3D-Printed Reactor for Coupling Photoelectrochemical (Sea)Water Splitting with Solid-State H2 Storage
"> Figure 1
<p>Linear sweep voltammetry (LSV, scan rate: 10 mV·s<sup>−1</sup>) experiments with Fe<sub>2</sub>O<sub>3</sub> photoanodes, conducted in 1M NaOH under the illumination of a solar simulator: (<b>a</b>) Power density of simulated solar light for each photoelectrode. Electrodes are highlighted with bold lines and labels. The power density was measured at three points per electrode, and, then, the average value was taken for further analysis. (<b>b</b>) The photocurrent for individual Fe2O3 electrodes and all together connected in parallel (bold line). Measurements were collected under constant and modulated illumination. Reference electrode (RE): Hg/HgO; Counter electrode (CE): Ni-helix. (<b>c</b>) Photocurrent density normalized by light power density. (<b>d</b>) Applied bias photon-to-current efficiency (ABPE) derived from data in (<b>b</b>).</p> "> Figure 2
<p>Photo-assisted charging/discharging (C/D) experiments of (<b>a</b>,<b>c</b>) LaNi<sub>4.7</sub>Al<sub>0.3</sub> and (<b>b</b>,<b>d</b>) LaNi<sub>4.3</sub>Co<sub>0.4</sub>Al<sub>0.3</sub> cathodes. The absolute values of charging/discharging currents and potential changes upon illumination are given in red.</p> "> Figure 3
<p>Specific discharge capacities for LaNi<sub>5</sub>-based cathodes derived from C/D measurements. The discharge current densities are given in red.</p> "> Figure 4
<p>Experimental (dot), calculated (red line), and differential (black line) profiles from Rietveld refinement of electrochemically charged LaNi<sub>4.7</sub>Al<sub>0.3</sub> (<b>a</b>) and LaNi<sub>4.3</sub>Co<sub>0.4</sub>Al<sub>0.3</sub> (<b>b</b>) samples. Bragg peaks indicated with * appeared after C/D experiment (see <a href="#app1-catalysts-14-00941" class="html-app">Figure S5</a>) in both samples but could not be indexed with any well-known secondary phase.</p> "> Figure 5
<p>LSV (scan rate: 20 mV·s<sup>−1</sup>) experiments with WO<sub>3</sub> photoanodes, conducted in acidified synthetic seawater (pH = 1.55) under the illumination of the solar simulator: (<b>a</b>) Light power density per electrode (average of three points). The average power density equals 52.4 mW∙cm<sup>−2</sup>. (<b>b</b>) The photocurrent for individual electrodes and all-together connected electrically in parallel (bold line). (<b>c</b>) Photocurrent density normalized by light power density. (<b>d</b>) ABPE efficiency derived from (<b>b</b>). The noisy signal for W1 and W5 samples (top row of electrodes) is probably connected to poor contact with the current collector. The color code is the same in subfigures (<b>b</b>–<b>d</b>). RE: Ag/AgCl (sat. KCl), CE: Pt-coil.</p> "> Figure 6
<p>LSV (scan rate: 20 mV·s<sup>−1</sup>) experiments with WO<sub>3</sub> photoanodes, conducted in acidified 0.5M Na<sub>2</sub>SO<sub>4</sub> (pH = 1.55) under the illumination of the solar simulator: (<b>a</b>) Photocurrent density normalized by light power density. (<b>b</b>) Applied bias photon-to-current efficiency derived from the photocurrent. The noisy signal for W1 and W5 samples (top row of electrodes) is probably connected with poor contact with the current collector. RE: Ag/AgCl (sat. KCl), CE: Pt-coil.</p> "> Figure 7
