadi-Ahodashti, M.; Mizwari, Z.M.; Hashemi, Z.; Rajabalipour, S.; Ghoreishi, S.M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M.A. Discovery of High Antibacterial and Catalytic Activities of Biosynthesized Silver Nanoparticles Using C. Fruticosus (CF-AgNPs) against Multi-Drug Resistant Clinical Strains and Hazardous Pollutants. Environ. Technol. Innov. 2021, 23, 101607. [Google Scholar] [CrossRef]
- Munawar, T.; Mukhtar, F.; Nadeem, M.S.; Mahmood, K.; Hussain, A.; Ali, A.; Arshad, M.I.; Ajaz un Nabi, M.; Iqbal, F. Structural, Optical, Electrical, and Morphological Studies of RGO Anchored Direct Dual-Z-Scheme ZnO-Sm2O3–Y2O3 Heterostructured Nanocomposite: An Efficient Photocatalyst under Sunlight. Solid. State Sci. 2020, 106, 106307. [Google Scholar] [CrossRef]
- Murthy, S.; Effiong, P.; Fei, C.C. Metal Oxide Nanoparticles in Biomedical Applications. In Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 233–251. [Google Scholar] [CrossRef]
- Alshameri, A.W.; Owais, M. Antibacterial and Cytotoxic Potency of the Plant-Mediated Synthesis of Metallic Nanoparticles Ag NPs and ZnO NPs: A Review. OpenNano 2022, 8, 100077. [Google Scholar] [CrossRef]
- Franco, D.; Calabrese, G.; Guglielmino, S.P.P.; Conoci, S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms 2022, 10, 1778. [Google Scholar] [CrossRef]
- Varusai, M.M.; Jafar, A.A. Synthesis and Zn Doping’s Impact on CeO2 Nanoparticles for Improved Photocatalytic Evaluation, Antibacterial and Anticancer Analyses. Int. J. Zool. Investig. 2022, 08, 52–56. [Google Scholar] [CrossRef]
- Alhadlaq, H.A.; Akhtar, M.J.; Ahamed, M. Different Cytotoxic and Apoptotic Responses of MCF-7 and HT1080 Cells to MnO2 Nanoparticles Are Based on Similar Mode of Action. Toxicology 2019, 411, 71–80. [Google Scholar] [CrossRef]
- Alaizeri, Z.M.; Alhadlaq, H.A.; Javed Akhtar, M.; Aldawood, S. Zn-Modified In2O3 Nanoparticles: Facile Synthesis, Characterization, and Selective Cytotoxicity against Human Cancer Cells. J. King Saud. Univ. Sci. 2023, 36, 103015. [Google Scholar] [CrossRef]
- Alaizeri, Z.M.; Alhadlaq, H.A.; Aldawood, S.; Abduh, N.A.Y. Green Synthesis of ZnO-TiO2/RGO Nanocomposites Using Senna Surattensis Extract: A Novel Approach for Enhanced Anticancer Efficacy and Biocompatibility. RSC Adv. 2024, 14, 16685–16695. [Google Scholar] [CrossRef]
- Naghizadeh, A.; Mizwari, Z.M.; Ghoreishi, S.M.; Lashgari, S.; Mortazavi-Derazkola, S.; Rezaie, B. Biogenic and Eco-Benign Synthesis of Silver Nanoparticles Using Jujube Core Extract and Its Performance in Catalytic and Pharmaceutical Applications: Removal of Industrial Contaminants and in-Vitro Antibacterial and Anticancer Activities. Environ. Technol. Innov. 2021, 23, 101560. [Google Scholar] [CrossRef]
Catalyst Used | Rh B Dye | MB Dye | ||||
---|---|---|---|---|---|---|
K (min−1) | R2 | D (%) | k (min−1) | R2 | D (%) | |
-Al2O3 NPs | 0.0618 | 0.9883 | 56.3 | 0.00598 | 0.9891 | 57.2 |
Fe2O3/-Al2O3 NPs | 0.00798 | 0.9957 | 69.2 | 0.00876 | 0.9906 | 71.7 |
MgO-Fe2O3/-Al2O3 NCs | 0.01193 | 0.9894 | 87.5 | 0.01574 | 0.9891 | 90.4 |
Catalyst Used | D (%) | Time (min) | Dyes | Ref. |
---|---|---|---|---|
MgO-Fe2O3/-Al2O3 NCs | 88.5 | 140 | Rh B | This study |
MgO-Fe2O3/-Al2O3 NCs | 90.4 | 140 | MB | This study |
CdO/ZnO/MgO NCs | 87.5 | 120 | MB | [75] |
ZnO/CeO2/Yb2O NCs | 78.0 | 40 | CR | [76] |
CuO/MgO/ZnO NCs | 88.5 | 100 | MB | [77] |
75.9 | 100 | Rh B | ||
NiO/Fe2O3/ZnO | 81.4 | 250 | MO | [78] |
ZnO/Er2O3/Nd2O3/RGO NCs | 99.2 | 60 | MB | [79] |
CuO/α-Fe2O3/γ-Al2O3 NCs | 98.0 | 240 | MO | [80] |
Prepared Samples | IC50 (µg/mL ±SD) |
---|---|
-Al2O3 NPs | 16.54 ± 0.8 |
Fe2O3/-Al2O3 NPs | 14.75 ± 0.4 |
MgO-Fe2O3/-Al2O3 NCs | 11.40 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaizeri, Z.M.; Alhadlaq, H.A.; Aldawood, S.; Ahamed, M. Synthesis and Characterization of MgO-Fe₂O₃/γ-Al₂O₃ Nanocomposites: Enhanced Photocatalytic Efficiency and Selective Anticancer Properties. Catalysts 2024, 14, 923. https://doi.org/10.3390/catal14120923
Alaizeri ZM, Alhadlaq HA, Aldawood S, Ahamed M. Synthesis and Characterization of MgO-Fe₂O₃/γ-Al₂O₃ Nanocomposites: Enhanced Photocatalytic Efficiency and Selective Anticancer Properties. Catalysts. 2024; 14(12):923. https://doi.org/10.3390/catal14120923
Chicago/Turabian StyleAlaizeri, ZabnAllah M., Hisham A. Alhadlaq, Saad Aldawood, and Maqusood Ahamed. 2024. "Synthesis and Characterization of MgO-Fe₂O₃/γ-Al₂O₃ Nanocomposites: Enhanced Photocatalytic Efficiency and Selective Anticancer Properties" Catalysts 14, no. 12: 923. https://doi.org/10.3390/catal14120923
APA StyleAlaizeri, Z. M., Alhadlaq, H. A., Aldawood, S., & Ahamed, M. (2024). Synthesis and Characterization of MgO-Fe₂O₃/γ-Al₂O₃ Nanocomposites: Enhanced Photocatalytic Efficiency and Selective Anticancer Properties. Catalysts, 14(12), 923. https://doi.org/10.3390/catal14120923