<p>(<b>a</b>) The two-electrode chronoamperometric (CA) measurement in acidified synthetic seawater (pH = 1.55) under approx. 0.5 Sun illumination at the potential of 1.23 V vs. CE. WE: 8 WO<sub>3</sub> photoanodes connected electrically in parallel, CE: stainless steel foil. (<b>b</b>) The potential of WE vs. RE (Ag/AgCl electrode). It was measured independently from the CA setup using auxiliary potentiostat.</p> "> Figure 8
<p>(<b>a</b>) Photo-assisted C/D experiments of the LaNi<sub>4.3</sub>Co<sub>0.4</sub>Al<sub>0.3</sub> cathode. Data of potential vs. RHE during 4–7. cycles are missing because the RE was temporarily above the electrolyte. (<b>b</b>) The first twelve hours of the experiment. The absolute values of charging/discharging currents and potential changes upon illumination are given in red.</p> "> Figure 9
<p>Short photo-assisted C/D experiments with different charging rates. The specific current densities of 20, 50, 60, and 200 mA·g<sup>−1</sup> correspond to absolute current values of 2.02, 5.05, 6.06, and 20.18 mA, respectively. Modulated light was applied to photoanodes during experiments.</p> "> Figure 10
<p>A schematic assembly of the PEC-MH reactor: (1) an anodic compartment, (2) a cathodic compartment, (3) lids with ports for electrodes, (4) fixing plates with windows, (5) silicone gaskets, (6) an electric contact (the other seven are not shown), (7) a photoanode, (8) a reference electrode (optional), (9) cathode, (10) an ion-exchange membrane/diaphragm, and (11) the PMMA/glass plate. For clarity, some elements of the assembly are not shown, e.g., the cathode holder, additional counter electrode, hydraulic fittings, electrolyte tubing, screws, and nuts.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Case Study 1—PEC Water Splitting Coupled with MH-Based Hydrogen Storage in Alkaline Electrolyte
2.2. Case Study 2—PEC (Sea)Water Splitting
2.3. Case Study 3—PEC Seawater Splitting Coupled with MH-Based Hydrogen Storage
2.4. Stability of the Reactor
3. Materials and Methods
3.1. Manufacturing of the Reactor
3.2. Design of the Reactor and Peripheral Modules
3.3. Preparation of Cathode Assembly
3.4. Preparation of Photoanodes
3.5. PEC Characterization
3.6. Case Study 1 (CS-1)
3.7. Case Study 2 (CS-2)
3.8. Case Study 3 (CS-3)
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Dinh, H.N.; Miller, E. Photoelectrochemical Water Splitting. In Standards, Experimental Methods, and Protocols; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9781461482987. [Google Scholar]
- Kim, J.H.; Hansora, D.; Sharma, P.; Jang, J.W.; Lee, J.S. Toward Practical Solar Hydrogen Production-an Artificial Photosynthetic Leaf-to-Farm Challenge. Chem. Soc. Rev. 2019, 48, 1908–1971. [Google Scholar] [CrossRef]
- Hamdani, I.R.; Bhaskarwar, A.N. Recent Progress in Material Selection and Device Designs for Photoelectrochemical Water-Splitting. Renew. Sustain. Energy Rev. 2021, 138, 110503. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Wyżga, P.; Macyk, J.; Macyk, W.; Guzik, M.N. Solar-Driven (Photo)Electrochemical Devices for Green Hydrogen Production and Storage: Working Principles and Design. J. Energy Storage 2024, 82, 110484. [Google Scholar] [CrossRef]
- Jadwiszczak, M.; Jakubow-Piotrowska, K.; Kedzierzawski, P.; Bienkowski, K.; Augustynski, J. Highly Efficient Sunlight-Driven Seawater Splitting in a Photoelectrochemical Cell with Chlorine Evolved at Nanostructured WO3 Photoanode and Hydrogen Stored as Hydride within Metallic Cathode. Adv. Energy Mater. 2020, 10, 1903213. [Google Scholar] [CrossRef]
- Schoonman, J.; Kiliaan, H.S. In-Situ Storage of Solar Hydrogen in a PEC Cell. Solid. State Ion. 1983, 9–10, 1087–1092. [Google Scholar] [CrossRef]
- Schoonman, J. Electrochemical Conversion and Storage of Solar Energy. Berichte Bunsenges. Phys. Chem. Chem. Phys. 1982, 86, 660–664. [Google Scholar] [CrossRef]
- Danko, D.B.; Sylenko, P.M.; Shlapak, A.M.; Khyzhun, O.Y.; Shcherbakova, L.G.; Ershova, O.G.; Solonin, Y.M. Photoelectrochemical Cell for Water Decomposition with a Hybrid Photoanode and a Metal-Hydride Cathode. Sol. Energy Mater. Sol. Cells 2013, 114, 172–178. [Google Scholar] [CrossRef]
- Kongsawatvoragul, K.; Chomkhuntod, P.; Sawangphruk, M. Solar-Driven Energy Storage Enhancement of Nickel Hydroxide Nanomaterials. Electrochim. Acta 2021, 388, 138654. [Google Scholar] [CrossRef]
- Akuto, K.; Sakurai, Y. A Photorechargeable Metal Hydride/Air Battery. J. Electrochem. Soc. 2001, 148, A121. [Google Scholar] [CrossRef]
- Lei, B.; Li, G.R.; Chen, P.; Gao, X.P. A Solar Rechargeable Battery Based on Hydrogen Storage Mechanism in Dual-Phase Electrolyte. Nano Energy 2017, 38, 257–262. [Google Scholar] [CrossRef]
- Gholami, T.; Pirsaheb, M. Review on Effective Parameters in Electrochemical Hydrogen Storage. Int. J. Hydrogen Energy 2021, 46, 783–795. [Google Scholar] [CrossRef]
- Lopes, T.; Dias, P.; Andrade, L.; Mendes, A. An Innovative Photoelectrochemical Lab Device for Solar Water Splitting. Sol. Energy Mater. Sol. Cells 2014, 128, 399–410. [Google Scholar] [CrossRef]
- Vilanova, A.; Lopes, T.; Spenke, C.; Wullenkord, M.; Mendes, A. Optimized Photoelectrochemical Tandem Cell for Solar Water Splitting. Energy Storage Mater. 2018, 13, 175–188. [Google Scholar] [CrossRef]
- Vilanova, A.; Lopes, T.; Mendes, A. Large-Area Photoelectrochemical Water Splitting Using a Multi-Photoelectrode Approach. J. Power Sources 2018, 398, 224–232. [Google Scholar] [CrossRef]
- Tolod, K.R.; Hernández, S.; Russo, N. Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-up Challenges. Catalysts 2017, 7, 13. [Google Scholar] [CrossRef]
- ArtipHyction Project: “Fully Artificial Photo-Electrochemical Device for Low Temperature Hydrogen Production”. Available online: https://www.artiphyction.org/ (accessed on 22 November 2023).
- Torras, C.; Lorente, E.; Hernández, S.; Russo, N.; Salvadó, J. Hydrodynamics and Oxygen Bubble Characterization of Catalytic Cells Used in Artificial Photosynthesis by Means of CFD. Fluids 2017, 2, 25. [Google Scholar] [CrossRef]
- Becker, J.P.; Turan, B.; Smirnov, V.; Welter, K.; Urbain, F.; Wolff, J.; Haas, S.; Finger, F. A Modular Device for Large Area Integrated Photoelectrochemical Water-Splitting as a Versatile Tool to Evaluate Photoabsorbers and Catalysts. J. Mater. Chem. A Mater. 2017, 5, 4818–4826. [Google Scholar] [CrossRef]
- Ambrosi, A.; Pumera, M. 3D-Printing Technologies for Electrochemical Applications. Chem. Soc. Rev. 2016, 45, 2740–2755. [Google Scholar] [CrossRef]
- Andrei, V.; Hoye, R.L.Z.; Crespo-Quesada, M.; Bajada, M.; Ahmad, S.; De Volder, M.; Friend, R.; Reisner, E. Scalable Triple Cation Mixed Halide Perovskite–BiVO4 Tandems for Bias-Free Water Splitting. Adv. Energy Mater. 2018, 8, 1801403. [Google Scholar] [CrossRef]
- Taştan, Ü.; Ziegenbalg, D. Getting the Most out of Solar Irradiation: Efficient Use of Polychromatic Light for Water Splitting. Chem. A Eur. J. 2016, 22, 18824–18832. [Google Scholar] [CrossRef]
- Mousset, E.; Huang Weiqi, V.; Foong Yang Kai, B.; Koh, J.S.; Tng, J.W.; Wang, Z.; Lefebvre, O. A New 3D-Printed Photoelectrocatalytic Reactor Combining the Benefits of a Transparent Electrode and the Fenton Reaction for Advanced Wastewater Treatment. J. Mater. Chem. A Mater. 2017, 5, 24951–24964. [Google Scholar] [CrossRef]
- Pornrungroj, C.; Andrei, V.; Reisner, E. Thermoelectric–Photoelectrochemical Water Splitting under Concentrated Solar Irradiation. J. Am. Chem. Soc. 2023, 145, 13709–13714. [Google Scholar] [CrossRef]
- Dinesh, G.K.; Dessì, P.; Tong, W.; González-Gómez, R.; Farràs, P. 3D-Printed Photoelectrochemical Cell and Its Application in Evaluation of Bismuth Vanadate Photoanodes: Synthesis, Cell Design and Testing. Johns. Matthey Technol. Rev. 2022, 66, 386–392. [Google Scholar] [CrossRef]
- Ramalingam, K.; Bieńkowski, K.; Nawaz, N.; Solarska, R. Enhanced PEC Generation of Hydrogen from Seawater Driven by Efficient and Stable Ti-Fe2O3 Photoanode. Appl. Surf. Sci. 2025, 679, 161246. [Google Scholar] [CrossRef]
- Tobías, I.; del Cañizo, C.; Alonso, J. Crystalline Silicon Solar Cells and Modules. In Handbook of Photovoltaic Science and Engineering; Wiley: Hoboken, NJ, USA, 2003; pp. 255–306. [Google Scholar]
- Todorova, S.; Abrashev, B.; Rangelova, V.; Mihaylov, L.; Vassileva, E.; Petrov, K.; Spassov, T. Hydrogen Gas Phase and Electrochemical Hydriding of LaNi5−xMx (M = Sn, Co, Al) Alloys. Materials 2020, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Giza, K.; Bala, H.; Drulis, H.; Hackemer, A.; Folcik, L. Gaseous and Electrochemical Hydrogenation Properties of LaNi4.3(Co, Al)0.7 -XInx Alloys. Int. J. Electrochem. Sci. 2012, 7, 9881–9891. [Google Scholar] [CrossRef]
- Dymek, M.; Bala, H.; Hackemer, A.; Drulis, H. Hydrogenation and Electrochemical Corrosion Properties of LaNi4.5Co0.5 Alloy Doped with Aluminum. Solid. State Ion. 2015, 271, 116–120. [Google Scholar] [CrossRef]
- Feng, F. Electrochemical Behaviour of Intermetallic-Based Metal Hydrides Used in Ni/Metal Hydride (MH) Batteries: A Review. Int. J. Hydrogen Energy 2001, 26, 725–734. [Google Scholar] [CrossRef]
- Fukai, Y. The Metal-Hydrogen System; Springer: Berlin/Heidelberg, Germany, 2005; Volume 21, ISBN 978-3-540-00494-3. [Google Scholar]
- Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Lett. 2019, 4, 933–942. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, TX, USA, 1974. [Google Scholar]
- Bennett, J.E. Electrodes for Generation of Hydrogen and Oxygen from Seawater. Int. J. Hydrogen Energy 1980, 5, 401–408. [Google Scholar] [CrossRef]
- Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis. ChemSusChem 2016, 9, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Santato, C.; Ulmann, M.; Augustynski, J. Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films. J. Phys. Chem. B 2001, 105, 936–940. [Google Scholar] [CrossRef]
- Kafizas, A.; Godin, R.; Durrant, J.R. Charge Carrier Dynamics in Metal Oxide Photoelectrodes for Water Oxidation. In Semiconductors and Semimetals; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 97, pp. 3–46. [Google Scholar]
- Wyżga, P.; Tabari, T.; Trochowski, M.; Macyk, W. Optimizing the Morphology of Titania Nanorods for Enhanced Solar Seawater Splitting. Results Eng. 2023, 17, 100921. [Google Scholar] [CrossRef]
- Luo, T. Porous Ion Exchange Membranes for Vanadium Redox Flow Battery; Rheinisch-Westfälischen Technischen Hochschule Aachen: Aachen, Germany, 2017. [Google Scholar]
- Harp, D.L. Current Technology of Chlorine Analysis for Water and Wastewater; HACH Company: Loveland, CO, USA, 2002. [Google Scholar]
- Riegel, J.; Mayer, W.; van Havre, Y. FreeCad 0.19 [Software]. Available online: https://www.freecad.org (accessed on 1 June 2021).
- Ultimaker B.V. Ultimaker Cura 4.9.1 [Software]; Ultimaker B.V.: Utrecht, The Netherlands, 2021. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
Parameter | Compartment Body | Cathode Holder | Box for Pumps | Gasket Mold |
---|---|---|---|---|
Filament material | ASA | |||
Nozzle diameter/mm | 0.4 | 0.1 | 0.4 | 0.4 |
Nozzle/bed temperature/°C | 245/60 | |||
Layer height/mm | 0.1 | 0.08 | 0.2 | 0.2 |
Infill/% | 20 | 15 | ||
Wall thickness/mm | 4 | 4 | 1.2 | 1.2 |
Top/bottom thickness/mm | 4 | 4 | 0.6 | 0.6 |
Top/bottom printing speed/mm∙s−1 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyżga, P.; Macyk, J.; Lin, Y.-C.; Jensen, E.H.; Guzik, M.N.; Bieńkowski, K.; Solarska, R.; Macyk, W. 3D-Printed Reactor for Coupling Photoelectrochemical (Sea)Water Splitting with Solid-State H2 Storage. Catalysts 2024, 14, 941. https://doi.org/10.3390/catal14120941
Wyżga P, Macyk J, Lin Y-C, Jensen EH, Guzik MN, Bieńkowski K, Solarska R, Macyk W. 3D-Printed Reactor for Coupling Photoelectrochemical (Sea)Water Splitting with Solid-State H2 Storage. Catalysts. 2024; 14(12):941. https://doi.org/10.3390/catal14120941
Chicago/Turabian StyleWyżga, Paweł, Joanna Macyk, Yuan-Chih Lin, Emil Høj Jensen, Matylda N. Guzik, Krzysztof Bieńkowski, Renata Solarska, and Wojciech Macyk. 2024. "3D-Printed Reactor for Coupling Photoelectrochemical (Sea)Water Splitting with Solid-State H2 Storage" Catalysts 14, no. 12: 941. https://doi.org/10.3390/catal14120941
APA StyleWyżga, P., Macyk, J., Lin, Y. -C., Jensen, E. H., Guzik, M. N., Bieńkowski, K., Solarska, R., & Macyk, W. (2024). 3D-Printed Reactor for Coupling Photoelectrochemical (Sea)Water Splitting with Solid-State H2 Storage. Catalysts, 14(12), 941. https://doi.org/10.3390/catal14120941